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Abstract. In this paper, we are concerned with a class of fractional Hamiltonian systems con-
taining right Riemann-Liouville fractional derivatives and left Caputo fractional derivatives with
impulsive effects. Under certain conditions, the existence of solutions are obtained for this class
of systems by means of the least action principle, the saddle point theorem as well as some skills
of inequalities. One of the innovations of this paper is that the variational functional of these
problems are established in a proper fractional derivative space. Moreover, in order to show the
feasibility and effectiveness of our results, we present two examples.

1. Introduction

In this paper, we study the following fractional Hamiltonian system with impulsive
effects⎧⎪⎨⎪⎩

tDα
T

(
c
0D

α
t u(t)

)
= ∇F(t,u(t)), a.e. t ∈ [0,T ],

u(0) = u(T ) = 0,

Δ
(
tD

α−1
T

(
c
0D

α
t ui

))
(t j) = Ii j(ui(t j)), i = 1,2, . . . ,N, j = 1,2, . . . , p,

(1)

where tDα
T is the right Riemann-Liouville fractional derivatives of order 1

2 < α � 1,
c
0D

α
t is the left Caputo fractional derivatives of order 1

2 < α � 1, t0 = 0 < t1 < t2 <

.. . < tp < tp+1 = T , u(t) =
(
u1(t),u2(t), . . . ,uN(t)

)
and

Δ
(
tD

α−1
T

(c
0D

α
t ui))(t j) = tD

α−1
T

(c
0D

α
t u

)
(t+j )− tD

α−1
T

(c
0D

α
t u

)
(t−j ),

tD
α−1
T

(c
0D

α
t u

)
(t+j ) = lim

t→t+j
tD

α−1
T

(c
0D

α
t u

)
(t),

tD
α−1
T

(c
0D

α
t u

)
(t−j ) = lim

t→t−j
tD

α−1
T

(c
0D

α
t u

)
(t),

Ii j : R → R (i = 1,2, . . . ,N, j = 1,2, . . . , p) are continuous and F : [0,T ]×R
N → R

satisfies the following assumption:
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(A) F(t,x) is measurable in t for every x ∈ R
N and continuously differentiable in x

for a.e. t ∈ [0,T ] and there exist a ∈C(R+,R+) and b ∈ L1(0,T ;R+) such that∣∣F(t,x)
∣∣ � a(|x|)b(t),

∣∣∇F(t,x)
∣∣ � a(|x|)b(t)

for all x ∈ R
N and a.e. t ∈ [0,T ] , where ∇F(t,x) denotes the gradient of F(t,x)

in x .

For the sake of convenience, in the sequel, we denote Λ1 = {1,2, . . . ,N} and
Λ2 = {1,2, . . . , p}.

When α = 1 and Ii j ≡ 0, i ∈ Λ1 , j ∈ Λ2 , (1) is the second order Hamiltonian
system {

−ü(t) = ∇F(t,u(t)), a.e. t ∈ [0,T ];
u(0) = u(T ) = 0.

(2)

Many solvability conditions for problem (2) are obtained in [1] by some critical point
theorems.

When α = 1 and Ii j �≡ 0, i ∈ Λ1 , j ∈ Λ2 , (1) is the second order Hamiltonian
system with impulsive effects⎧⎪⎨⎪⎩

−ü(t) = ∇F(t,u(t)), a.e. t ∈ [0,T ];
u(0) = u(T ) = 0,

Δu̇i(t j) = u̇i(t+j )− u̇i(t−j ) = Ii j(ui(t j)), i ∈ Λ1, j ∈ Λ2.

(3)

Zhou and Li in [2] studied the existence of solutions for (3) using variational methods.
Moreover, when 0 < β < 1, Ii j �≡ 0, i ∈ Λ1 , j ∈ Λ2 , up to now, problem (1) has

received considerably less attention.
On the one hand, fractional differential equations involving the Riemann-Liouville

fractional derivative or the Caputo fractional derivative have recently been proved to be
valuable tools in the modeling of many phenomena in various fields of science, engi-
neering, physics and economics. Indeed, fractional differential equations have applica-
tions in many areas including fluid flow, electrical networks, probability and statistics,
viscoelasticity, chemical physics and signal processing, and so on, see [3–7] and refer-
ences therein. There has been a significant development in fractional differential equa-
tions in recent years, since the behavior of physical systems can be properly described
by using fractional order system theory. So fractional differential equations got the at-
tention of many researchers and considerable work has been done in this regard, see
[8–11], and the references therein. Especially, fractional Hamiltonian systems have re-
ceived increasing attention in various fields of science and engineering, with a growing
number of applications in electrochemistry, physics, rheology and biology, probability,
fluid flow, control theory, etc., for instance see the monographs of Kilbas et al. [12],
Podlubny [13], Zhou [14], the papers [15, 16] and the references therein. As stated in
[13], the qualitative theory of differential equations can be very highly useful in appli-
cations. When N = 1, the authors in [17] investigated the existence of solutions for a
class of impulsive fractional Hamiltonian systems⎧⎪⎨⎪⎩

tDα
T

(
c
0D

α
t u(t)

)
+ κ(t)u(t) = f (t,u), t ∈ [0,T ], t �= t j,

u(0) = u(T ) = 0,

Δ
(
tDα−1

T

(
c
0D

α
t ui

))
(t j) = Ii j(ui(t j)), i = 1,2, . . . ,N, j = 1,2, . . . ,m,

(4)
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by using Morse theory coupled with local linking arguments.
On the other hand, the study of boundary value problems for fractional differen-

tial equations is an intensively developed area. Recently, there have appeared a very
large number of papers which are devoted to the existence of solutions of boundary
value problems for fractional differential equations (see [18–21]). Especially, impulsive
boundary value problems for fractional differential equations are intensively studied re-
cently. Such problems appear in mathematical models with sudden changes of their
states in population dynamics, pharmacology, optimal control (see [22–24]). There
have been many approaches to study solutions of boundary value problems for frac-
tional differential equations with or without impulses, such as lower and upper solution
method, monotone iterative method ([25, 26]), fixed-point theorems ([11, 27]), Leray-
Schauder theory ([22–29]), and so on. However, there have been very few papers pub-
lished on the existence of solutions for fractional Hamiltonian systems (when N > 1)
with or without impulses which are done by using the variational method ([30, 31]),
since it is often very difficult to establish a suitable space and an appropriate varia-
tional functional for fractional differential equations boundary value problems. Since
variational method is, to the best of our knowledge, a novel, powerful and promising ap-
proach to deal with nonlinear boundary value problems for fractional differential equa-
tions with some type of discontinuities such as impulses, it is interesting and necessary
for us to continue to explore using the variational method to study such problems.

Motivated by the above, we investigate the existence of a variational construction
for problem (1) in an appropriate space of functions in this paper. Then, we study the
existence of solutions for (1) using some critical point theorems. All of our these results
are new.

The rest of this paper is organized as follows. In Section 2, we give some necessary
notation, definitions and properties of the fractional calculus involving the Riemann-
Liouville fractional derivative and the Caputo fractional derivative. In Section 3, we
introduce critical point theorems as variational tools. In Section 4, we make the varia-
tional structure of problem (1). In Section 5, based on some critical point theorems, we
establish three theorems on the existence of solutions of (1). In Section 6, we give two
examples to show the feasibility and effectiveness of the existence results.

2. Preliminaries

Now, we introduce some basic definitions and properties of the fractional calculus
involving the Riemann-Liouville fractional derivative and the Caputo fractional deriva-
tive which will be used in later sections. We first briefly recall some basic definitions
and results concerning fractional calculus.

DEFINITION 1. [32, 33] Let f (t) be a function defined on [a,b] and γ > 0.
The left and right Riemann-Liouville fractional integrals of order γ for function f (t)
denoted by aD

−γ
t f (t) and tD

−γ
b f (t) , respectively, are defined by

aD
−γ
t f (t) =

1
Γ(γ)

∫ t

a
(t− s)γ−1 f (s)ds, t ∈ [a,b], γ > 0
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and

tD
−γ
b f (t) =

1
Γ(γ)

∫ b

t
(s− t)γ−1 f (s)ds, t ∈ [a,b], γ > 0,

provided the right hand sides are pointwise defined on [a,b] , where Γ > 0 is the gamma
function.

DEFINITION 2. [32, 33] Let f (t) be a function defined on [a,b] and γ > 0. The
left and right Riemann-Liouville fractional derivatives of order γ for function f (t)
denoted by aD

γ
t f (t) and tD

γ
b f (t) , respectively, are defined by

aD
γ
t f (t) =

dn

dtn aD
γ−n
t f (t) =

1
Γ(n− γ)

dn

dtn
(∫ t

a
(t− s)n−γ−1 f (s)ds

)
and

tD
γ
b f (t) = (−1)n dn

dtn tD
γ−n
b f (t) =

1
Γ(n− γ)

(−1)n dn

dtn
(∫ b

t
(s− t)n−γ−1 f (s)ds

)
,

where t ∈ [a,b] , n−1 � γ < n and n ∈ N . In particular, if 0 � γ < 1, then

aD
γ
t f (t) =

d
dt aD

γ−1
t f (t) =

1
Γ(1− γ)

d
dt

(∫ t

a
(t− s)−γ f (s)ds

)
, t ∈ [a,b]

and

tD
γ
b f (t) = − d

dt tD
γ−1
b f (t) = − 1

Γ(1− γ)
d
dt

(∫ b

t
(s− t)−γ f (s)ds

)
, t ∈ [a,b]. (1)

The left and right Caputo fractional derivatives are defined according to the above
Riemann-Liouville fractional derivatives (see [32], p. 91). Especially, they are defined
for the function belonging to the space of absolutely continuous functions.

DEFINITION 3. ([32]) Let γ � 0 and n ∈ N .

(i) If γ ∈ [n− 1,n) and f ∈ ACn([a,b],RN) , then the left and right Caputo frac-
tional derivatives of order γ for function f (t) denoted by c

aD
γ
t f (t) and c

t D
γ
b f (t) ,

respectively, exist almost everywhere on [a,b] . c
aD

γ
t f (t) and c

t D
γ
b f (t) are repre-

sented by

c
aD

γ
t f (t) =a Dγ−n

t f (n)(t) =
1

Γ(n− γ)

(∫ t

a
(t − s)n−γ−1 f (n)(s)ds

)
, t ∈ [a,b]

and

c
t D

γ
b f (t)= (−1)n

tD
γ−n
b f (n)(t)=

(−1)n

Γ(n− γ)

(∫ b

t
(s−t)n−γ−1 f (n)(s)ds

)
, t ∈ [a,b],

respectively. In particular, if 0 < γ < 1, then

c
aD

γ
t f (t) =a Dγ−1

t f ′(t) =
1

Γ(1− γ)

(∫ t

a
(t − s)n−γ−1 f (n)(s)ds

)
, t ∈ [a,b] (2)

and

c
t D

γ
b f (t) = (−1)n

tD
γ−1
b f ′(t) =

(−1)n

Γ(1− γ)

(∫ b

t
(s−t)n−γ−1 f (n)(s)ds

)
, t ∈ [a,b].
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(ii) If γ = n−1 and f ∈ ACn−1([a,b],RN) , then c
aD

n−1
t f (t) and c

t D
n−1
b f (t) are rep-

resented by

c
aD

n−1
t f (t) = f (n−1)(t) and c

t D
n−1
b f (t) = (−1)n−1 f (n−1)(t),t ∈ [a,b].

In particular, c
aD

0
t f (t) = c

tD
0
b f (t) = f (t),t ∈ [a,b].

In view of these definitions, it should be noted some of the properties of the
Riemann-Liouville fractional integral and derivative operators.

PROPERTY 1. ([32]) We have the following property of fractional integration∫ b
a

[
aD

−γ
t f (t)

]
g(t)dt =

∫ b
a

[
tD

−γ
b g(t)

]
f (t)dt , γ > 0,

provided that f ∈ Lp([a,b],RN) , g ∈ Lq([a,b],RN) and p � 1, q � 1, 1
p + 1

q � 1+ γ
or p �= 1, q �= 1, 1

p + 1
q = 1+ γ .

Throughout this paper, we denote by the norm of the space Lp([0,T ],RN) for

1 � p � +∞ as ‖u‖Lp =
(∫ T

0 |u(t)|pdt
) 1

p and ‖u‖∞ = maxu∈[0,T ] |u(t)| .

DEFINITION 4. ([30]) Let 0 < α � 1 and 1 < p < ∞ . The fractional derivative
space Eα ,p

0 is defined by the closure of C∞
0 ([0,T ],RN) with respect to the norm

‖u‖α ,p =
(∫ T

0
|u(t)|pdt +

∫ T

0
|c0Dα

t u(t)|pdt

) 1
p

, ∀u ∈ Eα ,p
0 ,

where

C∞
0 ([0,T ],RN) = {u : [0,T ] −→ R

N
∣∣u(0) = u(T ) = 0, u ∈Cκ([0,T ],RN),κ ∈ R}.

REMARK 1. ([30])

(i) It is obviously that this fractional derivative space Eα ,p
0 is the space of func-

tions u ∈ Lp([0,T ],RN) having an α -order Caputo fractional derivative c
0D

α
t u ∈

Lp([0,T ],RN) and u(0) = u(T ) = 0.

(ii) For any u ∈ Eα ,p
0 , noting the fact that u(0) = 0, we have c

0D
α
t u(t) = 0Dα

t u(t) ,
t ∈ [0,T ].

PROPOSITION 1. ([30], Proposition 3.1) Let 0 < α � 1 and 1 < p < ∞ . The
fractional derivative spaces Eα ,p

0 are reflexive and separable Banach spaces.

PROPOSITION 2. ([30], Proposition 3.2) Let 0 < α � 1 and 1 < p < ∞ . Eα ,p
0 ↪→

Lp([0,T ],RN) is compact and for all u ∈ Eα ,p
0 , we have

‖u‖Lp � T α

Γ(α +1)
‖c

0D
α
t u‖Lp .



238 J. ZHOU, Y. WANG AND Y. LI

Moreover, if α > 1
p and 1

p + 1
q = 1 , then

‖u‖∞ � Tα− 1
p

Γ(α)
(
(α −1)q+1

)1
q

‖c
0D

α
t u‖Lp .

PROPOSITION 3. ([30], Proposition 3.3) Let 0 < α � 1 and 1 < p < ∞ . Assume
that α > 1

p and the sequence {un} converges weakly to u in Eα ,p
0 , i.e., uk ⇀ u. Then

{uk} converges strongly to u in C([0,T ],RN) , i.e., ‖uk −u‖∞ → 0 , as k → +∞ .

In this paper, we study problem (1) in the Hilbert space Eα .= Eα ,2
0 with the inner

product and the corresponding norm defined by

〈u,v〉 =
∫ T

0

(
u(t),v(t)

)
dt +

∫ T

0

(c
0D

α
t u(t), c

0D
α
t v(t)

)
dt ∀u,v ∈ Eα

and

‖u‖α = |u‖α ,2 =
(∫ T

0
|u(t)|2dt +

∫ T

0
|c0Dα

t u(t)|2dt
) 1

2

, ∀u ∈ Eα . (3)

Now, we will prove a continuous differentiability theorem for a class of functionals
in space Eα .

THEOREM 1. Let 0 < α � 1 , 1
p < α � 1 , L : [0,T ]T ×R

N ×R
N → R,(t,x,y) →

L(t,x,y) be measurable in t for each (x,y) ∈ R
N ×R

N and continuously differentiable
in (x,y) for almost every t ∈ [0,T ] . If there exist a ∈ C(R+,R+) , b ∈ L1([0,T ],R+)
and c ∈ Lq([0,T ],R+) (1 < q < +∞) such that for almost t ∈ [0,T ] and every (x,y) ∈
R

N ×R
N , one has

|L(t,x,y)| � a(|x|)(b(t)+ |y|p),
|Lx(t,x,y)| � a(|x|)(b(t)+ |y|p), (4)

|Ly(t,x,y)| � a(|x|)(c(t)+ |y|p−1),
where 1

p + 1
q = 1 , then the functional Eα ,p

0 → R defined as

Φ(u) =
∫ T

0
L
(
t,u(t), c

0D
α
t u(t)

)
dt

is continuously differentiable on Eα ,p
0 and〈

Φ′(u),v
〉

=
∫ T

0

[(
Lx

(
t,u(t), c

0D
α
t u(t)

)
,v(t)

)
+

(
Ly

(
t,u(t), c

0D
α
t u(t)

)
, c0D

α
t v(t)

)]
dt.

(5)

Proof. It suffices to prove that Φ has at every point u a directional derivative
Φ′(u) ∈ (

Eα ,p
0

)∗
given by (5) and that the mapping

Φ′ : Eα ,p
0 → (

Eα ,p
0

)∗
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is continuous.
Firstly, it follows from (4) that Φ is everywhere finite on Eα ,p

0 . We define, for u
and v fixed in Eα ,p

0 , t ∈ [0,T ],λ ∈ [−1,1],

G(λ ,t) = L
(
t,u(t)+ λv(t), c0D

α
t u(t)+ λ c

0D
α
t v(t)

)
and

Ψ(λ ) =
∫

[0,T )T

G(λ ,t)Δt = Φ(u+ λv).

From (4), we have∣∣Dλ G(λ , t)
∣∣ �

∣∣(DxL
(
t,u(t)+ λv(t), c0D

α
t u(t)+ λ c

0D
α
t v(t)

)
,v(t)

)∣∣
+

∣∣(DyL
(
t,u(t)+ λv(t), c0D

α
t u(t)+ λ c

0D
α
t v(t)

)
, c
0D

α
t v(t)

)∣∣
� a

(∣∣u(t)+ λv(t)
∣∣)(b(t)+

∣∣c
0D

α
t u(t)+ λ c

0D
α
t v(t)

∣∣p)∣∣v(t)∣∣
+a(

∣∣u(t)+ λv(t)
∣∣)(c(t)+

∣∣c
0D

α
t u(t)+ λ c

0D
α
t v(t)

∣∣p−1)∣∣c
0D

α
t v(t)

∣∣
� a

(
b(t)+

(|c0Dα
t u(t)|+ |c0Dα

t v(t)|)p)∣∣v(t)∣∣
+a

(
c(t)+

(|c0Dα
t u(t)|+ |c0Dα

t v(t)|)p−1)∣∣c
0D

α
t v(t)

∣∣
� d(t), (6)

where
a = max

(λ ,t)∈[−1,1]×[0,T ]
a
(∣∣u(t)+ λv(t)

∣∣),
thus, d ∈ L1([0,T ],R+) . Since b ∈ L1([0,T ],R+) , (|c0Dα

t u|+ |c0Dα
t v|)p ∈ L1([0,T ],R) ,

c ∈ Lq([0,T ],R+) , we have

|Dλ G(λ ,t)| � d(t),

and

Ψ′(0) =
∫ T

0
Dλ G(0,t)dt (7)

=
∫ T

0

[(
Lx

(
t,u(t), c

0D
α
t u(t)

)
,v(t)

)
+

(
Ly

(
t,u(t), c

0D
α
t u(t)

)
, c
0D

α
t v(t)

)]
dt.

On the other hand, it follows from (4) that

|DxL
(
t,u(t), c

0D
α
t u(t)

)| � a(|u(t)|)(b(t)+ |c0Dα
t u(t)|p) � ψ1(t), (8)

|DyL
(
t,u(t), c

0D
α
t u(t)

)| � a(|u(t)|)(c(t)+ |c0Dα
t u(t)|p−1) � ψ2(t), (9)

thus ψ1 ∈ L1([0,T ],R+) , ψ2 ∈ Lq([0,T ],R+) . Thereby, by Theorem 2.7, (7), (8) and
(9), there exists positive constants C2,C3,C4 such that∫ T

0

[(
Lx

(
t,u(t), c

0D
α
t u(t)

)
,v(t)

)
+

(
Ly

(
t,u(t), c

0D
α
t u(t)

)
, c
0D

α
t v(t)

)]
dt

� C1‖v‖∞ +C2‖c
0D

α
t v‖Lp

� C3‖v‖α ,p
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and Φ has a directional derivative at u and Φ′(u) ∈ (Eα ,p)∗ given by (5).
Moreover, (4) implies that the mapping from Eα ,p into L1([0,T ],RN)×Lq([0,T ],RN)

defined by
u → (

DxL
(·,u, c

0D
α
t u

)
,DyL

(·,u, c
0D

α
t u

))
is continuous, so that Φ′ is continuous from Eα ,p into (Eα ,p)∗ . The proof is com-
plete. �

3. Variational tools

For the sake of the proof for the existence of solutions to problem (1), the following
definitions and critical point theorems are needed as tools.

DEFINITION 5. ([1], p. 81) Let X be a real Banach space and I ∈ C1(X ,R) . I
is said to satisfy (PS) condition on X if any sequence {xn} ⊆ X for which I(xn) is
bounded and I′(xn) → 0 as n → ∞ , possesses a convergent subsequence in X .

DEFINITION 6. ([1]) Let X be a real Banach space and I ∈ C1(X ,R) . I is said
to satisfy (PS) condition on X if any sequence {xn} ⊆ X for which I(xn) → c and
I′(xn) → 0 as n → ∞ , possesses a convergent subsequence in X .

REMARK 2. It is clear that the (PS) condition implies the (PS)c condition for any
constant.

THEOREM 2. (Theorem 1.2, [1]) If X is a normed space and ϕ : X → (−∞,+∞)
is lower semi-continuous and convex, then ϕ is weakly lower semi-continuous.

THEOREM 3. (Theorem 4.7, [1]) Let X be a Banach space and let Φ ∈C1(X ,R) .
Assume that X splits into a direct sum of closed subspace X = X−⊕X+ with

dimX− < ∞

and

sup
S−R

Φ < inf
X+

Φ,

where S−R = {u ∈ X− : ‖u‖ = R} . Let

B−
R = {u ∈ X− : ‖u‖ � R},

M = {h ∈C(B−
R ,X) : h(s) = s if s ∈ S−R }

and

c = inf
h∈M

max
s∈B−

R

Φ(h(s)).

Then, if Φ satisfies the (PS)c condition, c is a critical value of Φ .
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4. Variational framework

In this section, we will establish a variational framework that enables us to re-
duce the existence of solutions of problem (1) to the one of finding critical points of
corresponding functional.

Take v ∈ Eα and multiply the two sides of the equality

tD
α
T

(c
0D

α
t u(t)

)
= ∇F(t,u(t))

by v and integrate from 0 to T , we have∫ T

0

[
tD

α
T

(c
0D

α
t u(t)

)−∇F(t,u(t))
]
v(t)dt = 0. (1)

Moreover, by Remark 1, 1, (1) and (2), one has∫ T

0

(
tD

α
T

(c
0D

α
t u(t)

)
,v(t)

)
dt

= −
p

∑
j=0

∫ t j+1

t j

(
d
dt

(
tD

α−1
T

(c
0D

α
t u(t)

))
,v(t)

)
dt

= −
p

∑
j=0

[(
tD

α−1
T (c

0D
α
t u)(t−j+1),v(t

−
j+1)

)− (
tD

α−1
T (c

0D
α
t u)(t+j ),v(t+j )

)]
+

p

∑
j=0

∫ t j+1

t j

(
tD

α−1
T (c

0D
α
t u)(t),v′(t)

)
dt

= −
p

∑
j=0

N

∑
i=1

[(
tD

α−1
T (c

0D
α
t ui)(t−j+1),v

i(t−j+1)
)− (

tD
α−1
T (c

0D
α
t ui)(t+j ),vi(t+j )

)]
+

p

∑
j=0

∫ t j+1

t j

(c
0D

α
t u(t),0D

α−1
t v′(t)

)
dt

]
= tD

α−1
T (c

0D
α
t u)(0)v(0)− tD

α−1
T (c

0D
α
t u)(T )v(T )

+
p

∑
j=1

N

∑
i=1

[
tD

α−1
T (c

0D
α
t ui)(t+j )− tD

α−1
T (c

0D
α
t ui)(t−j )

]
vi(t j)

+
∫ t j+1

t j

(c
0D

α
t u(t), c

0D
α
t v(t)

)
dt

=
p

∑
j=1

N

∑
i=1

Ii ju
i(t j))vi(t j)+

∫ T

0

(c
0D

α
t u(t), c

0D
α
t v(t)

)
dt.

By means of (1), we have∫ T

0

(c
0D

α
t u(t), c

0D
α
t v(t)

)
dt +

p

∑
j=1

N

∑
i=1

Ii ju
i(t j))vi(t j)−

∫ T

0

(
∇F(t,u(t)),v(t)

)
dt = 0.

On account of above, we give the following concept solution for problem (1).
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DEFINITION 7. A function u ∈ Eα is a weak solution of problem (1) if the iden-
tity∫ T

0

(c
0D

α
t u(t), c

0D
α
t v(t)

)
dt +

p

∑
j=1

N

∑
i=1

Ii ju
i(t j))vi(t j)−

∫ T

0

(
∇F(t,u(t)),v(t)

)
dt = 0

holds for any v ∈ Eα .

We define the functional Φ : Eα → R as

Φ(u) =
1
2

∫ T

0

∣∣c
0D

α
t u(t)

∣∣2dt + p

∑
j=1

N

∑
i=1

∫ ui(t j)

0
Ii j(t)dt−

∫ T

0
F(t,u(t))dt

= ψ(u)+ φ(u), (2)

where

ψ(u) =
1
2

∫ T

0

∣∣c
0D

α
t u(t)

∣∣2dt−∫ T

0
F(t,u(t))dt

and

φ(u) =
p

∑
j=1

N

∑
i=1

∫ ui(t j)

0
Ii j(t)dt.

Then, we can prove the following facts.

THEOREM 4. The functional Φ is continuously differentiable on Eα and

〈Φ′(u),v〉 =
∫ T

0

(c
0D

α
t u(t), c

0D
α
t v(t)

)
dt +

p

∑
j=1

N

∑
i=1

Ii j(ui(t j))vi(t j)

−
∫ T

0

(
∇F(t,u(t)),v(t)

)
dt.

The proof of this theorem is very simple, we omit it.

THEOREM 5. If u ∈ Eα is a critical point of Φ in Eα , i.e., Φ′(u) = 0 , then u is
a weak solution of problem (1).

Proof. Since Φ′(u) = 0, in the light of Theorem4, one has

∫ T

0

(c
0D

α
t u(t), c

0D
α
t v(t)

)
dt +

p

∑
j=1

N

∑
i=1

Ii j(ui(t j))vi(t j)−
∫ T

0

(
∇F(t,u(t)),v(t)

)
dt = 0.

By means of Definition 7, u is a weak solution of problem (1). �
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5. Existence results

In order to use the saddle point theorem (Theorem 3), we decompose the space
Eα . For u ∈ Eα , let u = 1

T

∫ T
0 u(t)dt and ũ(t) = u(t)−u , then

Eα = R
N ⊕ Ẽα ,

where Ẽα =
{
u ∈ Eα ∣∣∫ T

0 u(t)dt = 0
}

LEMMA 1. The functional H : Eα → R denoted by

H(u) =
1
2

∫ T

0

∣∣c
0D

α
t u(t)

∣∣2 dt

is convex and continuous on Eα .

This lemma is trivial, hence, we omit the proof of this lemma.

LEMMA 2. Φ is weakly lower semi-continuous on Eα .

Proof. On the basis of Theorem 2 and Lemma 1, we can deduce that H is weakly
lower semi-continuous on Eα . More than this, by Proposition 3, the functional G :
Eα → R denoted by

G(u) =
∫ T

0
F(t,u(t))dt

is weakly continuous on Eα . Consequently, ψ is weakly lower semi-continuous on
Eα . So far, it suffices to show that φ is weakly continuous on Eα . In fact, if {uk}k∈N ⊆
Eα , uk ⇀ u , then from Proposition 3, {uk}k∈N converges uniformly to u on [0,T ] .
Thereby, there exists C4 > 0 such that

‖uk‖∞ � C4, ∀k ∈ N.

Accordingly, we can assert that

∣∣φ(uk)−φ(u)
∣∣ =

∣∣∣∣ p

∑
j=1

N

∑
i=1

∫ ui
k(t j)

0
Ii j(t)dt−

p

∑
j=1

N

∑
i=1

∫ ui(t j)

0
Ii j(t)dt

∣∣∣∣
�

p

∑
j=1

N

∑
i=1

∣∣∣∣∫ ui
k(t j)

ui(t j)
Ii j(t)dt

∣∣∣∣
� pNC5

2
‖uk −u‖∞ → 0,

where C5 = max
i∈A, j∈B,|t|�C4

∣∣Ii j(t)∣∣ . In view of the above, Φ is weakly lower semi-

continuous on Eα . �

THEOREM 6. Suppose that the following conditions hold.
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(i) There exist f ,g ∈ L1(0,T ;R+) and ζ ∈ [0,1) such that

|∇F(t,x)| � f (t)|x|ζ +g(t)

for all x ∈ R
N and a.e. t ∈ [0,T ] .

(ii) |x|−2ζ ∫ T
0 F(t,x)dt →−∞ as |x| → ∞ .

(iii) For any i ∈ Λ1, j ∈ Λ2 ,

Ii j(t)t � 0, ∀t ∈ R.

Then problem (1) has at least one weak solution which minimizes the function Φ .

Proof. Combining (i) with Proposition 2, we can get∣∣∣∣∫ T

0

(
F(t,u(t))−F(t,u)

)
dt

∣∣∣∣
�

∣∣∣∣∫ T

0

∫ 1

0

(
∇F(t,u+ sũ(t)), ũ(t)

)
dsdt

∣∣∣∣
�

∫ T

0

∫ 1

0
f (t)|u+ sũ(t)|ζ |ũ(t)|dsdt +

∫ T

0

∫ 1

0
g(t)|ũ(t)|dsdt

� 2
(|u|ζ +‖ũ‖ζ

∞
)‖ũ‖∞

∫ T

0
f (t)dt +‖ũ‖∞

∫ T

0
g(t)dt

� Γ2(α)(2α −1)
4T 2α−1 ‖ũ‖2

∞ +
4T 2α−1

Γ2(α)(2α −1)
|u|2ζ

(∫ T

0
f (t)dt

)2

+2‖ũ‖ζ+1
∞

∫ T

0
f (t)dt +‖ũ‖∞

∫ T

0
g(t)dt

� 1
4

∫ T

0
|c0Dα

t u(t)|2dt+C6|u|2ζ +C7

(∫ T

0
|c0Dα

t u(t)|2dt
) ζ+1

2

+C8

(∫ T

0
|c0Dα

t u(t)|2dt
) 1

2

for all u∈Eα , where C6 = 4T 2α−1

Γ2(α)(2α−1)

(∫ T
0 f (t)dt

)2
, C7 = 2

(
Tα− 1

2
Γ(α)(2α−1)

)ζ+1 ∫ T
0 | f (t)|dt

and C8 = Tα− 1
2

Γ(α)(2α−1)
∫ T
0 |g(t)|dt .

According to (iii) , one has

φ(u) � 0, u ∈ Eα .

Hence, for any u ∈ Eα , we can get

Φ(u) =
1
2

∫ T

0

∣∣c
0D

α
t u(t)

∣∣2dt−∫ T

0
F(t,u(t))dt + φ(u)

=
1
2

∫ T

0
|c0Dα

t u(t)|2 dt−
∫ T

0

(
F(t,u(t))−F(t,u)

)
dt−

∫ T

0
F(t,u)dt + φ(u)

� 1
4

∫ T

0
|c0Dα

t u(t)|2 dt−|u|2ζ
(
|u|−2ζ

∫ T

0
F(t,u)dt +C6

)

−C7

(∫ T

0
|c0Dα

t u(t)|2 dt

) ζ+1
2

−C8

(∫ T

0
|c0Dα

t u(t)|2 dt

) 1
2

. (1)
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As ‖u‖α → ∞ if and only if (|u|2 +
∫ T
0 |c0Dα

t u(t)|2 dt)
1
2 → ∞ , (1) and (ii) imply that

Φ(u) → +∞ as ‖u‖α → ∞.

Combining Proposition 1, Theorem 1.1 in [1] with Lemma 2, Φ has a minimum point
on Eα , which is a critical point of Φ . Therefore, problem (1) has at least one weak
solution. �

THEOREM 7. Assume that condition (i) of Theorem 6 and the following condi-
tions are satisfied.

(iv) There exist ai j , bi j > 0 and βi j ∈ (0,1) such that

|Ii j(t)| � ai j +bi j|t|ζβi j for every t ∈ R, i ∈ Λ1, j ∈ Λ2.

(v) For any i ∈ Λ1 , j ∈ Λ2 ,

Ii j(t) t � 0, ∀ t ∈ R.

(vi) |x|−2ζ ∫ T
0 F(t,x)dt → +∞ as |x| → ∞ .

Then problem (1) has at least one weak solution.

Before proving Theorem 7, we prove the following lemma firstly,

LEMMA 3. If the conditions of Theorem 7 hold, then Φ satisfies P.S. condition.

Proof. Let {un} ⊆ Eα be a P.S. sequence for Φ , that is, {Φ(un)} is bounded and
Φ′(un) → 0 as n → ∞. We will prove that {un} consists of a convergent subsequence
in Eα . In deed, for all n ∈ N , according to (i) and Proposition 2, one has∣∣∣∣∫ T

0

(
F(t,un(t))−F(t,un)

)
dt

∣∣∣∣
�

∣∣∣∣∫ T

0

∫ 1

0

(
∇F(t,un + sũn(t)), ũn(t)

)
dsdt

∣∣∣∣
�

∫ T

0

∫ 1

0
f (t)|un + sũn(t)|ζ |ũn(t)|dsdt +

∫ T

0

∫ 1

0
g(t)|ũn(t)|dsdt

� 2
(|un|ζ +‖ũn‖ζ

∞
)‖ũn‖∞

∫ T

0
f (t)dt +‖ũn‖∞

∫ T

0
g(t)dt

�
Γ2(α)

(
2α −1

)
4T 2α−1 ‖ũn‖2

∞ +
4T 2α−1

Γ2(α)
(
2α −1

) |un|2ζ
(∫ T

0
f (t)dt

)2

+2‖ũn‖ζ+1
∞

∫ T

0
f (t)dt +‖ũn‖∞

∫ T

0
g(t)dt

� 1
4

∫ T

0
|c0Dα

t un(t)|2 dt +C6|un|2ζ

+C7

(∫ T

0
|c0Dα

t un(t)|2 dt

) ζ+1
2

+C8

(∫ T

0
|c0Dα

t un(t)|2 dt

) 1
2

. (2)
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For convenience, we let a = max
i∈Λ1, j∈Λ2

ai j , b = max
i∈Λ1, j∈Λ2

bi j. From (2), (iv) and Young

inequality, for sufficiently large n , we have

‖ũn‖α

�
〈
Φ′(un), ũn

〉
=

∫ T

0
|c0Dα

t un(t)|2 dt−
∫ T

0

(
∇F(t,un(t), ũn(t)

)
dt +

p

∑
j=1

N

∑
i=1

Ii j
(
ui

n(t)
)
ũi

n(t)

� 3
4

∫ T

0
|c0Dα

t un(t)|2 dt−C6|un|2ζ −C7

(∫ T

0
|c0Dα

t un(t)|2 dt

) ζ+1
2

−C8

(∫ T

0
|c0Dα

t un(t)|2 dt

) 1
2

−
p

∑
j=1

N

∑
i=1

(
ai j +bi j|ui

n(t)|ζβi j
)|ũi

n(t)|

=
3
4

∫ T

0
|c0Dα

t un(t)|2 dt−C3|un|2ζ −C4

(∫ T

0
|c0Dα

t un(t)|2 dt

) ζ+1
2

−C5

(∫ T

0
|c0Dα

t un(t)|2 dt

) 1
2

−
p

∑
j=1

N

∑
i=1

(
ai j +bi j

∣∣ui
n(t)+ ũi

n(t)
∣∣ζβi j

)|ũi
n(t)|

� 3
4

∫ T

0
|c0Dα

t un(t)|2 dt−C6|un|2ζ −C7

(∫ T

0
|c0Dα

t un(t)|2 dt

) ζ+1
2

−C8

(∫ T

0
|c0Dα

t un(t)|2 dt

) 1
2

−apN‖ũn‖∞ −b
p

∑
j=1

N

∑
i=1

2
(|un|ζβi j +‖ũn‖ζβi j

∞
)‖ũn‖∞

� 3
4

∫ T

0
|c0Dα

t un(t)|2 dt−C6|un|2ζ −C7

(∫ T

0
|c0Dα

t un(t)|2 dt

) ζ+1
2

−C8

(∫ T

0
|c0Dα

t un(t)|2 dt

) 1
2

−apN
T α− 1

2

Γ(α)
√

2(α −1)+1

(∫ T

0
|c0Dα

t un(t)|2 dt

) 1
2

−b
p

∑
j=1

N

∑
i=1

βi j|un|2ζ −2b
p

∑
j=1

N

∑
i=1

2−βi j

2
‖ũn‖

2
2−βi j
∞ −2b

p

∑
j=1

N

∑
i=1

‖ũn‖ζβi j+1
∞

� 3
4

∫ T

0
|c0Dα

t un(t)|2 dt−C6|un|2ζ −C7

(∫ T

0
|c0Dα

t un(t)|2 dt

)α+1
2

−C8

(∫ T

0
|c0Dα

t un(t)|2 dt

) 1
2

−apN
T α− 1

2

Γ(α)
√

2(α −1)+1

(∫ T

0
|c0Dα

t un(t)|2 dt

) 1
2

−b
p

∑
j=1

N

∑
i=1

βi j|un|2ζ −2b
p

∑
j=1

N

∑
i=1

(
T 2α−1

(Γ(α))2
(
2(α −1)+1

) ∫ T

0
|c0Dα

t un(t)|2 dt

) ζ βi j+1
2

−2b
p

∑
j=1

N

∑
i=1

(2−βi j)
(

T 2α−1

(Γ(α))2
(
2(α −1)+1

) ∫ T

0
|c0Dα

t un(t)|2 dt

) 1
2−βi j

. (3)
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According to Proposition 2, one has∫ T

0
|c0Dα

t un(t)|2 � ‖ũn‖2
α �

(
1+

T 2α

(Γ(α +1))2

)∫ T

0
|c0Dα

t un(t)|2 dt. (4)

The inequalities (3) and (4) imply that for all large n , there exist some positive constants
C9 and C10 such that

C9|un|α �
(∫ T

0
|u̇n(t)|2 dt

) 1
2

−C10. (5)

The same as the proof of Theorem 6, for all n , we have∣∣∣∣∫ T

0

(
F(t,un(t))−F(t,un)

)
dt

∣∣∣∣
� 1

4

∫ T

0
|c0Dα

t un(t)|2 dt +C6|un|2ζ +C7

(∫ T

0
|c0Dα

t un(t)|2 dt

) ζ+1
2

+C8

(∫ T

0
|c0Dα

t un(t)|2 dt

) 1
2

. (6)

It follows from the boundedness of {Φ(un)} , (v) , (5) and (6) that for all large n , there
exists constant C11 and some constant C12 such that

C11 � Φ(un)

=
1
2

∫ T

0
|c0Dα

t un(t)|2 dt−
∫ T

0

(
F(t,un(t))−F(t,un)

)
dt−

∫ T

0
F(t,un)dt + φ(u)

� 1
2

∫ T

0
|c0Dα

t un(t)|2 dt−
∫ T

0

(
F(t,un(t))−F(t,un)

)
dt−

∫ T

0
F(t,un)dt

� 3
4

∫ T

0
|c0Dα

t un(t)|2 dt +C6|un|2ζ −
∫ T

0
F(t,un)dt

+C7

(∫ T

0
|c0Dα

t un(t)|2 dt

) ζ+1
2

+C8

(∫ T

0
|c0Dα

t un(t)|2 dt

) 1
2

� −|un|2ζ
(
|un|−2ζ

∫ T

0
F(t,un)dt +C12

)
. (7)

According to (7) and (vi) that {|un|} is bounded. Thus, {un} is bounded in Eα from
(4) and (5). Thereby, there exists a subsequence of {un} (for simplicity denoted again
by {un} ) such that

un ⇀ u in Eα . (8)

In view of Proposition 3, we have

un → u in C([0,T ],RN). (9)
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Furthemore, one has〈
Φ′(un)−Φ′(u),un−u

〉
=

∫ T

0

∣∣c
0D

α
t un(t)−c

0 Dα
t u(t)

∣∣2 dt +
∫ T

0

(
∇F(t,un(t))−∇F(t,u(t)),un(t)−u(t)

)
dt

+
p

∑
j=1

N

∑
i=1

(
Ii j

(
ui

n(t j)
)− Ii j

(
ui(t j)

))(
ui

n(t j)−ui(t j)
)
. (10)

From (8), (9), (10), (A) and the continuity of Ii j , we admit that un → u in Eα . Hence,
Φ satisfies P.S. condition. �

Now, we prove Theorem 7.

Proof. As mentioned earlier,

Eα = R
N ⊕ Ẽα ,

where Ẽα =
{
u ∈ Eα ∣∣∫ T

0 u(t)dt = 0
}

. We show that

Φ(u) → +∞ as u ∈ Ẽα , ‖u‖→ ∞. (11)

In reality, for u ∈ Ẽα , then u = 0, similar to the proof of Theorem 6, one has∣∣∣∣∫ T

0

(
F(t,u(t))−F(t,0)

)
dt

∣∣∣∣
� 1

4

∫ T

0
|c0Dα

t u(t)|2 dt +C7

(∫ T

0
|c0Dα

t u(t)|2 dt

) ζ+1
2

+C8

(∫ T

0
|c0Dα

t u(t)|2 dt

) 1
2

. (12)

Combining (iv) with Proposition 2, we can find

|φ(u)| =
∣∣∣∣ p

∑
j=1

N

∑
i=1

∫ ui(t j)

0
Ii j(t)dt

∣∣∣∣
�

p

∑
j=1

N

∑
i=1

∫ ui(t j)

0

(
ai j +bi j|t|ζβi j

)
dt

� apN‖u‖∞ +b
p

∑
j=1

N

∑
i=1

‖u‖ζβi j+1
∞

� apNTα− 1
2

Γ(α)
√

2α −1

(∫ T

0
|c0Dα

t un(t)|2 dt

) 1
2

+b
p

∑
j=1

N

∑
i=1

(
T 2α−1

Γ2(α)
(
2α −1

) ∫ T

0
|c0Dα

t un(t)|2 dt

) ζ βi j+1
2

(13)
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for all u ∈ Ẽα . From (12) and (13), we can get

Φ(u) =
1
2

∫ T

0
|c0Dα

t u(t)|2 dt −
∫ T

0

(
F(t,u(t))−F(t,0)

)
dt−

∫ T

0
F(t,0)dt + φ(u)

� 1
4

∫ T

0
|c0Dα

t u(t)|2 dt−C7

(∫ T

0
|c0Dα

t u(t)|2 dt

) ζ+1
2

−C8

(∫ T

0
|c0Dα

t u(t)|2 dt

) 1
2

−b
p

∑
j=1

N

∑
i=1

(
T 2α−1

(Γ(α))2
(
2(α −1)+1

) ∫ T

0
|c0Dα

t u(t)|2 dt

) ζ βi j+1
2

− apNTα− 1
2

Γ(α)
√

2α −1

(∫ T

0
|c0Dα

t u(t)|2 dt

) 1
2

+
∫ T

0
F(t,0)dt (14)

for all u ∈ Ẽα . Due to Proposition 2, one has

‖u‖→ ∞ ⇔‖u̇‖L2 → ∞

on Ẽα . Therefore, (11) follows from (14).
Moreover, from (v) , we can see

φ(u) � 0 (15)

for all u ∈ Eα . Thereby, combining (15) with (vi) , we obtain

Φ(u) = −
∫ T

0
F(t,u)dt + φ(u) � −|u|2ζ

(
|u|−2ζ

∫ T

0
F(t,u)dt

)
→−∞

as |u| → ∞ in R
N . It follows from Theorem 3 and Lemma 3 that problem (1) has at

least one weak solution. �

THEOREM 8. Assume that assumption (iii) and the following condition hold.

(vii) F(t, ·) is concave for a.e. t ∈ [0,T ] and that∫ T

0
F(t,x)dt → +∞ as |x| → ∞.

Then problem (1) has at least one weak solution which minimizes the function Φ .

Proof. Seeing that (iii) , we find

φ(u) � 0 (16)

for all u ∈ Eα . In addition, from assumption (A) , the function G : R
N → R defined by

G(x) = −
∫ T

0
F(t,x)dt

has a minimum at some point x for which∫ T

0
∇F(t,x)dt = 0. (17)
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For any minimizing sequence {uk} of Φ , by Proposition 1.4 in [1], (16) and (17), we
claim that

Φ(uk) =
1
2

∫ T

0
|c0Dα

t uk(t)|2 dt−
∫ T

0

(
F(t,uk(t))−F(t,x)

)
dt−

∫ T

0
F(t,x)dt + φ(u)

� 1
2

∫ T

0
|c0Dα

t uk(t)|2 dt−
∫ T

0
F(t,x)dt−

∫ T

0

(
∇F(t,x),uk(t)− x

)
dt

=
1
2

∫ T

0
|c0Dα

t uk(t)|2 dt−
∫ T

0
F(t,x)dt−

∫ T

0

(
∇F(t,x), ũk(t)

)
dt, (18)

where ũk(t) = uk(t)−uk , uk = 1
T

∫ T
0 uk(t)dt . As a result of (18), (A) and Proposition

2.2, there exist some positive constants C13 and C14 such that

Φ(uk) � 1
2

∫ T

0
|c0Dα

t uk(t)|2 dt−
∫ T

0
F(t,x)dt−

(∫ T

0

∣∣∇F(t,x)
∣∣dt)‖ũk‖∞

� 1
2

∫ T

0
|c0Dα

t uk(t)|2 dt +C13−C14

(∫ T

0
|c0Dα

t uk(t)|2 dt

) 1
2

. (19)

Hence, from (19), there exists C15 > 0 such that∫ T

0
|c0Dα

t uk(t)|2 dt � C15. (20)

On the other hand, Proposition 2 and (20) imply that there exists C16 > 0 such that

‖ũk‖∞ � C16. (21)

According to (vii) , we have

F
(
t,

uk

2

)
= F

(
t,

uk(t)− ũk(t)
2

)
� 1

2
F(t,uk(t))+

1
2
F(t,−ũk(t)) (22)

for a.e. t ∈ [0,T ] and all k ∈ N . By means of (16) and (22), we obtain

Φ(uk) � 1
2

∫ T

0
|c0Dα

t uk(t)|2 dt−2
∫ T

0
F

(
t,

uk

2

)
dt +

∫ T

0
F(t,−ũk(t))dt. (23)

Connecting (21) and (23), there exists C17 > 0 such that

Φ(uk) � −2
∫ T

0
F

(
t,

uk

2

)
dt−C17. (24)

According to inequality (24) and (vii) , {uk} is bounded. This shows that {uk} is
bounded in Eα via Proposition 2.2 and inequality (20). In consideration of Proposition
1, Theorem 1.1 in [1] and Lemma 2, Φ has a minimum point on Eα , which is a critical
point of Φ . This means that problem (1) has at least one weak solution which minimizes
the function Φ . �
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6. Examples

In this section, let’s give two examples to illustrate the feasibility and effectiveness
of our main results.

EXAMPLE 1. Let α = 2
3 , T = π , N = 4, t1 = 2. Consider the fractional Hamil-

tonian system with impulsive effects⎧⎪⎪⎨⎪⎪⎩
tDα

T

(
c
0D

α
t u(t)

)
= ∇F(t,u(t)), a.e. t ∈ [0,π ],

u(0) = u(π) = 0,

Δ
(
tD

α−1
T

(
c
0D

α
t ui

))
(2) = Ii j(ui(2)), i = 1,2,3,4, j = 1,

(1)

where F(t,x) = (t −6)|x| 3
2 +

(
(1,2,3,4),x

)
.

In view of F(t,x) = (t − 6)|x| 3
2 +

(
(1,2,3,4),x

)
, Ii j(t) = t

3
5 , ζ = 1

2 , all of the
conditions of Theorem 6 are satisfied. It follows from Theorem 6 that problem (1) has
at least one weak solution. Not only this, from Definition 7, 0 is not the weak solution
of problem (1). This means that problem (1) has at least one nontrivial weak solution.

EXAMPLE 2. Let α = 3
3 , T = 1, N = 3, t1 = 1

2 . Consider the fractional Hamil-
tonian system with impulsive effects⎧⎪⎪⎨⎪⎪⎩

tDα
T

(
c
0D

α
t u(t)

)
= ∇F(t,u(t)), a.e. t ∈ [0,1],

u(0) = u(1) = 0,

Δ
(
tD

α−1
T

(
c
0D

α
t ui

))
( 1

2 ) = Ii j(ui( 1
2 )), i = 1,2,3, j = 1,

(2)

where F(t,x) = (t − π
6 )|x| 4

3 +
(
(1,1,1),x

)
, Ii1(t) = −t

1
5 .

Owing to F(t,x) = (t − π
6 )|x| 4

3 +
(
(1,1,1),x

)
, Ii1(t) = −t

1
5 , ζ = 1

3 , βi1 = 1
3 , by

calculation, every condition of Theorem 7 holds. According to Theorem 7, problem (2)
has at least one weak solution. Furthemore, by Definition 7, 0 is not the weak solution
of problem (2). Hence, problem (2) has at least one nontrivial weak solution.

REMARK 3. If (2) without impulses, that is, Ii1(t)≡ 0, each condition of Theorem
7 holds. As a result of Theorem 7, problem (2) has at least one weak solution. By
calculus, 0 is not the weak solution of problem (2). Therefore, problem (2) has at least
one nontrivial weak solution.
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