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INFINITELY MANY SOLUTIONS FOR A CLASS OF

SUPERQUADRATIC FRACTIONAL HAMILTONIAN SYSTEMS

MOHSEN TIMOUMI

Abstract. Applying a variant fountain theorem, we prove the existence of infinitely many solu-
tions for a class of fractional Hamiltonian systems{

tDα
∞(−∞Dα

t u)(t)+L(t)u(t) = ∇W (t,u(t)), t ∈ R

u ∈ Hα (R, R
N),

where tDα
∞ and −∞Dα

t are the Liouville-Weyl fractional derivatives of order 1
2 < α < 1 ,

L ∈ C(R,RN2
) is a symmetric matrix-valued function not required to be either uniformly pos-

itive definite nor coercive and W(t,x) ∈ C1(R×R
N ,R) satisfies some weaker superquadratic

conditions at infinity in the second variable but does not satisfy the well-known Ambrosetti-
Rabinowitz superquadratic growth condition.
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