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Abstract. This paper is devoted to the study of a Riemann-Liouville fractional boundary value
problem on an unbounded inteval. The problem is assumed to be at resonance and the boundary
conditions are of nonlocal type. We obtain some existence results for the maximal and minimal
solutions by means of a fixed point theorem for an increasing operator and lower and upper
solutions.

1. Introduction

In this paper, we are concerned with the existence of solutions for the following
boundary value problem (P) at resonance

Dq
0+x(t) = f (t,x(t)) , t ∈ (0,∞) ,

I2−q
0+ x(0) = 0, Dq−1

0+ x(∞) = Dq−1
0+ x(0) ,

where Dq
0+ denotes the Riemann-Liouville fractional derivative of order q, 1 < q < 2

and f : [0,∞)×R → R+ is a given function satisfying some conditions that will be
specified here after. We prove the existence of maximal and minimal positive solutions
for problem (P) by means of a fixed point theorem for an increasing operator and lower
and upper solutions. Since the equation Lx = Dq

0+x = 0 together with the boundary
conditions has nontrivial solutions, then problem (P) is at resonance.

Similar boundary value problems at resonance for ordinary and fractional differ-
ential equations have been studied recently in [3], [4], [7], [8]–[10], [14], [18], [20] by
using coincidence degree theory due to Mawhin.

Different from these works, we will focus on the existence of maximal and mini-
mal positive solutions, between the so called upper and lower solutions for the problem
(P) on the half-line.

Fixed point theorems are an important tool in the study of differential equations, in
particular the fixed point theorem for increasing operators has been used to investigate
some boundary value problems, see [1], [2], [6], [15], [18], [20].
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However, few papers in literature are devoted to the existence of solutions of frac-
tional differential equations on the half-line [1], [3], [9], [10], [11], [14], [17], [19].

This paper is organized as follows. In Section 2, we give some necessary notations,
definitions and lemmas. In Section 3, we study the existence of maximal and minimal
positive solutions between the lower and upper solutions of problem (P), by a fixed
point theorem for an increasing operator.

2. Preliminaries

We recall the definitions of Riemann-Liouville fractional derivative and Riemann-
Liouville fractional integral, that we can find their properties in [13].

DEFINITION 1. The Riemann-Liouville fractional integral of order p > 0 of a
function g ∈ L1(0,∞) is given by

I p
0+g(t) =

1
Γ(p)

∫ t

0

g(s)
(t− s)1−p ds, a.e. t ∈ (0,∞).

DEFINITION 2. The Riemann-Liouville fractional derivative of order p > 0 of a
function g ∈ ACn [0,b] for a certain b > 0 is given by

Dp
0+g(t) =

1
Γ(n− p)

(
d
dt

)n ∫ t

0

g(s)
(t− s)p−n+1 ds,

where n = [p]+1, ( [p] is the integer part of p ) and

ACn [0,b] =
{

g ∈Cn−1 [0,b] ,g(n−1) ∈ AC [0,b]
}

with AC [0,b] denotes the space of absolutely continuous functions on the interval
[0,b] .

LEMMA 1. The homogenous fractional differential equation Dq
a+g(t) = 0 has a

solution
g(t) = c1t

q−1 + c2t
q−2 + . . .+ cnt

q−n,

where, ci ∈ R, i = 1, . . . ,n and n = [q]+1.

Now we give some concepts from coincidence degree theory [16].
Let X and Y be two real Banach spaces and let L : domL⊂X →Y be a linear oper-

ator which is a Fredholm map of index zero. Define the continuous projections P and Q
respectively by P : X → X , Q :Y →Y such that ImP = kerL, kerQ = ImL. Then X =
kerL⊕kerP and Y = ImL⊕ ImQ, thus L |domL∩kerP :domL∩kerP→ ImL is invertible.
Denote its inverse by KP . There exists an isomorphism J : ImQ → kerL . It is known
that the coincidence equation Lx = Nx is equivalent to x = (P+ JQN +Kp(I−Q)N)x,

furthermore P+ JQN +Kp(I−Q)N =
(
L+ J−1P

)−1 (
N + J−1P

)
.
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Let (X ,‖.‖) be a real Banach space. A closed convex set K in X is called a cone
if λK ⊂ K for all λ � 0 and K ∩{−K} = {θ} , where θ denotes the zero element of
X . The real Banach space (X ,‖.‖) is said partially ordered by a cone K of X , if

x,y ∈ X , x � y ⇔ y− x ∈ K.

DEFINITION 3. A cone K in a Banach space (X ,‖.‖) is called normal if there
exists a constant N > 0, such that θ � x � y implies ‖x‖ � N ‖y‖ .

DEFINITION 4. Let D ⊆ X . An operator A : D → X is said to be increasing if

x,y ∈ D, x � y ⇒ Ax � Ay.

In view of Theorem 2.1.1 in [6], it is easy to obtain the following result.

THEOREM 1. Let K be a normal cone in a Banach space X and let u0,v0 ∈ X ,
u0 � v0 and A : [u0,v0]→ X be an increasing operator such that : u0 � Au0, Av0 � v0.
If the operator A is completely continuous, then A has a maximal fixed point x∗ and
a minimal fixed point x∗ in [u0,v0] , moreover x∗ = limn→∞ vn, x∗ = limn→∞ un , where
un = Aun−1, vn = Avn−1, n = 1,2,3 . . . , and

u0 � u1 � u2 � . . . � un � . . . � vn � . . . � v2 � v1 � v0.

We need the following compactness criteria:

THEOREM 2. [5] Let C∞ = {y ∈C ([0,+∞)) , limt→∞ y(t) exists} equipped with
the norm ‖y‖∞ = supt∈[0,+∞) |y(t)| . Let F ⊂C∞ . Then F is relatively compact if the
following conditions hold:

(1) F is bounded in C∞.
(2) The functions from F are equicontinuous on any compact sub-interval of

[0,∞) , that is, for any y ∈ F and for any t1,t2 ∈ [0,T ] , t1 < t2 with T > 0, we have
|y(t1)− y(t2)| → 0, as t1 → t2 .

(3) The functions from F are equiconvergent at +∞ , that is, for any ε > 0 , there
exists a T = T (ε) > 0 such that, |y(t)− limt→∞ y(t)| < ε for all t � T and y ∈ F .

3. Main results

Let us define the function space that will be used in the sequel. Let X be the space

X =
{

x ∈C ([0,+∞)) , Dq−1
0+ x ∈C ([0,+∞)) , I2−q

0+ x(0) = 0

lim
t→∞

e−t x(t) and lim
t→∞

Dq−1
0+ x(t) exist

}

endowed with the norm ‖x‖ = supt�0 e−t |x(t)|+ supt�0

∣∣∣Dq−1
0+ x(t)

∣∣∣ .
LEMMA 2. The normed space (X ,‖.‖) is a Banach space.
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Proof. Let (xn) be a Cauchy sequence in X and denote xn (t) = e−t xn (t) for

t ∈ [0,+∞) . Since ‖xn− xm‖ = ‖xn− xm‖∞ +
∥∥∥Dq−1

0+ xn−Dq−1
0+ xm

∥∥∥
∞

, then (xn) and(
Dq−1

0+ xn

)
are Cauchy sequences in the Banach space C∞ defined in Theorem 2. Con-

sequently xn → x and Dq−1
0+ xn → y in C∞ , from which yields xn (t) → x(t) = etx(t)

and Dq−1
0+ xn (t) → y(t) , t ∈ [0,+∞) . Since I2−q

0+ xn (0) = 0, then

Iq−1
0+ Dq−1

0+ xn (t) =
[
xn (t)− tq−2

Γ(q−1)
I2−q
0+ xn (0)

]
= xn(t) → Iq−1

0+ y(t) .

Hence x(t) = Iq−1
0+ y(t) and consequently Dq−1

0+ x(t) = y(t) . This shows that xn → x in
X . The proof is complete. �

Let Y = L1[0,+∞) with the norm ‖y‖1 =
∫ +∞
0 |y(t)|dt . Define the operator L :

domL ⊂ X → Y by Lx = Dq
0+x , where

domL =
{
x ∈ X , Dq−1

0+ x ∈ AC [0,b] for all b > 0,

I2−q
0+ x(0) = 0, Dq−1

0+ x(∞) = Dq−1
0+ x(0)

}⊂ X ,

then L maps domL into Y . Let N : X → Y be the operator Nx(t) = f (t,x(t)) , t ∈
[0,+∞) . The problem (P) can be written as Lx = Nx. Define the linear projections P
and Q as

Px(t) =
Dq−1

0+ x(0)
Γ(q)

tq−1, Qy(t) =
tq−1e−t

Γ(q)

∫ ∞

0
y(s)ds.

By computations, we obtain

kerL =
{
x ∈ domL : x(t) = atq−1, a ∈ R, t ∈ [0,∞)

}
.

and its image

ImL =
{

y ∈Y :
∫ ∞

0
y(s)ds = 0

}
.

From here, we conclude that the operator L : domL ⊂ X → Y is a Fredholm operator
of index zero. In addition, the generalized inverse KP of L is given by

Kpy(t) = Iq
0+y(t) , y ∈ ImL.

Set J : ImQ → kerL the linear isomorphism given by J
(
ctq−1e−t

)
= ctq−1 , for any

c ∈ R, t � 0.

LEMMA 3. The cone

K =
{

x ∈ X ,x(t) � 0, Dq−1
0+ x(t) � 0, t ∈ [0,∞)

}
.

is normal in X .
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Proof. Let x,y ∈ K, be such that x � y. Since y− x ∈ K, then e−t y(t) � e−t x(t)
and Dq−1

0+ y(t) � Dq−1
0+ x(t) , t ∈ [0,∞) . Hence

sup
t�0

e−ty(t)+ sup
t�0

Dq−1
0+ y(t) � sup

t�0
e−tx(t)+ sup

t�0
Dq−1

0+ x(t)

that is ‖x‖ � N ‖y‖ where the normal constant of K is N = 1. �
The operator L + J−1P : K ∩ domL → K1 =

(
L+ J−1P

)
(K∩domL) is a linear

bijection with bounded inverse. From [6], K1 is a cone in Y and we have the following
Lemma:

LEMMA 4. [6] The following two assertions are equivalent:
i) A = P+ JQN +Kp(I−Q)N maps K∩domL to K∩domL.
ii)
(
N + J−1P

)
maps K ∩domL into K1 =

(
L+ J−1P

)
(K∩domL) .

Define the lower and upper solutions for problem (P) by

DEFINITION 5. [5] Let K be a normal cone in a Banach space X , u0 � v0, and
u0 , v0 ∈K∩dom(L) are said to be coupled of lower and upper solutions of the equation
Lu = Nu if Lu0 � Nu0 and Lv0 � Nv0.

Now we give the main result.

THEOREM 3. Let u0 , v0 ∈K∩dom(L) be a coupled of lower and upper solutions
of problem (P) such that u0 � v0 . Assume that the following conditions are satisfied:

(H1) There exist nonnegative functions α, β ∈ L1 [0,∞) , such that for all x ∈ R,
t ∈ [0,∞) , we have

f (t,x) � e−tα (t) |x|+ β (t) .

(H2) The function f is increasing according to the second variable, i.e., if x � y
then f (t,x) � f (t,y), for x,y ∈ R, t ∈ [0,∞) .

Then, the problem (P) has at least a maximal solution x∗ and a minimal solution x∗
in [u0,v0] . Moreover x∗ = limn→∞ vn, x∗ = limn→∞ un , where un = Aun−1, vn = Avn−1,
n = 1,2,3 . . . , with A = P+ JQN +Kp(I−Q)N , and

u0 � u1 � u2 � . . . � un � . . . � vn � . . . � v2 � v1 � v0.

REMARK 1. Since the coincidence equation Lx = Nx is equivalent to x = Ax,

where A = P + JQN + Kp(I −Q)N =
(
L+ J−1P

)−1 (
N + J−1P

)
, then the maximal

and minimal fixed points of A in [u0,v0] are the maximal and a minimal solutions
in [u0,v0] of problem (P). Consequently to prove Theorem 3, it suffices to prove that
all hypotheses of Theorem 1 are satisfied.

Proof of Theorem 3. The proof will be done in some steps.
Step 1. The operator A is completely continuous. Let Ω = B(0,r) , then by con-

dition (H1 ), we can see that N (Ω) and Kp(I−Q)N (Ω) are bounded. So, P+ JQN is
completely continuous. In view of the compactness criteria theorem, we need only to
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prove that Kp(I −Q)N (Ω) and Dq−1
0+ (KP (I−Q)N) (Ω) are equicontinuous on every

compact subinterval of [0,∞) and equiconvergent at infinity. In fact, for any x ∈ Ω ,
and any t1,t2 ∈ [0,T ] , t1 < t2 with T > 0, we have

∣∣e−t1 (KP (I−Q)Nx) (t1)− e−t2 (KP (I−Q)Nx)(t2)
∣∣

=
∣∣∣∣
∫ t2

t1

(
e−sKP (I−Q)Nx(s)

)′
ds

∣∣∣∣
�
[∫ t2

t1

∣∣e−sKP (I−Q)Nx(s)
∣∣ds+

∫ t2

t1

∣∣∣e−sIq−1
0+ (I−Q)Nx(s)

∣∣∣ds

]
→ 0, as t1 → t2.

On the other hand we have∣∣∣Dq−1
0 (KP (I−Q)Nx) (t1)−Dq−1

0 (KP (I−Q)Nx) (t2)
∣∣∣

=
∣∣∣∣
∫ t1

0
(I−Q)Nx(s)ds−

∫ t2

0
(I−Q)Nx(s)ds

∣∣∣∣
�
∫ t2

t1
|(I−Q)Nx(s)|ds → 0, as t1 → t2.

So KP (I−Q)N
(
Ω
)

and Dq−1
0 (KP (I−Q)N)

(
Ω
)

are equicontinuous on every com-
pact subinterval of [0,∞) .

In addition, KP (I−Q)N
(
Ω
)

and Dq−1
0 (KP (I−Q)N)

(
Ω
)

are equiconvergent at
infinity. In fact, from condition (H1 ), it yields

‖(I−Q)Nx‖1 < b,

where b = 2(r‖α‖1 +‖β‖1) . Consequently

∣∣e−t (Kp (I−Q)Nx) (t)
∣∣ � 1

Γ(q)

∫ t

0
e−t (t− s)q−1 |(I−Q)Nx(s)|ds

� be−ttq−1

Γ(q)
→ 0, as t → ∞

and ∣∣∣Dq−1
0+ (Kp (I−Q)Nx) (t)− lim

t→∞
Dq−1

0+ (Kp (I−Q)Nx) (t)
∣∣∣

=
∣∣∣∣
∫ t

0
(I−Q)Nx(s)ds−

∫ ∞

0
(I−Q)Nx(s)ds

∣∣∣∣
�
∫ ∞

t
|(I−Q)Nx(s)|ds → 0, as t → ∞,

thus KP (I−Q)N
(
Ω
)

and Dq−1
0+ (KP (I−Q)N)

(
Ω
)

are equiconvergent at infinity.
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Step 2. A maps K∩domL to K ∩domL. In fact, let x ∈ K∩domL, then

Ax(t) = Px(t)+ JQNx(t)+Kp(I−Q)Nx(t) =
Dq−1

0+ x(0)
Γ(q)

tq−1

+
tq−1

Γ(q)

(∫ ∞

0
f (s,x(s))ds

)
+

1
Γ(q)

∫ t

0
(t− s)q−1 f (s,x(s))ds

− 1

[Γ(q)]2

(∫ t

0
(t− s)q−1 sq−1e−sds

)(∫ ∞

0
f (s,x(s))ds

)
.

Taking the following estimates into account

− 1

[Γ(q)]2

(∫ t

0
(t− s)q−1 sq−1e−sds

)
� − tq−1

[Γ(q)]2

(∫ ∞

0
sq−1e−sds

)
= − tq−1

Γ(q)

we see that

Ax(t) �
Dq−1

0+ x(0)
Γ(q)

tq−1 +
1

Γ(q)

∫ t

0
(t− s)q−1 f (s,x(s))ds � 0.

On the other hand we have

Dq−1
0 (Ax)(t) = Dq−1

0 x(0)+
∫ ∞

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds

− 1
Γ(q)

(∫ t

0
sq−1e−sds

)(∫ ∞

0
f (s,x(s))ds

)

� Dq−1
0 x(0)+

∫ ∞

0
f (s,x(s))ds+

∫ t

0
f (s,x(s))ds

− 1
Γ(q)

(∫ ∞

0
sq−1e−sds

)(∫ ∞

0
f (s,x(s))ds

)

= Dq−1
0 x(0)+

∫ t

0
f (s,x(s))ds � 0.

Step 3. A is an increasing operator and u0 � Au0, Av0 � v0. Indeed, since Lu0 �
Nu0, then (

L+ J−1P
)
u0 �

(
N + J−1P

)
u0,

that implies

u0 �
(
L+ J−1P

)−1 (
N + J−1P

)
u0

i.e. u0 � Au0 . Similarly, we prove Av0 � v0 .

Now, to prove that A =
(
L+ J−1P

)−1 (
N + J−1P

)
is increasing, it suffices to prove

that both operators
(
L+ J−1P

)−1
and N + J−1P are increasing. Let x,y ∈ [u0,v0] ⊂
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K∩domL be such that x � y. Using condition (H2) and the fact that y− x∈ K , we get[(
N + J−1P

)
y
]
(t)− [(N + J−1P

)
x
]
(t)

=

(
f (t,y(t))+

Dq−1
0+ y(0)
Γ(q)

tq−1e−t

)
−
(

f (t,x(t))+
Dq−1

0+ x(0)
Γ(q)

tq−1e−t

)

= f (t,y(t))− f (t,x(t))+
(
Dq−1

0+ y(0)−Dq−1
0+ x(0)

) tq−1e−t

Γ(q)
� 0,

which implies N + J−1P is increasing. From step 2 and Lemma 4, we conclude that(
N + J−1P

)
maps K ∩domL into the cone K1, thus the linear operator

(
L+ J−1P

)−1

maps the cone K1 into the cone K. Hence
(
L+ J−1P

)−1
is increasing, this implies that

A =
(
L+ J−1P

)−1 (
N + J−1P

)
: K∩domL → K is increasing.

From the previous steps, we conclude that the operator A is completely continu-
ous, increasing and u0 � Au0, Av0 � v0 . By Theorem 1, we deduce that A has a max-
imal fixed point x∗ and a minimal fixed point x∗ in [u0,v0] , such that x∗ = limn→∞ vn

and x∗ = limn→∞ un , where the monotone sequences (un) and (vn) are defined by
un = Aun−1, vn = Avn−1, n = 1,2,3 . . . , and

u0 � u1 � u2 � . . . � un � . . . � vn � . . . � v2 � v1 � v0.

The proof is complete. �
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