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Abstract. The main aim of this paper is to investigate generalized almost automorphy and gen-
eralized asymptotical almost automorphy of solutions for certain classes of abstract Volterra
integro-differential inclusions and abstract (semilinear) fractional differential inclusions in Ba-
nach spaces. We illustrate our abstract results with several examples and possible applications.

1. Introduction and preliminaries

Almost periodic and asymptotically almost periodic solutions of differential equa-
tions in Banach spaces have been considered by many authors so far (for the basic
information on the subject, we refer the reader to the monographs [3], [5], [8], [13],
[17], [29], [31], [38], [42] and [58]).

S. Bochner has introduced the notion of a scalar-valued almost automorphic func-
tion in [10], generalizing so the notion of an almost periodic function. The first exten-
sive study of almost automorphic functions on topological groups has been conducted
by W. A. Veech [52]–[53]. For the basic information about almost automorphic func-
tions, asymptotically almost automorphic functions, their generalizations and various
applications to differential and functional differential equations in Banach spaces, we
refer the reader to [1]–[2], [9]–[11], [14], [16]–[26], [28]–[29], [38], [41], [43], [45],
[48], [51]–[53], [56]–[57] and [59].

Just a few words about some applications contained in the above-mentioned re-
search papers. Almost automorphic solutions to a class of semilinear fractional differ-
ential equations of the form

Dα
t u(t) = Au(t)+Dα−1

t f (t,u(t)), t ∈ R,

where 1 < α < 2, A is a sectorial operator with domain and range in a Banach space
X , of negative sectorial type ω < 0, f : R×X → X is an almost automorphic func-
tion in time for any fixed element x ∈ X , satisfying certain Lipschitz conditions, and
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Dα
t u(t) denotes a fractional derivative of the Riemann-Liouville type, have been exam-

ined by C. Cuevas and C. Lizama in [16] (for almost automorphic solutions of semi-
linear Cauchy problems, we also refer to T. Diagana, G. M. N’Guérékata [19] and J.
A. Goldstein, G. M. N’Guérékata [28]; the nonautonomous case has been analyzed by
H.-S. Ding, J. Liang and T.-J. Xiao [22]).

Concerning Stepanov class of almost automorphic functions, mention should be
made of the paper [23] by H.-S. Ding, J. Liang and T.-J. Xiao as well as the paper [2],
where S. Abbas, V. Kavitha and R. Murugesu have examined Stepanov-like weighted
pseudo almost automorphic solutions to the following fractional order abstract integro-
differential equation:

Dα
t u(t) = Au(t)+Dα−1

t f (t,u(t),Ku(t)), t ∈ R,

where Ku(t) =
∫ t
−∞ k(t − s)h(s,u(s))ds, t ∈ R, 1 < α < 2, A is a sectorial operator

with domain and range in X , of negative sectorial type ω < 0, the function k(t) is
exponentially decaying, the functions f : R× X × X → X and h : R× X → X are
Stepanov-like weighted pseudo almost automorphic in time for each fixed elements
of X ×X and X , respectively, satisfying some extra conditions (cf. also T. Diagana
[20] for similar results in this direction). It is worth noting that the class of weighted
Stepanov-like pseudo almost automorphic functions has been introduced by Z. Xia and
M. Fan in [56], where the authors have analyzed the existence and uniqueness of such
solutions for the following abstract semilinear integro-differential equation:

u(t) = g(t)+
∫ t

−∞
a(t− s) f (s,u(s))ds, t ∈ R,

under certain conditions. Finally, we want to observe that T. Diagana, V. Nelson and G.

M. N’Guérékata have introduced the notion of an S(n)
p -almost automorphic function in

[21], providing also some results about C(m+N) -pseudo almost automorphic solutions
to the higher-order abstract differential equation

u(n)(t)+
n−1

∑
i=1

ai(t)u(i)(t) = f (t), t ∈ R

where ai : R → R satisfy certain conditions ( i ∈ N
0
n−1 ) and the function f : R → R is

Stepanov-like C(m) -pseudo almost automorphic. Their method is based on the convert-
ing of above equation into an equivalent first order matricial system and therefore is
not applicable to abstract multi-term fractional differential equations (cf. [30] for some
results in this direction).

In [14], V. Casarino has introduced the notions of a (Stepanov) almost automor-
phic C0 -group and a (Stepanov) asymptotically almost automorphic C0 -group on Ba-
nach space, where some equivalence relations between almost periodicity and almost
automorphy for orbits of a C0 -group have been proved. We would like to observe that
the extensions of her results to (degenerate) C -regularized groups of operators can be
proved almost immediately (see [38, Section 2.4] for almost periodic case). The as-
sertion of [38, Proposition 2.5.1] can be also straightforwardly formulated for various



GENERALIZED AND ASYMPTOTICALLY ALMOST AUTOMORPHIC... 257

classes of (asymptotically) almost automorphic (a,k)-regularized C -resolvent families
in Banach spaces. On the other hand, numerous very non-trivial and unpleasant prob-
lems occur if we try to reconsider some known assertions on the (asymptotical) almost
periodicity of (a,k)-regularized C -resolvent families in Banach spaces, provided that
the results from the Bohr-Fourier analysis of almost periodic functions are needed for
their proofs (see e.g. [38, Section 2.5, Section 2.6] for more details). Furthermore,
asymptotical almost periodicity is the property stable under the action of subordination
principle discovered by E. Bazhlekova [6, Theorem 3.1], and it seems very complicated
to say anything relevant about the inheritance of asymptotical almost automorphy un-
der the action of this subordination principle; Stepanov and Weyl generalizations are
much more delicate to deal with here, even in the case of consideration of asymptotical
almost periodicity.

We use the standard notation throughout the paper. By (X ,‖ · ‖) we denote a
complex Banach space. If (Y,‖ · ‖Y ) is also such a space, then by L(X ,Y ) we denote
the space of all continuous linear mappings from X into Y ; L(X) ≡ L(X ,X). If A is
a linear operator acting on X , then the domain, kernel space and range of A will be
denoted by D(A), N(A) and R(A), respectively. The symbol I denotes the identity
operator on X . If I = [0,∞) or I = R, then by Cb(I : X) we denote the space consisted
of all bounded continuous functions from I into X ; the symbol C0([0,∞) : X) denotes
the closed subspace of Cb([0,∞) : X) consisting of functions vanishing at infinity. The
space Cb(I : X) becomes one of Banach’s when equipped with the sup-norm. If ζ > 0,
then we put gζ (t) := tζ−1/Γ(ζ ), t > 0, where Γ(·) denotes the Gamma function.

Fractional calculus started more than three centuries ago, probably with some
works of Leibnitz, and developed later by several mathematicians as Euler, Fourier,
Liouville, Grunwald, Letnikov and Riemann, among many others. The first confer-
ence on fractional calculus and fractional differential equations was held in New Haven
(1974) and, from then on, fractional calculus has gained more and more attention due
to its wide and invaluable applications in various fields of science, such as mathemat-
ical physics, engineering, biology, chemistry, economics etc. For basic information
on fractional calculus and fractional differential equations, the reader may consult [6],
[32]–[33], [47], [49] and references cited therein.

The Mittag-Leffler functions and Wright functions naturally occur as solutions
of fractional integro-differential equations. Assume that α > 0 and β ∈ R. Then the
Mittag-Leffler function Eα ,β (z) is defined by

Eα ,β (z) :=
∞

∑
n=0

zn

Γ(αn+ β )
, z ∈ C.

Set, for short,
Eα(z) := Eα ,1(z), z ∈ C.

Let γ ∈ (0,1). The Wright function Φγ (·) is defined by

Φγ (t) := L −1(Eγ(−λ )
)
(t), t � 0,

where L −1 denotes the inverse Laplace transform. It is well known that the Wright
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function Φγ(·) can be entirely extended to the whole complex plane by the formula

Φγ (z) =
∞

∑
n=0

(−z)n

n!Γ(1− γ − γn)
, z ∈ C.

In this paper, we use the Caputo fractional derivatives [6] and the Weyl-Liouville
fractional derivatives [45]. Let γ ∈ (0,1). The Caputo fractional derivative Dγ

t u(t) of
order γ is defined for those functions u ∈C([0,∞) : X) for which g1−γ ∗ (u− u(0)) ∈
C1([0,∞) : X), by

Dγ
t u(t) :=

d
dt

[
g1−γ ∗

(
u−u(0)

)]
.

The Weyl-Liouville fractional derivative Dγ
t,+u(t) of order γ is defined for those contin-

uous functions u : R → X such that t �→ ∫ t
−∞ g1−γ(t− s)u(s)ds, t ∈ R is a well-defined

continuously differentiable mapping, by

Dγ
t,+u(t) :=

d
dt

∫ t

−∞
g1−γ(t − s)u(s)ds, t ∈ R.

Set D1
t u(t) := (d/dt)u(t) and D1

t,+u(t) := −(d/dt)u(t).
Before explaining the organization and main ideas of this paper, the author wishes

to express his heartfelt sense of gratitude and sincere thanks to Prof. G. M. N’Guérékata,
who initiated the genesis of this paper, and Prof. T. Diagana, for many useful sugges-
tions which have improved the quality of the paper.

In Section 2, we present a short retrospective of definitions and results about mul-
tivalued linear operators in Banach spaces. Section 3, containing two separate subsec-
tions, is devoted to the recapitulation of some known results on almost automorphic
functions, asymptotically almost automorphic functions and their generalizations (in
this section, essentially, the only new results are Proposition 1-Proposition 3). Our
main results are stated in Section 4, where we investigate the generalized (asymptoti-
cally) almost automorphic properties of various types of convolution products. Let A
be an MLO in X ; cf. Section 2 for the notion. Of concern is the following abstract
Cauchy inclusion of first order

u′(t) ∈ A u(t)+ f (t), t ∈ R, (1)

and its fractional relaxation analogue

Dγ
t,+u(t) ∈ −A u(t)+ f (t), t ∈ R, (2)

where Dγ
t,+ denotes the Riemann-Liouville fractional derivative of order γ ∈ (0,1), and

f : R → X is a generalized almost automorphic function, as well as their semilinear
analogues

u′(t) ∈ A u(t)+ f (t,u(t)), t ∈ R, (3)

and

Dγ
t,+u(t) ∈−A u(t)+ f (t,u(t)), t ∈ R, (4)
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where f : R× X → X is a generalized almost automorphic function. Moreover, of
concern is the following fractional relaxation inclusion

(DFP) f ,γ :

{
Dγ

t u(t) ∈ A u(t)+ f (t), t � 0,

u(0) = x0,

and its semilinear analogue

(DFP) f ,γ,s :

{
Dγ

t u(t) ∈ A u(t)+ f (t,u(t)), t � 0,

u(0) = x0,

where Dγ
t denotes the Caputo fractional derivative of order γ ∈ (0,1], x0 ∈ X and

f : [0,∞) → X , resp. f : [0,∞)×X → X , is a generalized asymptotically almost auto-
morphic function (cf. [38] for more details). The main goal of Section 5 is to prove
several assertions on the existence and uniqueness of generalized almost automorphic
solutions of the semilinear Cauchy inclusions (3)–(4) and (DFP) f ,γ,s . This section is
written in expository manner, without giving the proofs of our abstract results. The
main reason for this lies in the fact that our results given in Section 4 and composition
theorems for generalized almost automorphic functions given in Subsection 3.2 enable
one to simply deduce the proofs of our results in Section 5 by using an almost verba-
tim repeating of the argumentation used in almost periodic case. Section 6 is reserved
for examples and applications of our abstract theoretical results, which seem to be new
even for a class of almost sectorial operators [46], as well. Therefore, besides examples
presented in Section 6, we are in a position to analyze the existence and uniqueness of
generalized (asymptotically) almost automorphic solutions for certain classes of higher
order (semilinear) elliptic differential equations in Hölder spaces; see e.g. W. von Wahl
[54].

2. Multivalued linear operators in Banach spaces

The main aim of this section is to present a brief recollection of elementary def-
initions and results from the theory of multivalued linear operators. For more details
about this intriguing topic, we refer the reader to the monographs by R. Cross [15], A.
Favini-A. Yagi [27] and M. Kostić [33].

Let X and Y be two Banach spaces over the field of complex numbers. A mul-
tivalued map A : X → P(Y ) is said to be a multivalued linear operator (MLO) iff the
following two conditions hold:

(i) D(A ) := {x ∈ X : A x 	= /0} is a linear subspace of X ;

(ii) A x+A y ⊆ A (x+ y), x, y ∈ D(A ) and λA x ⊆ A (λx), λ ∈ C, x ∈ D(A ).

If X =Y, then it is said that A is an MLO in X . We know that λA x+ηA y = A (λx+
ηy) holds for every x, y ∈ D(A ) and for every λ , η ∈ C with |λ |+ |η | 	= 0. If A is
an MLO, then A 0 is a linear submanifold of Y and A x = f +A 0 for any x ∈ D(A )
and f ∈ A x. Set R(A ) := {A x : x ∈ D(A )}. Then the set N(A ) := A −10 = {x ∈
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D(A ) : 0 ∈ A x} is called the kernel space of A . The inverse A −1 of an MLO is
defined through D(A −1) := R(A ) and A −1y := {x ∈ D(A ) : y ∈ A x} . It is checked
at once that A −1 is an MLO in X , as well as that N(A −1) = A 0 and (A −1)−1 = A .
In the case that N(A ) = {0}, i.e., if A −1 is single-valued, then A is said to be
injective. If A , B : X → P(Y ) are two MLOs, then we define its sum A + B by
D(A +B) := D(A )∩D(B) and (A +B)x := A x+Bx, x ∈ D(A +B). It is clear
that A +B is likewise an MLO. We write A ⊆ B iff D(A ) ⊆ D(B) and A x ⊆ Bx
for all x∈D(A ). Products, integer powers and multiplication with scalar constants are
well-known operations for MLOs ([27]).

It is said that an MLO A : X → P(Y ) is closed if for any sequences (xn) in D(A )
and (yn) in Y such that yn ∈ A xn for all n ∈ N we have that limn→∞ xn = x and
limn→∞ yn = y imply x ∈ D(A ) and y ∈ A x.

Suppose now that A is an MLO in X , as well as that C ∈ L(X) is injective and
CA ⊆ A C. The C -resolvent set of A , ρC(A ) for short, is defined as the union of
those complex numbers λ ∈ C for which

(i) R(C) ⊆ R(λ −A ) ;

(ii) (λ −A )−1C is a single-valued linear continuous operator on X .

The operator λ �→ (λ −A )−1C is said to be the C -resolvent of A (λ ∈ ρC(A ));
the resolvent set of A is defined by ρ(A ) := ρI(A ), R(λ : A ) ≡ (λ −A )−1 (λ ∈
ρ(A )). Any MLO with non-empty resolvent set is closed and the Hilbert resolvent
equation holds in our framework.

Assume now that A is an MLO in X , as well as that (−∞,0] ⊆ ρ(A ) and there
exist finite numbers M � 1 and β ∈ (0,1] such that

‖R(λ : A )‖ � M
(
1+ |λ |)−β

, λ � 0.

Then there exist two positive real numbers c > 0 and M1 > 0 such that ρ(A ) contains
an open region Ω = {λ ∈ C : |ℑλ | � (2M1)−1(c−ℜλ )β , ℜλ � c} surrounding the
half-line (−∞,0], where we have the estimate ‖R(λ : A )‖ = O((1+ |λ |)−β ), λ ∈ Ω.
Let Γ′ be the upwards oriented curve {ξ ± i(2M1)−1(c−ξ )β :−∞ < ξ � c}. We define
the fractional power

A −θ :=
1

2π i

∫
Γ′

λ−θ(λ −A
)−1

dλ ∈ L(X)

for θ > 1− β . Set A θ := (A −θ )−1 (θ > 1− β ). Then the semigroup properties
A −θ1A −θ2 = A −(θ1+θ2) and A θ1A θ2 = A θ1+θ2 hold for θ1, θ2 > 1− β (let us
recall that the fractional power A θ need not be injective and that the meaning of A θ

is understood in the MLO sense).
The vector space D(A )equipped with the norm ‖·‖[D(A )] := infy∈A · ‖y‖ becomes

a Banach space. It is well known that 0 ∈ ρ(A θ ) and that (D(A θ ),‖ · ‖[D(A θ )]) is
likewise a Banach space (θ > 1−β ).

For more details about multivalued linear operators and abstract degenerate integro-
differential equations, the reader may consult the monographs [12], [15], [27], [33], [44]
and [50].
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3. Almost automorphic functions, asymptotically almost automorphic functions
and their generalizations

The concept of almost periodicity was introduced by Danish mathematician H.
Bohr around 1924-1926 and later generalized by many other authors (cf. [17], [29],
[38], [42] and [58] for more details on the subject). Let I = R or I = [0,∞), and
let f : I → X be continuous. Given ε > 0, we call τ > 0 an ε -period for f (·) iff
‖ f (t + τ)− f (t)‖ � ε, t ∈ I. The set constituted of all ε -periods for f (·) is denoted
by ϑ( f ,ε). It is said that f (·) is almost periodic, a.p. for short, iff for each ε > 0 the
set ϑ( f ,ε) is relatively dense in I, which means that there exists l > 0 such that any
subinterval of I of length l meets ϑ( f ,ε) .

Let f : R → X be continuous. As it is well known, f (·) is called almost automor-
phic, a.a. for short, iff for every real sequence (bn) there exist a subsequence (an) of
(bn) and a map g : R → X such that

lim
n→∞

f
(
t +an

)
= g(t) and lim

n→∞
g
(
t−an

)
= f (t), (5)

pointwise for t ∈ R. If this is the case, then it is well known that f ∈ Cb(R : X) and
that the limit function g(·) must be bounded on R but not necessarily continuous on
R. Furthermore, it is clear that the uniform convergence of one of the limits appearing
in (5) implies the convergenece of the second one in this equation and that, in this case,
the function f (·) has to be almost periodic and the function g(·) has to be continuous.
If the convergence of limits appearing in (5) is uniform on compact subsets of R, then
we say that f (·) is compactly almost automorphic, c.a.a. for short. The vector space
consisting of all almost automorphic, resp., compactly almost automorphic functions,
is denoted by AA(R : X), resp., AAc(R : X). By Bochner’s criterion [17], any almost
periodic function has to be compactly almost automorphic. The converse statement is
not true, however [17].

It is well-known that the reflexion at zero keeps the spaces AA(R : X) and AAc(R :
X) unchanged, as well as that the function g(·) from (5) satisfies ‖ f‖∞ = ‖g‖∞ and
R(g) ⊆ R( f ), later needed to be a compact subset of X .

A continuous function f : R → X is called asymptotically (compact) almost auto-
morphic, a.(c.)a.a. for short, iff there exist a function h∈C0([0,∞) : X) and a (compact)
almost automorphic function q : R → X such that f (t) = h(t)+ q(t), t � 0. Using
Bochner’s criterion again, it readily follows that any asymptotically almost periodic
function [0,∞) �→ X is asymptotically (compact) almost automorphic. It is well known
that the spaces of almost periodic, almost automorphic, compactly almost automorphic
functions, and asymptotically (compact) almost automorphic functions are closed sub-
spaces of Cb(R : X) when equipped with the sup-norm.

3.1. Stepanov and Weyl generalizations

Assume 1 � p < ∞, l > 0 and f , g ∈ Lp
loc(I : X), where I = R or I = [0,∞).

Define the Stepanov ‘metric’ by

Dp
Sl

[
f (·),g(·)] := sup

x∈I

[
1
l

∫ x+l

x

∥∥ f (t)−g(t)
∥∥p

dt

]1/p

.
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Then there exists (see e.g. [8, pp. 72–73] for scalar-valued case)

Dp
W

[
f (·),g(·)] := lim

l→∞
Dp

Sl

[
f (·),g(·)] (6)

in [0,∞]. The distance appearing in (6) is called the Weyl distance of f (·) and g(·).
The Stepanov and Weyl ‘norm’ of f (·) are defined by∥∥ f

∥∥
Sp
l

:= Dp
Sl

[
f (·),0] and

∥∥ f
∥∥

W p := Dp
W

[
f (·),0],

respectively.
A function f ∈ Lp

loc(I : X) is said to be Stepanov p -bounded, Sp -bounded shortly,
iff

‖ f‖Sp := sup
t∈I

(∫ t+1

t
‖ f (s)‖p ds

)1/p

< ∞.

The above norm turns the space Lp
S(I : X) consisting of all Sp -bounded functions into

a Banach space. We say that a function f ∈ Lp
S(I : X) is Stepanov p -almost periodic,

Sp -almost periodic or Sp -a.p. shortly, iff the function f̂ : I → Lp([0,1] : X), defined by
f̂ (t)(s) := f (t + s), t ∈ I, s ∈ [0,1] is almost periodic. It is said that f ∈ Lp

S([0,∞) : X)
is asymptotically Stepanov p -almost periodic, asymptotically Sp -a.p. shortly, iff f̂ :
[0,∞) → Lp([0,1] : X) is asymptotically almost periodic.

In [14], V. Casarino has introduced the notions of a Stepanov almost automorphic
function and a Stepanov asymptotically almost automorphic function. In this paper,
we will use the following notions (see e.g. [26]): A function f ∈ Lp

loc(R : X) is called
Stepanov p -almost automorphic, Sp -almost automorphic or Sp -a.a. shortly, iff for
every real sequence (an), there exists a subsequence (ank) and a function g ∈ Lp

loc(R :
X) such that

lim
k→∞

∫ t+1

t

∥∥∥ f
(
ank + s

)−g(s)
∥∥∥p

ds = 0 (7)

and

lim
k→∞

∫ t+1

t

∥∥∥g(s−ank

)− f (s)
∥∥∥p

ds = 0 (8)

for each t ∈ R ; a function f ∈ Lp
loc([0,∞) : X) is called asymptotically Stepanov p -

almost automorphic, asymptotically Sp -almost automorphic or asymptotically Sp -a.a.
shortly, iff there exists an Sp -almost automorphic function g(·) and a function q ∈
Lp

S([0,∞) : X) such that f (t) = g(t)+ q(t), t � 0 and q̂ ∈ C0([0,∞) : Lp([0,1] : X)).
It can be easily verified that the Sp -almost automorphy of f (·) implies the compact
almost automorphy of the mapping f̂ : I → Lp([0,1] : X) defined above, with the limit
function being g(·)(s) := g(s+ ·) for a.e. s ∈ [0,1], so that any Sp -almost automorphic
function f (·) has to be Sp -bounded (1 � p < ∞). The vector space consisting of all
Sp -almost automorphic functions is closed under translations and reflexions at zero of
argument, and any limit of Sp -almost automorphic functions ( fk) converging to some
p -locally integrable X -valued function f (·) in Sp -norm has the property that f (·) is
Sp -almost automorphic. The vector space consisting of all Sp -almost automorphic
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functions, resp., asymptotically Sp -almost automorphic functions, will be denoted by
AASp(R : X), resp., AAASp([0,∞) : X).

If 1 � p < q < ∞ and f (·) is Stepanov q -almost automorphic, resp., Stepanov
q -almost periodic, then f (·) is Stepanov p -almost automorphic, resp., Stepanov p -
almost periodic (see e.g. [20, Remark 2.15]). Furthermore, the (asymptotical) Stepanov
p -almost periodicity of f (·) for some p ∈ [1,∞) implies the (asymptotical) Stepanov
p -almost automorphy of f (·). It is a well-known fact that if f (·) is an almost periodic
(respectively, a.a.p., a.a., a.a.a.) function then f (·) is also Sp -almost periodic (resp.,
asymptotically Sp -a.p., Sp -a.a., asymptotically Sp -a.a.) for 1 � p < ∞. The converse
statement is false, however.

The notion of an (equi-)Weyl almost periodic function is given as follows (cf. [4]
for scalar-valued case):

DEFINITION 1. Let 1 � p < ∞ and f ∈ Lp
loc(I : X).

(i) We say that the function f (·) is equi-Weyl- p -almost periodic, f ∈ e−W p
ap(I : X)

for short, iff for each ε > 0 we can find two real numbers l > 0 and L > 0 such
that any interval I′ ⊆ I of length L contains a point τ ∈ I′ such that

sup
x∈I

[
1
l

∫ x+l

x

∥∥ f (t + τ)− f (t)
∥∥p

dt

]1/p

� ε,

i.e., Dp
Sl

[
f (·+ τ), f (·)]� ε.

(ii) We say that the function f (·) is Weyl- p -almost periodic, f ∈ W p
ap(I : X) for

short, iff for each ε > 0 we can find a real number L > 0 such that any interval
I′ ⊆ I of length L contains a point τ ∈ I′ such that

lim
l→∞

sup
x∈I

[
1
l

∫ x+l

x

∥∥ f (t + τ)− f (t)
∥∥p

dt

]1/p

� ε,

i.e., lim
l→∞

Dp
Sl

[
f (·+ τ), f (·)]� ε.

Let us recall that APSp(I : X) ⊆ e−W p
ap(I : X) ⊆W p

ap(I : X) in the set theoretical
sense and that any of these two inclusions can be strict ([4]).

For the sequel, we need the following notion from [39].

DEFINITION 2. We say that q ∈ Lp
loc([0,∞) : X) is Weyl- p -vanishing iff

lim
t→∞

lim
l→∞

sup
x�0

[
1
l

∫ x+l

x

∥∥q(t + s)
∥∥p

ds

]1/p

= 0. (9)

It is clear that for any function q∈ Lp
loc([0,∞) : X) we can replace the limits in (9).

It is said that q ∈ Lp
loc([0,∞) : X) is equi-Weyl- p -vanishing iff

lim
l→∞

lim
t→∞

sup
x�0

[
1
l

∫ x+l

x

∥∥q(t + s)
∥∥p

ds

]1/p

= 0.
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Denote by W p
0 ([0,∞) : X) and e−W p

0 ([0,∞) : X) the sets consisting of all Weyl- p -
vanishing functions and equi-Weyl- p -vanishing functions, respectively.

The concepts of Weyl almost automorphy and Weyl pseudo almost automorphy,
more general than those of Stepanov almost automorphy and Stepanov pseudo almost
automorphy, were introduced by S. Abass [1] in 2012:

DEFINITION 3. Let p � 1. Then we say that a function f ∈ Lp
loc(R : X) is Weyl

p -almost automorphic iff for every real sequence (sn), there exist a subsequence (snk )
and a function f ∗ ∈ Lp

loc(R : X) such that

lim
k→∞

lim
l→+∞

1
2l

∫ l

−l

∥∥∥ f
(
t + snk + x

)− f ∗(t + x)
∥∥∥p

dx = 0 (10)

and

lim
k→∞

lim
l→+∞

1
2l

∫ l

−l

∥∥∥ f ∗
(
t− snk + x

)− f (t + x)
∥∥∥p

dx = 0 (11)

for each t ∈ R. The set of all such functions are denoted by W pAA(R : X).

The set W pAA(R : X), equipped with the usual operations of pointwise addition
of functions and multiplication of functions with scalars, has a linear vector structure.
We can simply prove this fact in the following way. Let (sn) be an arbitrary real se-
quence. Then there exist a subsequence (snk) and a function f ∗ ∈ Lp

loc(R : X) such that
(10)–(11) holds. By the Weyl p -almost automorphy of g(·), we get the existence of
subsequence (snkm

) of (snk) and a function g∗ ∈ Lp
loc(R : X) such that

lim
m→∞

lim
l→+∞

1
2l

∫ l

−l

∥∥∥g(t + snkm
+ x
)−g∗(t + x)

∥∥∥p
dx = 0 (12)

and

lim
m→∞

lim
l→+∞

1
2l

∫ l

−l

∥∥∥g∗(t− snkm
+ x
)−g(t + x)

∥∥∥p
dx = 0. (13)

Since (12)–(13) holds with g and g∗ replaced therein with f and f ∗, we get that, for a
linear combination α f + βg, we can choose a subsequence (snkm

) of (sn) and a limit
function α f ∗ + βg∗ satisfying all the requirements from Definition 3 (α, β ∈ C). As
stated by S. Abass [1, p. 5, l. 2-3], without a corresponding proof, Weyl- p -almost
periodic functions forms a linear submanifold of W pAA(R : X).

We continue by providing the following illustrative example.

EXAMPLE 1. Let f (x) := χ(0,1/2)(x), x ∈ R, where χ(0,1/2)(·) denotes the char-
acteristic function of (0,1/2). Then we already know that this function is equi-Weyl-
1-almost periodic and not Stepanov p -almost periodic for 1 � p < ∞; see [4] and
[38]. A very simple analysis shows that f (·) is not Stepanov p -almost automorphic
for 1 � p < ∞ as well as that f (·) is Weyl 1-almost automorphic. We will prove here
only that f (·) cannot be Stepanov p -almost automorphic for 1 � p < ∞. If this is the
case, then there exist a subsequence of (an := n2) and a function g ∈ Lp

loc(R : X) such
that (7)–(8) holds good, pointwise for each t ∈R . But, for any t ∈R and for any k0 ∈N
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sufficiently large we have that
∫ t+1
t ‖ f (ank + s)− g(s)‖p ds =

∫ t+1
t ‖g(s)‖p ds. Due to

(7), we get that g(s) = 0 for a.e. s ∈ R. Coming back to (8), we get that f (s) = 0 for
a.e. s ∈ R, which is a contradiction.

Furthermore, we have the following:

EXAMPLE 2. Define

R :=
{

f ∈ L∞(R : X) : supp( f ) is compact
}
.

Then the computation used in [38, Example 2.11.8] shows that R ⊆ e−W 1
ap(R : X).

Any non-trivial function f (·) from R cannot be Stepanov p -almost automorphic for
1 � p < ∞ and we can prove this fact as follows. If we suppose the contrary, then
supremum formula for almost automorphic functions (g∈ AA(R : X) and t0 ∈ R imply
‖g‖∞ = supt�t0 ‖g(t)‖; see [38] for more details) yields that

sup
t∈R

[∫ t+1

t
‖ f (s)‖ds

]1/p

= sup
t�t0

[∫ t+1

t
‖ f (s)‖ds

]1/p

, t0 ∈ R, p � 1;

by choosing t0 arbitrarily large, the above would imply supt∈R[
∫ t+1
t ‖ f (s)‖ds]1/p = 0

for all t ∈ R, p � 1 and therefore f (s) = 0 a.e. s ∈ R.

The class of Besicovitch almost automorphic functions has been analyzed by F.
Bedouhene, N. Challali, O. Mellah, P. Raynaud de Fitte and M. Smaali in [7]. This
class extends the class of Weyl almost automorphic functions and its full importance
lies in the fact that we do allow now the possible non-existence of limit

lim
l→+∞

1
2l

∫ l

−l

∥∥∥ f
(
t + snk + x

)− f ∗(t + x)
∥∥∥p

dx,

resp.,

lim
l→+∞

1
2l

∫ l

−l

∥∥∥ f ∗
(
t− snk + x

)− f (t + x)
∥∥∥p

dx

in (10), resp., (11). As it is well-known, the limit superiors of these functions always
exist and this will be very important for the proofs of Proposition 1 and Proposition 7
below to work:

DEFINITION 4. Let p � 1. Then we say that a function f ∈ Lp
loc(R : X) is Besi-

covitch p -almost automorphic iff for every real sequence (sn), there exist a subse-
quence (snk) and a function f ∗ ∈ Lp

loc(R : X) such that

lim
k→∞

limsup
l→+∞

1
2l

∫ l

−l

∥∥∥ f
(
t + snk + x

)− f ∗(t + x)
∥∥∥p

dx = 0 (14)

and

lim
k→∞

limsup
l→+∞

1
2l

∫ l

−l

∥∥∥ f ∗
(
t− snk + x

)− f (t + x)
∥∥∥p

dx = 0 (15)

for each t ∈ R. The set of all such functions are denoted by BpAA(R : X).
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As in the case of Weyl almost automorphic functions, we can prove that the set
BpAA(R : X), equipped with the usual operations, has a linear vector structure. In the
present situation, the author does not know whether a Besicovitch p -almost periodic
function is necessarily Besicovitch p -almost automorphic.

For the sequel, let us recall that, if f ∈ AA(R : X) and g ∈ L1(R), then the infinite
convolution product t �→ (g∗ f )(t) :=

∫ ∞
−∞ g(t−s) f (s)ds, t ∈R is almost automorphic,

as well ([17]). As [26, Theorem 3.1] shows, a similar statement holds for the spaces
of compactly almost automorphic functions and Stepanov p -almost automorphic func-
tions (1 � p < ∞). Now we will prove the following simple assertion concerning the
invariance of infinite convolution product for the class of Besicovitch 1-almost auto-
morphic functions:

PROPOSITION 1. Let f ∈ B1AA(R : X) and let g ∈ L1(R) be a scalar-valued
function with compact support. Then the function F(·) := (g ∗ f )(·) belongs to the
class B1AA(R : X), as well.

Proof. Let −∞ < a < b < ∞, and let supp(g)⊆ [a,b]. Let [−l−r, l−r]⊆ [−2l,2l]
for all r ∈ [a,b] and l � l0. Our assumptions on g(·) imply that (g ∗ h)(·) is a well-
defined X -valued locally integrable function for any function h ∈ L1

loc(R : X). Let (sn)
be a given sequence. Then we can extract a subsequence (snk) of (sn) and a function
f ∗ ∈ L1

loc(R : X) such that (14)–(15) hold with p = 1. Set F∗(·) := (g ∗ f ∗)(·). Then
(14) for F(·) and F∗(·) follows from its validity for f (·) and f ∗(·), and the following
simple integral calculation with Fubini theorem ( l � l0, k ∈ N, t ∈ R):

1
2l

∫ l+t

−l−t

∥∥∥F(snk + x
)−F∗(x)

∥∥∥dx

� 1
2l

∫ l+t

−l−t

∫ ∞

−∞

∥∥∥ f
(
snk + x− r

)− f ∗(x− r)
∥∥∥‖g(r)‖drdx

=
∫ ∞

−∞
‖g(r)‖

[
1
2l

∫ l+t

−l+t

∥∥∥ f
(
snk + x− r

)− f ∗(x− r)
∥∥∥dx

]
dr

=
∫ ∞

−∞
‖g(r)‖

[
1
2l

∫ l+t−r

−l+t−r

∥∥∥ f
(
snk + x

)− f ∗(x)
∥∥∥dx

]
dr

=
∫ b

a
‖g(r)‖

[
1
2l

∫ l−r

−l−r

∥∥∥ f
(
snk + x+ t

)− f ∗(x+ t)
∥∥∥dx

]
dr

�
∫ b

a
‖g(r)‖

[
1
2l

∫ 2l

−2l

∥∥∥ f
(
snk + x

)− f ∗(x)
∥∥∥dx

]
dr.

The proof of (15) for F(·) and F∗(·) is similar and therefore omitted, finishing the
proof of proposition. �

In the present situation, we do not know whether the assumption that g(·) has a
compact support can be relaxed and whether we can consider the case p > 1 here.
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3.2. Generalized two-parameter almost automorphic functions

For our later purposes, we need to introduce another pivot space over the field
of complex numbers, say (Y,‖ · ‖Y ). By C0([0,∞)×Y : X) we designate the space of
all continuous functions h : [0,∞)×Y → X such that limt→∞ h(t,y) = 0 uniformly for
y in any compact subset of Y. A jointly continuous function F : R×Y → X is said
to be almost automorphic iff for every sequence of real numbers (s′n) there exists a
subsequence (sn) such that

G(t,y) := lim
n→∞

F
(
t + sn,y

)
is well defined for each t ∈ R and y ∈Y, and

lim
n→∞

G
(
t− sn,y

)
= F(t,y)

for each t ∈R and y∈Y. The vector space consisting of such functions will be denoted
by AA(R×Y : X).

The notion of a pseudo almost-automorphic function was introduced by T.-J. Xiao,
J. Liang and J. Zhang in [57] (2008). Let us recall that the space of pseudo-almost
automorphic functions, denoted shortly by PAA(R : X), is defined as the direct sum of
spaces AA(R : X) and PAP0(R : X), where PAP0(R : X) denotes the space consisting
of all bounded continuous functions Φ : R → X such that

lim
r→∞

1
2r

∫ r

−r
‖Φ(s)‖ds = 0.

Equipped with the sup-norm, the space PAA(R : X) becomes one of Banach’s. A
bounded continuous function f : R×Y → X is said to be pseudo-almost automor-
phic iff F = G + Φ, where G ∈ AA(R ×Y : X) and Φ ∈ PAP0(R ×Y : X); here,
PAP0(R×Y : X) denotes the space consisting of all continuous functions Φ : R×Y →X
such that {Φ(t,y) : t ∈ R} is bounded for all y ∈ Y, and

lim
r→∞

1
2r

∫ r

−r
‖Φ(s,y)‖ds = 0,

uniformly in y ∈ Y. The collection of such functions will be denoted henceforth by
PAA(R×Y : X).

The notion of a Stepanov two-parameter p -almost automorphic function has been
already introduced in the existing literature. Definition goes as follows:

DEFINITION 5. Let 1 � p < ∞, and let f : R×Y → X satisfy that for each y ∈Y
we have f (·,y) ∈ Lp

loc(R : X). Then it is said that f (·, ·) is Stepanov p -almost automor-
phic iff for every y ∈ Y the mapping f (·,y) is Sp -almost automorphic; that is, for any
real sequence (an) there exist a subsequence (ank) of (an) and a map g : R×Y → X
such that g(·,y) ∈ Lp

loc(R : X) for all y ∈ Y as well as that:

lim
k→∞

∫ 1

0

∥∥∥ f
(
t +ank + s,y

)−g(t + s,y)
∥∥∥p

ds = 0

and

lim
k→∞

∫ 1

0

∥∥∥g(t + s−ank,y
)− f (t + s,y)

∥∥∥p
ds = 0
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for each t ∈ R and for each y ∈ Y. We denote by AASp(R×Y : X) the vector space
consisting of all such functions.

We start our work by observing that the well-known results of Fan et al. [25] and
Ding et al. [22] (see e.g. [17, pp. 134–138]) continue to hold in the case that the pivot
spaces X and Y are mutually different:

THEOREM 1. Assume that 1 � p < ∞, and f ∈ AASp(R×Y : X). If there exists
a constant L > 0 such that for all x, y ∈ Lp

loc(R : Y )
∫ 1

0

∥∥∥ f (t + s,x(s))− f (t + s,y(s))
∥∥∥p

ds � L
∫ 1

0

∥∥x(s)− y(s)
∥∥p

Y ds, (16)

then for each x∈AASp(R :Y ) with relatively compact range in Y one has that f (·,x(·))
∈ AASp(R : X).

THEOREM 2. Suppose that the following conditions hold:

(i) f ∈ AASp(R×Y : X) with p > 1, and there exist a number r � max(p, p/p−1)
and a function Lf ∈ Lr

S(R) such that

‖ f (t,x)− f (t,y)‖ � Lf (t)‖x− y‖Y , t ∈ R, x, y ∈ Y ; (17)

(ii) x ∈ AASp(R : Y ), and there exists a set E ⊆ R with m(E) = 0 such that K :=
{x(t) : t ∈ R\E} is relatively compact in Y.

Then q := pr/p+ r ∈ [1, p) and f (·,x(·)) ∈ AASq(R : X).

The following composition principle is basically due to Liang et al [43]. Its validity
for class PAA(R×Y : X) , where Y 	= X , can be proved similarly.

THEOREM 3. Suppose that f = g+φ ∈ PAA(R×Y : X) with g ∈ AA(R×Y : X),
φ ∈ PAP0(R×Y : X) and the following holds:

(i) the mapping (t,y) �→ g(t,y) is uniformly continuous in any bounded subset K ⊆
Y uniformly for t ∈ R;

(ii) the mapping (t,y) �→ φ(t,y) is uniformly continuous in any bounded subset K ⊆
Y uniformly for t ∈ R;

Then for each y ∈ PAA(R : Y ) one has f (·,y(·)) ∈ PAA(R : X).

We continue by stating two composition principle for asymptotically Stepanov al-
most automorphic functions. Keeping in mind Theorem 2 and the proof of [38, Propo-
sition 2.7.3], where we have examined almost periodic case, we can immediately state
the following result:

PROPOSITION 2. Let I = [0,∞). Suppose that the following conditions hold:
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(i) g ∈ AASp(R×Y : X) with p > 1, and there exist a number r � max(p, p/p−1)
and a function Lg ∈ Lr

S(I) such that (17) holds with the function f (·, ·) replaced
by the function g(·, ·) therein.

(ii) y ∈ AASp(R : Y ), and there exists a set E ⊆ R with m(E) = 0 such that K =
{y(t) : t ∈ R\E} is relatively compact in Y .

(iii) f (t,y) = g(t,y) + q(t,y) for all t � 0 and y ∈ Y, where q̂ ∈ C0([0,∞)×Y :
Lq([0,1] : X)) and q := pr/p+ r.

(iv) x(t) = y(t)+ z(t) for all t � 0, where ẑ ∈C0([0,∞) : Lp([0,1] : Y )).

(v) There exists a set E ′ ⊆ I with m(E ′) = 0 such that K′ = {x(t) : t ∈ I \E ′} is
relatively compact in Y.

Then q ∈ [1, p) and f (·,x(·)) ∈ AAASq(I : X).

Appealing to Theorem 1 in place of Theorem 2, we can similarly prove the fol-
lowing result:

PROPOSITION 3. Let I = [0,∞). Suppose that the following conditions hold:

(i) g ∈ AASp(R×Y : X) with p � 1, and there exist a constant L > 0 such that for
all x, y ∈ Lp

loc(R : Y ) we have that (16) holds.

(ii) y ∈ AASp(R : Y ), and there exists a set E ⊆ R with m(E) = 0 such that K =
{y(t) : t ∈ R\E} is relatively compact in Y .

(iii) f (t,y) = g(t,y) + q(t,y) for all t � 0 and y ∈ Y, where q̂ ∈ C0([0,∞)×Y :
Lq([0,1] : X)) and q := pr/p+ r.

(iv) x(t) = y(t)+ z(t) for all t � 0, where ẑ ∈C0([0,∞) : Lp([0,1] : Y )).

(v) There exists a set E ′ ⊆ I with m(E ′) = 0 such that K′ = {x(t) : t ∈ I \E ′} is
relatively compact in Y.

Then f (·,x(·)) ∈ AAASp(I : X).

Various classes of weighted pseudo-almost automorphic solutions, as well as C(n) -
Stepanov and C(n) -Weyl almost automorphic solutions of abstract Volterra integro-
differential inclusions will be considered somewhere else (cf. [21] and references cited
therein for further information in this direction). Our main results, providing a stable
base for applications and further study of semilinear Cauchy inclusions, will be clarified
in the following section.
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4. Generalized (asymptotically) almost autmorphic properties of convolution
products

In this section, we investigate the generalized (asymptotically) almost automor-
phic properties of various types of convolution products. We start by observing that
the assertion of [16, Lemma 3.1] can be formulated for strongly continuous operator
families which do have integrable singularities at zero (see also [11, Theorem 2.1]):

PROPOSITION 4. Suppose that (R(t))t>0 ⊆ L(X) is a strongly continuous opera-
tor family satisfying that

∫ ∞
0 ‖R(t)‖dt < ∞. If f : R → X is almost automorphic, then

the function F(·), given by

F(t) :=
∫ t

−∞
R(t− s) f (s)ds, t � 0, (18)

is well-defined and almost automorphic.

REMARK 1. In [24, Lemma 2.2], H.-S. Ding, J. Liang and T.-J. Xiao have proved,
under the assumption on strong continuity of (R(t))t�0 and the existence of nonin-
creasing continuous function φ ∈ L1([0,∞)) satisfying ‖R(t)‖ � φ(t), t � 0 that the
function F(·) is almost automorphic provided only the Stepanov 1-almost automorphy
of f : R → X . Here we would like to observe that their result holds provided that the
strong continuity of (R(t))t�0 is replaced by the strong continuity of (R(t))t>0 and the
boundedness of supt∈(0,1] ‖R(t)‖. Possible applications can be made, e.g., in the qual-

itative analysis of the Poisson heat equation in the space H−1(Ω) , where /0 	= Ω ⊆ Rn

is an open bounded domain with smooth boundary (see [27, Theorem 3.1, Proposition
3.2, p. 48; Remark, p. 52; Example 3.3, pp. 74–75] with β = 1, and Example 3 for
further information in this direction).

Our first original contribution in this section reads as follows (see [37, Proposition
2.11] for almost periodic case).

PROPOSITION 5. Suppose that 1 � p < ∞, 1/p+1/q = 1 and (R(t))t>0 ⊆ L(X)
is a strongly continuous operator family satisfying that M := ∑∞

k=0 ‖R(·)‖Lq[k,k+1] < ∞.
If f : R → X is Sp -almost automorphic, then the function F(·), given by (18), is well-
defined and almost automorphic.

Proof. It is clear that, for every t � 0, we have F(t) =
∫ ∞
0 R(s) f (t − s)ds. The

measurability of integrand is a consequence of the proof of [5, Proposition 1.3.4], while
the absolute convergence of integral follows from the Hölder inequality and
Sp -boundedness of function f (·) :∫ ∞

0
‖R(s)‖‖ f (t− s)‖ds =

∞

∑
k=0

∫ k+1

k
‖R(s)‖‖ f (t− s)‖ds

�
∞

∑
k=0

‖R(·)‖Lq[k,k+1]‖ f‖Sp = M‖ f‖Sp , t � 0.
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Define Fk(t) :=
∫ k+1
k R(s) f (t − s)ds, t ∈ R (k ∈ N0 ). We claim that Fk(·) is continu-

ous. Let numbers ε > 0 and t ∈ R be given in advance, and let (tn) be a real sequence
converging to t . Then the Hölder inequality yields that:

∥∥Fk(tn)−Fk(t)
∥∥�

∫ k+1

k
‖R(σ)‖‖ f (tn−σ)− f (t−σ)‖dσ

�‖R(·)‖Lq[k,k+1]

(∫ k+1

k

∥∥ f (tn −σ)− f (t−σ)
∥∥p

dσ

)1/p

=‖R(·)‖Lq[k,k+1]

(∫ t−k

t−k−1

∥∥ f (tn − t + σ)− f (σ)
∥∥p

dσ

)1/p

, k ∈ N0. (19)

Since f ∈ Lp
loc(R : X), the last term in brackets tends to zero as n → ∞; see [38] for

a direct proof of this fact. Since we have assumed that ∑∞
k=0 ‖R(·)‖Lq[k,k+1] < ∞, the

Weierstrass criterion implies that ∑∞
k=0 Fk(t) = F(t) uniformly in t ∈ R, so that F(·) is

continuous on R, as well. Since AA(R : X) is closed in Cb(R : X), it suffices to show
that Fk ∈ AA(R : X) for all k∈N0. Fix an integer k∈N0. Then, for every real sequence
(bn) there exist a subsequence (an) of (bn) and a map g : R → X such that (7) and
(8) hold pointwise for t ∈ R. Define gk,c : R → X by gk,c(t) :=

∫ k+1
k R(σ)g(t−σ)dσ ,

t ∈ R. Due to the Hölder inequality, we have

∥∥Fk(t + tn)−gk,c(t)
∥∥�

∫ k+1

k

∥∥∥R(σ)
[
f (t + tn−σ)−g(t−σ)

]∥∥∥dσ

� ‖R(·)‖Lq[k,k+1]

(∫ k+1

k

∥∥ f (t + tn−σ)−g(t−σ)
∥∥p

dσ

)1/p

= ‖R(·)‖Lq[k,k+1]

(∫ t−k

t−k−1

∥∥ f (σ + tn)−g(σ)
∥∥p

dσ

)1/p

, t ∈ R.

This in combination with (7) implies limn→∞ ‖Fk(t + tn)− gk,c(t)‖ = 0 pointwise in
t ∈R. We can similarly prove that limn→∞ ‖gk,c(t− tn)−Fk(t)‖= 0 pointwise in t ∈R,
finishing the proof of theorem. �

Keeping in mind Proposition 5 and the proof of [37, Proposition 2.13], we can
immediately state the following assertion:

PROPOSITION 6. Suppose that 1 � p < ∞, 1/p+1/q = 1 and (R(t))t>0 ⊆ L(X)
is a strongly continuous operator family satisfying that, for every s � 0, we have that
ms := ∑∞

k=0 ‖R(·)‖Lq[s+k,s+k+1] < ∞. Suppose, further, that g : R → X is Sp -almost
automorphic, as well as that the locally p-integrable function q : [0,∞) → X satisfy
q̂ ∈ C([0,∞) : Lp([0,1] : X)) and f (t) = g(t) + q(t), t � 0. Let there exist a finite
number M > 0 such that the following holds:

(i) limt→+∞
∫ t+1
t

[∫ s
M ‖R(r)‖‖q(s− r)‖dr

]p
ds = 0.

(ii) limt→+∞
∫ t+1
t mp

s ds = 0.
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Then the function H(·), given by

H(t) :=
∫ t

0
R(t− s) f (s)ds, t � 0, (20)

is well-defined, bounded and asymptotically Sp -almost automorphic.

Conditions ∑∞
k=0 ‖R(·)‖Lq[k,k+1] < ∞ and ∑∞

k=0 ‖R(·)‖Lq[s+k,s+k+1] < ∞ (s � 0)
have been examined in [37, Remark 2.12, Remark 2.14(ii)]. Briefly speaking, these
conditions always hold in the case that R(·) is exponentially decaying or that p = 1
and R(·) is polynomially decaying at infinity, having the integrable singularity there.

Concerning the class of Besicovitch p -almost automorphic functions, the follow-
ing result seems to be satisfactory only for the abstract differential equations with inte-
ger order derivatives and nonautonomous differential equations (for fractional resolvent
families, the condition (21) stated below does not hold in practical situations; as already
mentioned, the case p > 1 is much more difficult to deal with):

PROPOSITION 7. Suppose that (R(t))t>0 ⊆ L(X) is a strongly continuous opera-
tor family satisfying that ∫ ∞

0
(1+ t)‖R(t)‖dt < ∞. (21)

Let f ∈ B1AA(R : X), and let f (·) be essentially bounded. Then the function F(·),
given by (18), is bounded and belongs to the class B1AA(R : X).

Proof. The fact that the function F(·) is bounded and well-defined follows from
the proofs of Proposition 5 and [39, Proposition 5.1]. It remains to be proved that
F ∈B1AA(R : X). Towards this end, let (sn) be an arbitrary real sequence. By definition
and elementary changes of variables, we know that there exist a subsequence (snk ) and
a function f ∗ ∈ L1

loc(R : X) such that

lim
k→∞

limsup
l→+∞

1
2l

∫ l+t

−l+t

∥∥∥ f
(
snk + x

)− f ∗(x)
∥∥∥dx = 0 (22)

and

lim
k→∞

limsup
l→+∞

1
2l

∫ l+t

−l+t

∥∥∥ f ∗
(
x− snk

)− f (x)
∥∥∥dx = 0

for each t ∈ R. Set F∗(x) :=
∫ x
−∞ R(x− s) f ∗(s)ds, x ∈ R. Then F∗ ∈ L1

loc(R : X). To
see this, it suffices to observe that, for −∞ < a < b < ∞, we have

∫ b

a

∥∥∥∥∥
∫ x

−∞
R(x− s) f ∗(s)ds

∥∥∥∥∥dx

�
∫ b

a

∫ x

−∞

∥∥R(x− s)
∥∥∥∥ f ∗(s)

∥∥dsdx

=
∫ b

a

∫ ∞

0

∥∥R(s)
∥∥∥∥ f ∗(x− s)

∥∥dsdx
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=
∫ ∞

0

∫ b

a

∥∥R(s)
∥∥∥∥ f ∗(x− s)

∥∥dxds

=
∫ ∞

0
(1+ s)

∥∥R(s)
∥∥[ 1

s+1

∫ b−s

a−s

∥∥ f ∗(r)
∥∥dr

]
ds

as well as that the continuous mapping s �→ (s+1)−1 ∫ b−s
a−s

∥∥ f ∗(r)
∥∥dr, s � 0 is bounded

since the condition (22) with t = 0 and the essential boundedness of function f (·)
shows that there exists a number s0 such that [a− s,b− s] ⊆ [−2s,2s], s � s0 and
s−1 ∫ 2s

−2s ‖ f ∗(r)‖dr � 4‖ f‖∞ +4, s � s0; here we also use (21). Therefore, we need to
prove that

lim
k→∞

limsup
l→+∞

1
2l

∫ l+t

−l+t

∥∥∥F(snk + x
)−F∗(x)

∥∥∥dx = 0

and

lim
k→∞

limsup
l→+∞

1
2l

∫ l+t

−l+t

∥∥∥F∗(x− snk

)−F(x)
∥∥∥dx = 0 (23)

pointwise for t ∈ R. The first of these equalities follows from the next computation
involving the Fubini heorem:

1
2l

∫ l+t

−l+t

∥∥∥F(snk + x
)−F∗(x)

∥∥∥dx

=
1
2l

∫ l+t

−l+t

∥∥∥∥∥
∫ x+snk

−∞
R
(
x− s+ snk

)
f (s)ds−

∫ x

−∞
R(x− s) f ∗(s)ds

∥∥∥∥∥dx

=
1
2l

∫ l+t

−l+t

∥∥∥∥∥
∫ x

−∞
R
(
x− s

)
f
(
s+ snk

)
ds−

∫ x

−∞
R(x− s) f ∗(s)ds

∥∥∥∥∥dx

=
1
2l

∫ l+t

−l+t

∥∥∥∥∥
∫ ∞

0
R(r)

[
f
(
x− r+ snk

)− f ∗(x− r)
]
dr

∥∥∥∥∥dx

� 1
2l

∫ l+t

−l+t

∫ ∞

0
‖R(r)‖∥∥ f

(
x− r+ snk

)− f ∗(x− r)
∥∥drdx

=
∫ ∞

0
‖R(r)‖ 1

2l

∫ l+t−r

−l+t−r

∥∥ f
(
x+ snk

)− f ∗(x)
∥∥dxdr

=
∫ ∞

0
(1+ r)‖R(r)‖

×
[

1
1+ r

2(l + r)
2l

1
2(l + r)

∫ l+t+r

(−l+r)+t

∥∥ f
(
x+ snk

)− f ∗(x)
∥∥dx

]
dr.

For any ε > 0 given in advance, we can find k0(ε) > 0 such that for every k � k0(ε)
we can find y0(ε,k) > 0 such that, for every r � 0 and l � y0(ε,k), we have

1
2(l + r)

∫ l+t+r

(−l+r)+t

∥∥ f
(
x+ snk

)− f ∗(x)
∥∥< ε.

Since (21) is assumed, this proves the claimed. The proof of (23) is similar and therefore
omitted. �
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REMARK 2. Let the requirements of the previous proposition hold, and let the
function q ∈ L1

loc([0,∞) : X) be Weyl-1-vanishing, resp., equi-Weyl-1-vanishing. Set
formally

J(t, l) := sup
x�0

{∫ x+t

0

[
1
l

∫ x+t−r+l

x+t−r

∥∥R(v)
∥∥dv

]∥∥q(r)
∥∥dr

}
, t > 0, l > 0.

Assume that the condition

lim
t→∞

lim
l→∞

J(t, l) = 0,

holds provided that q(·) is Weyl-1-vanishing, resp., that the condition

lim
l→∞

lim
t→∞

J(t, l) = 0

holds provided that q(·) is equi-Weyl-1-vanishing (see [39, Example 5.4–Example
5.6] for some concrete situations ensuring the validity of above conditions). By the
proof of [39, Proposition 5.1], we have that limt→∞

∫ ∞
t R(s)g(t − s)ds = 0 as well as

that the function t �→ ∫ t
0 R(t − s)q(s)ds, t � 0 is Weyl-1-vanishing, resp., equi-Weyl-

1-vanishing. Hence, the function t �→ ∫ t
0 R(t − s)[ f (s) + q(s)]ds, t � 0 belongs to

the class B1AA(R : X)+W 1
0 ([0,∞) : X), B1AA(R : X)+ e−W 1

0 ([0,∞) : X), with the
meaning clear. Here we would like to note only that the condition (21) enables one to
estimate the term appearing in definition of J(t, l) for x � 0 in the following way:

∫ x+t

0

[
1
l

∫ x+t−r+l

x+t−r

∥∥R(v)
∥∥dv

]∥∥q(r)
∥∥dr

�
∫ x+t

0

[
1

l(1+ x+ t− r)

∫ x+t−r+l

x+t−r
(1+ x+ t− r)

∥∥R(v)
∥∥dv

]∥∥q(r)
∥∥dr

�
[∫ ∞

0
(1+ t)‖R(t)‖dt

]∫ x+t

0

1
l(1+ x+ t− r)

∥∥q(r)
∥∥dr, t > 0, l > 0.

5. Semilinear Cauchy inclusions

Our aim here is to explain how the already proven statements on almost periodic
and pseudo almost-periodic solutions of semilinear (fractional) Cauchy inclusions (see
[38]) can be formulated for almost automorphy and pseudo almost-automorphy. We
will also provide some results for the abstract Cauchy inclusion (DFP) f ,γ .

Suppose that the multivalued linear operator A satisfies the condition [27, (P), p.
47] introduced by A. Favini and A. Yagi:

(P) There exist finite constants c, M > 0 and β ∈ (0,1] such that

Ψ := Ψc :=
{

λ ∈ C : ℜλ � −c
(|ℑλ |+1

)}⊆ ρ(A )

and
‖R(λ : A )‖ � M

(
1+ |λ |)−β

, λ ∈ Ψ;



GENERALIZED AND ASYMPTOTICALLY ALMOST AUTOMORPHIC... 275

then we can define the fractional power (−A )θ for any θ > β −1 (see Section 2 for
more details). Put Y := [D((−A )θ )] and ‖ · ‖Y := ‖ · ‖[D((−A )θ )]; then Y is a Banach
space that is continuously embedded in X . Set

Tν (t)x :=
1

2π i

∫
Γ
(−λ )νeλ t(λ −A

)−1
xdλ , x ∈ X , t > 0 (ν > 0),

where Γ is the upwards oriented curve λ = −c(|η |+ 1)+ iη (η ∈ R). Then there
exists a finite constant M > 0 such that:

(A) ‖Tν(t)‖ � Me−ct tβ−ν−1, t > 0, ν > 0.

Let Lf (·) be a locally bounded non-negative function, and let M denote the constant
from (A), with ν = θ . Set, for every n ∈ N,

Mn := Mn sup
t∈R

∫ t

−∞

∫ xn

−∞
· · ·
∫ x2

−∞
e−c(t−xn)

(
t − xn

)β−θ−1

×
n

∏
i=2

e−c(xi−xi−1)
(
xi − xi−1

)β−θ−1
n

∏
i=1

Lf (xi)dx1 dx2 · · · dxn. (24)

Set

Tγ,ν (t)x := tγν
∫ ∞

0
sν Φγ(s)T0

(
stγ)xds, t > 0, x ∈ X , ν > −β ,

and following E. Bazhlekova [6], R.-N. Wang, D.-H. Chen, T.-J. Xiao [55],

Sγ(t) := Tγ,0(t) and Pγ(t) := γTγ,1(t)/tγ , t > 0.

Define also

Rγ(t) :=tγ−1Pγ(t), t > 0 and

Rθ
γ (t) := γtγ−1

∫ ∞

0
sΦγ (s)Tθ

(
stγ)xds, t > 0, x ∈ X .

Suppose that (17) holds for a.e. t > 0, with locally bounded non-negative function
Lf (·). Define finally, for every n ∈ N,

Bn :=sup
t�0

∫ t

−∞

∫ xn

−∞
· · ·
∫ x2

−∞

∥∥Rθ
γ (t− xn)

∥∥
×

n

∏
i=2

∥∥Rθ
γ (xi− xi−1)

∥∥ n

∏
i=1

Lf (xi)dx1 dx2 · · · dxn. (25)

Let (Z,‖ · ‖Z) be a complex Banach space, and let Z be continuously embedded
in X . We will use the following notion of a mild solution of (3), see [34]:

DEFINITION 6. Let f : I × Z → X . By a mild solution of (3), we mean any Z -
continuous function u(·) such that u(t) = (Λu)(t), t ∈ R, where

t �→ (Λu)(t) :=
∫ t

−∞
T (t− s) f (s,u(s))ds, t ∈ R.
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Concerning the abstract semilinear Cauchy inclusion (4), we will use the following
notion [34]:

DEFINITION 7. Let f : I × Z → X . By a mild solution of (4), we mean any Z -
continuous function u(·) such that u(t) = (Λγu)(t), t ∈ R, where

t �→ (Λγu)(t) :=
∫ t

−∞
(t− s)γ−1Pγ(t− s) f (s,u(s))ds, t ∈ R.

Let M > 0 denote the constant from (A), and let the sequence (Mn) be defined
through (24). Keeping in mind Proposition 5 and Theorem 1-Theorem 2, it is straight-
forward to prove the following automorphic versions of [38, Theorem 2.10.3-Theorem
2.10.4] and [38, Theorem 2.10.9-Theorem 2.10.10] (see also [34]–[35]):

THEOREM 4. Suppose that (P) holds, β > θ > 1−β and the following conditions
hold:

(i) f ∈ AASp(R×Y : X) with p > 1, and there exist a number r � max(p, p/p−1)
as well as a locally bounded non-negative function Lf ∈ Lr

S(R) such that r >
p/p−1 and (17) holds.

Set q := pr/p+ r and q′ := pr
pr−p−r .

Assume also that:

(ii) q′(β −θ −1) > −1.

(iii) Mn < 1 for some n ∈ N.

Then there exists an almost automorphic mild solution of inclusion (3). The uniqueness
of mild solutions holds in the case that A is single-valued.

THEOREM 5. Suppose that (P) holds, β > θ > 1−β and the following conditions
hold:

(i) f ∈ AASp(R×Y : X) with p > 1, and there exists a constant L > 0 such that
(17) holds.

(ii) p
p−1(β −θ −1) > −1.

(iii) Mn < 1 for some n ∈ N.

Then there exists an almost automorphic mild solution of inclusion (3). The uniqueness
of mild solutions holds provided that, in addition to (i)-(iii), A is single-valued.

THEOREM 6. Suppose that (P) holds, β > θ > 1−β and the following conditions
hold:
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(i) f ∈ AASp(R×Y : X) with p > 1, and there exist a number r � max(p, p/p−1)
as well as a locally bounded non-negative function Lf ∈ Lr

S(R) such that r >
p/p−1 and (17) holds.

Set q := pr/p+ r and q′ := pr
pr−p−r .

Assume also that:

(ii) q′(γ(β −θ )−1) > −1.

(iii) Bn < 1 for some n ∈ N.

Then there exists an almost automorphic mild solution of inclusion (4). The uniqueness
of mild solutions holds provided that, in addition to (i)-(iii), A is single-valued.

THEOREM 7. Suppose that (P) holds, β > θ > 1−β and the following conditions
hold:

(i) f ∈ AASp(R×Y : X) with p > 1, and there exists a constant L > 0 such that
(17) holds.

(ii) p
p−1(γ(β −θ )−1) > −1.

(iii) Bn < 1 for some n ∈ N.

Then there exists an almost automorphic mild solution of inclusion (4). The uniqueness
of mild solutions holds provided that, in addition to (i)-(iii), A is single-valued.

Using Theorem 3 and Proposition 5, we can simply clarify the following modifi-
cation of [38, Theorem 2.12.5], as well (cf. Definition 6 with Z = X ):

THEOREM 8. Suppose that the following conditions hold:

(i) f ∈ PAA(R×X : X) is pseudo-almost automorphic.

(ii) The inequality (17) holds with I = R, X = Y and some bounded non-negative
function Lf (·).

(iii) ∑∞
n=1 Mn < ∞.

Then there exists a unique pseudo-almost automorphic solution of inclusion (3).

As already announced in [38], the existence and uniqueness of pseudo-almost au-
tomorphic solutions of semilinear Cauchy inclusion (4) can be analyzed similarly.

We refer the reader to [38, Definition 2.9.2] for the notion of a classical solution
of the abstract Cauchy inclusion (DFP) f ,γ , and [38, Definition 2.9.9] for the notion of a
mild solution of the abstract semilinear inclusion (DFP) f ,γ,s. We first state the following
automorphic versions of [38, Lemma 2.9.3], formulated here as a proposition, and [38,
Theorem 2.9.5]; the proofs are similar and therefore omitted (cf. [27] and [33] for the
notion of interpolation space Xθ

A used below). It is also worth noting that [38, Theorem
2.9.7] can be formulated for asymptotical almost automorphy.
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PROPOSITION 8. Let f ∈ AAASq([0,∞) : X) with some q ∈ (1,∞), let 1/q +
1/q′ = 1, and let q′(γβ −1) > −1. Define

H(t) :=
∫ t

0
Rγ (t− s) f (s)ds, t � 0.

Then H ∈ AAA([0,∞) : X).

THEOREM 9. Suppose that 1 � θ > 1−β and x0 ∈ D((−A )θ ), resp. 1 > θ >
1−β and x0 ∈ Xθ

A , as well as there exists a constant σ > γ(1−β ) such that, for every
T > 0, there exists a finite constant MT > 0 such that f : [0,∞) → X satisfies

‖ f (t)− f (s)‖ � MT |t− s|σ , 0 � t, s � T.

Let 1 � θ > 1−β , resp. 1 > θ > 1−β , and let

f ∈ L∞
loc

(
(0,∞) :

[
D
(
(−A )θ )]), resp. f ∈ L∞

loc

(
(0,∞) : Xθ

A

)
.

Then there exists a unique classical solution u(·) of problem (DFP) f ,γ . If, additionally,
f ∈ AAASq([0,∞) : X) with some q ∈ (1,∞), 1/q+ 1/q′ = 1 and q′(γβ − 1) > −1,
then u ∈ AAA([0,∞) : X).

Keeping in mind Proposition 2-Proposition 3 and our results clarified in the previ-
ous section, we can repeat almost literally the proofs of our structural results given in
[38, Subsection 2.9.1, Subsection 2.9.2]. In such a way, we can simply state the auto-
morphic versions of [38, Theorem 2.9.10-Theorem 2.9.11, Corollary 2.9.12-Corollary
2.9.13] and [38, Theorem 2.9.15, Theorem 2.9.17-Theorem 2.9.18, Corollary 2.9.19-
Corollary 2.9.20], where we have also analyzed applications of C -regularized semi-
groups in the analysis of existence and uniqueness of generalized (asymptotically) au-
tomorphic solutions of abstract Cauchy inclusions (DFP) f ,γ and (DFP) f ,γ,s . For the
sake of completeness, we will reformulate the above-mentioned Theorem 2.9.10 in our
new context, only:

THEOREM 10. Suppose that I = [0,∞) and the following conditions hold:

(i) g∈ AASp(R×X : X) with p > 1, and there exist a number r � max(p, p/p−1)
and a function Lg ∈ Lr

S(I) such that (17) holds.

(ii) f (t,x) = g(t,x)+q(t,x) for all t � 0 and x ∈ X , where q̂ ∈C0(I×X : Lq([0,1] :
X)) and q = pr/p+ r.

Set

q′ := ∞, provided r = p/p−1 and q′ :=
pr

pr− p− r
, provided r > p/p−1.

Assume also that:

(iii) q′(γβ −1) > −1,
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(iv) (17) holds for a.e. t > 0 , with X = Y and a locally bounded positive function
Lf (·) satisfying An < 1 for some n ∈ N; here,

An :=sup
t�0

∫ t

0

∫ xn

0
· · ·
∫ x2

0

∥∥Rγ(t− xn)
∥∥

×
n

∏
i=2

∥∥Rγ(xi − xi−1)
∥∥ n

∏
i=1

Lf (xi)dx1 dx2 · · · dxn, n ∈ N.

Then there exists a unique asymptotically almost automorphic solution of inclusion
(DFP) f ,γ,s.

6. Examples and applications

The main aim of this section is to provide some applications of our abstract results
in the analysis of existence and uniqueness of various types of generalized (asymptot-
ically) almost automorphic solutions for certain classes of abstract (semilinear) frac-
tional integro-differential inclusions.

EXAMPLE 3. It is well known that the unique solution of (1)–(2), resp. (DFP) f ,γ ,
is of the form (18), resp. (20), with a suitable operator family (R(t))t>0 locally inte-
grable at zero and having polynomially decaying integrable singularity at infinity (cf.
[38] for more details). Therefore, our results from Section 4 apply almost directly; con-
cerning Proposition 7, it is worth noting once more that it is susceptible to applications
only in the case that γ = 1, when (R(t))t>0 decays exponentially at infinity. It is also
clear that our results from Section 5 can be applied in the analysis of semilinear Cauchy
inclusions (3)–(4) and (DFP) f ,γ,s .

Arguing so, we can analyze the existence and uniqueness of (asymptotically) al-
most automorphic solutions of the fractional Poisson heat equations⎧⎨

⎩
Dγ

t,+[m(x)v(t,x)] = −(Δ−b)v(t,x)+ f (t,x), t ∈ R, x ∈ Ω;

v(t,x) = 0, (t,x) ∈ [0,∞)× ∂Ω,

and ⎧⎪⎪⎨
⎪⎪⎩

Dγ
t [m(x)v(t,x)] = (Δ−b)v(t,x)+ f (t,x), t � 0, x ∈ Ω;

v(t,x) = 0, (t,x) ∈ [0,∞)× ∂Ω,

m(x)v(0,x) = u0(x), x ∈ Ω,

in the space X := Lp(Ω), where Ω is a bounded domain in Rn, b > 0, m(x) � 0 a.e.
x ∈ Ω , m ∈ L∞(Ω), γ ∈ (0,1) and 1 < p < ∞, as well as their semilinear analogues{

Dγ
t,+[m(x)v(t,x)] = −(Δ−b)v(t,x)+ f (t,m(x)v(t,x)), t ∈ R, x ∈ Ω;

v(t,x) = 0, (t,x) ∈ [0,∞)× ∂Ω,

and ⎧⎪⎪⎨
⎪⎪⎩

Dγ
t [m(x)v(t,x)] = (Δ−b)v(t,x)+ f (t,m(x)v(t,x)), t � 0, x ∈ Ω;

v(t,x) = 0, (t,x) ∈ [0,∞)× ∂Ω,

m(x)v(0,x) = u0(x), x ∈ Ω,
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with (asymptotically) Stepanov almost automorphic coefficients (cf. [27] and [33] for
more details).

In the following example, we will reexamine some important results established
by A. Favini and A. Yagi in [27, Section VI], regarding certain types of abstract degen-
erate second order differential equations whose solutions can be sought by using the
usual matrix reduction to the system of two first order differential equations. Our main
aim here is to apply Proposition 6, considering only classical abstract inhomogeneous
Cauchy problems, not their semilinear analogues.

EXAMPLE 4. Assume that A, B and C are closed linear operators in X , D(B) ⊆
D(A)∩D(C), B−1 ∈ L(X) and the conditions [27, (6.4)–(6.5)] hold with certain num-
bers c > 0 and 0 < β � α = 1. In [27, Chapter VI], the following second order differ-
ential equation

d
dt

(
Cu′(t)

)
+Bu′(t)+Au(t) = f (t), t > 0; u(0) = u0, Cu′(0) = Cu1

has been considered by the usual converting into the first order matricial system

d
dt

Mz(t) = Lz(t)+F(t), t > 0; Mz(0) = Mz0,

where

M =

[
I O
O C

]
, L =

[
O I

−A −B

]
, z0 =

[
u0

u1

]
and F(t) =

[
0

f (t)

]
(t > 0).

By the proof of [27, Theorem 6.1] (see also [27, Theorem 1.14]), we know that the mul-
tivalued linear operator (L[D(B)]×X −ωM[D(B)]×X)(M[D(B)]×X)−1 satisfies the condition
(P) for a sufficiently large number ω > 0, in the pivot space [D(B)]×X . Therefore, this
MLO generates a degenerate semigroup (T (t))t>0 in [D(B)]×X , having an integrable
singularity at zero and exponentially decaying growth rate at infinity. This enables one
to apply [27, Theorem 3.8, Theorem 3.9] in the analysis of existence and uniqueness of
solutions of the problem

d
dt

Mz(t) = (L−ωM)z(t)+F(t), t > 0; Mz(0) = Mz0, (26)

cf. [27, Section 3.1] for more details, as well as [36, Theorem 4.3] in the analysis of
existence and uniqueness of solutions of the fractional problem

Dγ
t [Mz(t)] = (L−ωM)z(t)+F(t), t > 0; Mz(0) = Mz0,

where the Caputo fractional derivative Dγ
t is taken in a slightly weakened sense [36].

Consider first the case of the abstract Cauchy problem (26). Denoting the compo-
nents of z(t) by u(t) and v(t) , from (26) we get that v(t) = u′(t)+ ωu(t), t � 0 and
(d/dt)(Cv(t)) = −Au(t)− (B + ωC)v(t)+ f (t), t � 0, so that we are ready to solve
the following second order differential equation

d
dt

(
Cu′(t)

)
+(2ωC+B)u′(t)+

(
A+ ωB+ ω2C

)
u(t) = f (t), t > 0;
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u(0) = u0, C
[
u′(0)+ ωu0

]
= Cu1. (27)

Roughy speaking, if M[u0 u1]T belongs to the domain of continuity of (T (t))t>0 and
f (·) is Hölder continuous with an approporiate Hölder index, then there exists a unique
solution z(t) of (26), continuous for t � 0, and moreover,

Mz(t) = M

[
u(t)
v(t)

]
= T (t)M

[
u0

u1

]
+
∫ t

0
T (t − s)

[
0

f (s)

]
ds, t � 0.

Therefore, if f (·) additionally satisfies the requirements of Proposition 6 (here we can
apply a great number of similar assertions known for asymptotical almost periodicity
or asymptotical almost automorphy), then the unique solution u(·) of (27) will satisfy
that Mz(·) = [u(·) C(u′(·)+ ωu(·))]T is bounded and asymptotically Sp -almost auto-
morphic. We can simply apply this result in the analysis of existence and uniqueness
of asymptotically Sp -almost automorphic solutions of the following damped Poisson-
wave type equation in the spaces X := H−1(Ω) or X := Lp(Ω) :⎧⎪⎪⎨
⎪⎪⎩

∂
∂ t

(
m(x) ∂u

∂ t

)
+
(
2ωm(x)−Δ

)∂u
∂ t +

(
A(x;D)−ωΔ + ω2m(x)

)
u(x,t) = f (x,t),

t � 0, x ∈ Ω ; u = ∂u/∂ t = 0, (x,t) ∈ ∂Ω× [0,∞),

u(0,x) = u0(x), m(x)
[
(∂u/∂ t)(x,0)+ ωu0

]
= m(x)u1(x), x ∈ Ω.

Here, Ω ⊆ R
n is a bounded open domain with smooth boundary, 1 < p < ∞, m(x) ∈

L∞(Ω), m(x) � 0 a.e. x ∈ Ω, Δ is the Dirichlet Laplacian in L2(Ω), acting with
domain H1

0 (Ω)∩H2(Ω), and A(x;D) is a second order linear differential operator on
Ω with coefficients continuous on Ω; see [27, Example 6.1] for more details. In the
fractional relaxation case, we can similarly consider the existence and uniqueness of
asymptotically Sp -almost automorphic solutions of the following fractional damped
Poisson-wave type equation in the spaces X := H−1(Ω) or X := Lp(Ω) :⎧⎪⎪⎨
⎪⎪⎩

Dγ
t

(
m(x)Dγ

t u
)
+
(
2ωm(x)−Δ

)
Dγ

t u+
(
A(x;D)−ωΔ + ω2m(x)

)
u(x, t) = f (x,t),

t � 0, x ∈ Ω ; u = Dγ
t = 0, (x,t) ∈ ∂Ω× [0,∞),

u(0,x) = u0(x), m(x)
[
Dγ

t u(x,0)+ ωu0
]
= m(x)u1(x), x ∈ Ω.
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[28] J. A. GOLDSTEIN AND G. M. N’GUÉRÉKATA,Almost automorphic solutions of semilinear evolution
equations, Proc. Amer. Math. Soc. 133 (2005), 2401–2408.
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[34] M. KOSTIĆ, On almost periodic solutions of abstract semilinear fractional inclusions with Weyl-
Liouville derivatives of order γ ∈ (0,1] , J. Math. Stat. 13 (2017), 240–250.
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