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Abstract. Applying a variant fountain theorem, we prove the existence of infinitely many solu-
tions for a class of fractional Hamiltonian systems{

tDα
∞(−∞Dα

t u)(t)+L(t)u(t) = ∇W (t,u(t)), t ∈ R

u ∈ Hα (R, RN),

where tDα
∞ and −∞Dα

t are the Liouville-Weyl fractional derivatives of order 1
2 < α < 1 ,

L ∈ C(R,RN2
) is a symmetric matrix-valued function not required to be either uniformly pos-

itive definite nor coercive and W(t,x) ∈ C1(R×RN ,R) satisfies some weaker superquadratic
conditions at infinity in the second variable but does not satisfy the well-known Ambrosetti-
Rabinowitz superquadratic growth condition.

1. Introduction

In this paper, we are concerned with the existence of infinitely many solutions for
a class of fractional Hamiltonian systems of the following form

(FH S )

{
tDα

∞(−∞Dα
t u)(t)+L(t)u(t) = ∇W (t,u(t)), t ∈ R

u ∈ Hα(R, RN),

where −∞Dα
t and tDα

∞ are the Liouville fractional derivatives of order 1
2 < α < 1,

L ∈ C(R,RN2
) is a symmetric matrix-valued function and W : R×RN −→ R is a

continuous function, differentiable with respect to the second variable with continuous
derivative ∂W

∂x (t,x) = ∇W (t,x) .
The study of fractional calculus (differentiation and integration) has emerged as an

important and popular field in research. It is mainly due to the extensive application of
fractional differential equations in many engineering and scientific disciplines such as
physics, mechanics, control theory, viscoelasticity, electro chemistry, bioengineering,
economics and others [1, 10, 12, 16, 17]. An important characteristic of fractional-order
differential operator that distinguishes it from the integer-order differential operator is
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its nonlocal behavior, that is, the future state of a dynamical system or process involving
fractional derivative depends on its current state as well as its past states. In other words,
differential equations of arbitrary order describe memory and hereditary properties of
various materials and process. This is one of the futures that has contributed to the
popularity of the subject and has motivated the rechearchers to focus on fractional order
models, which are more realistic and practical than the classical integer-order models.

Recently, also equations including both left and right fractional derivatives were
investigated and many results were obtained dealing with the existence and multiplicity
of solutions of nonlinear fractional differential equations by using techniques of Non-
linear Analysis, such as fixed point theory [4, 24], topological degree theory [5, 8],
comparison methods [13, 23], and so on.

In (FH S ) , if α = 1, then it reduces to the following Hamiltonian system

(H S ) ü(t)−L(t)u(t)+W(t,u(t)) = 0.

It should be noted that critical point theory and variational methods serve as effective
tools in the study of integer-order differential equations. The underlying idea in this
approach rest on finding critical points for suitable energy functional defined on an
appropriate function space. During the last three decades, the critical point theory has
developed into a wonderful tool for investigating the existence criteria for the solutions
of differential equations with variational structures, for example see [14, 18] and the
references cited therein.

Motivated by the classical works in [14,18], for the first time, the author [9]
showed that critical point theory and variational methods are an effective approach to
tackle the existence of solutions for the following fractional boundary value problem{

tDα
T (0Dα

t u)(t) = ∇W (t,u(t)), t ∈ [0,T ]

u(0) = u(T ),

where α and W (t,x) are defined as above, and obtained the existence of at least one
nontrivial solution under some suitable conditions on W (t,x) . Inspired by this work,
Torres [20] considered the fractional Hamiltonian system (FH S ) when L satisfies

(1.1) L ∈C(R,RN2
) is a positive definite symmetric matrix-valued function, and

there exists an l ∈C(R,R∗
+) such that l(t) −→ +∞ as |t| −→ ∞ and

L(t)x.x � l(t) |x|2 , ∀(t,x) ∈ R×RN.

Assuming that W satisfies the well-known Ambrosetti-Rabinowitz superquadratic con-
dition and some other suitable conditions, he showed that the fractional Hamiltonian
system (FH S ) possesses at least one nontrivial solution using the Mountain Pass
Theorem. Since then, the existence and multiplicity of solutions of problem (FH S )
via critical point theory have been investigated in many papers [2, 3, 6, 7, 15, 19–22,
24–27]. In [2, 3, 6, 7, 19, 20, 27], the function L satisfies the coercive condition (1.1) ,
but in [21, 22, 26], L satisfies the following boundedness condition

(1.2) L ∈ C(R,RN2
) is a positive definite symmetric matrix-valued function and

there are constants 0 < τ1 < τ2 < +∞ such that

τ1 |x|2 � L(t)x.x � τ2 |x|2 , ∀(t,x) ∈ R×RN,
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however in [15], the function L is required to satisfy the two following noncoercive
conditions:

(1.3) L(t) is a positive definite symmetric matrix for all t ∈ R and there exists an
l ∈C(R,R) such that

inf
t∈R

l(t) > 0 and L(t)x.x � l(t) |x|2 , ∀(t,x) ∈ R×RN;

(L) There exists a constant r0 > 0 such that

lim
|s|−→∞

meas({t ∈]s− r0,s+ r0[/L(t) < bIN}) = 0, ∀b > 0,

where meas denotes the Lebesgue’s measure on R , which guarantee the compactness
of Sobolev embedding. Besides, in all the above mentioned papers, the potential W
is required to be subquadratic or to satisfy the Ambrosetti-Rabinowitz superquadratic
condition (AR) at infinity.

The aim of this paper is to study the existence of infinitely many solutions for
(FH S ) , when the function L is unnecessarily positive definite nor coercive, and the
potential W satisfies some superquadratic conditions at infinity, weaker than the (AR)
condition. More precisely, we make the following hypotheses:
(L0) The smallest eigenvalue l(t) = inf|ξ |=1 L(t)ξ .ξ of L(t) is bounded from below;
(W1) W (t,0) = 0 and there exist constants c > 0 and ν > 2 such that

|∇W (t,x)| � c(|x|+ |x|ν−1), ∀(t,x) ∈ R×RN;

(W2) lim
|x|−→∞

W (t,x)
|x|2 = +∞, uniformly for t ∈ R;

(W3) There exists a constant σ � 1 such that

σŴ (t,x) � Ŵ (t,sx), ∀(s,t,x) ∈ [0,1]×R×RN,

where Ŵ (t,x) = ∇W (t,x).x−2W(t,x) ;

(W4) W (t,−x) = W (t,x), ∀(t,x) ∈ R×RN.

Our main result reads as follows:

THEOREM 1. Assume (L0) , (L) and (W1)–(W4) are satisfied. Then the frac-
tional Hamiltonian system (FH S ) possesses a sequence of nontrivial solutions (uk)
satisfying

1
2

∫
R
[|−∞Dα

t uk|2 +L(t)uk.uk]dt−
∫

R
W (t,uk)dt −→ +∞ as k −→ ∞.
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REMARK AND EXAMPLE 1. In our result, L(t) is unnecessarily required to be
either uniformly positive definite nor coercive. For example, let L(t) = (t2 cos2 t−1)IN ,
where IN is the identity matrix of order N , then L satisfies (L0) and (L) but it does’nt
satisfy (1.1) , (1.2) nor (1.3) . Moreover, let

W (t,x) = a(t)[|x|2 ln(e+ |x|)− 1
2
|x|2 + e |x|− e2(ln(e+ |x|)−1)]

where a is a continuous bounded function with positive lower bound. Then an easy
computation shows that W satisfies (W1)–(W4) . However, W does not satisfy the
(AR)-condition. By Theorem 1, the corresponding fractional Hamiltonian system
(FH S ) possesses a sequence of nontrivial solutions (uk) satisfying

1
2

∫
R
[|−∞Dα

t uk|2 +L(t)uk.uk]dt−
∫

R
W (t,uk)dt −→ +∞ as k −→ ∞.

The remainder of this paper is organized as follows. In Section 2, some prelimi-
nary results are presented. The third Section is devoted to the proof of our main result.

2. Preliminaries

In this Section, for the reader’s convenience, first we will recall some facts about
the fractional calculus on the whole real axis. On the other hand, we will give some
preliminaries lemmas for using in the sequel.

2.1. Liouville-Weyl fractional calculus

The Liouville-Weyl fractional integrals of order 0 < α < 1 on the whole axis R

are defined as (see [11, 12, 17])

−∞Iα
t u(t) =

1
Γ(α)

∫ t

−∞
(t− x)α−1u(x)dx, (2.1)

and

t I
α
∞u(t) =

1
Γ(α)

∫ ∞

t
(x− t)α−1u(x)dx. (2.2)

The Liouville-Weyl fractional derivatives of order 0 < α < 1 on the whole axis R

are defined as the left-inverse operators of the corresponding Liouville-Weyl fractional
integrals (see [11, 12, 17])

−∞Dα
t u(t) =

d
dt

(−∞I1−α
t u)(t), (2.3)

and

tD
α
∞u(t) = − d

dt
(t I1−α

∞ u)(t). (2.4)

The definitions of (2.3) and (2.4) may be written in an alternative form as follows

−∞Dα
t u(t) =

1
Γ(1−α)

∫ ∞

0

u(t)−u(t− x)
xα+1 dx, (2.5)
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and

tD
α
∞u(t) =

1
Γ(1−α)

∫ ∞

0

u(t)−u(t + x)
xα+1 dx. (2.6)

We establish the Fourier transform properties of the fractional integral and fractional
differential operators. Recall that the Fourier transform û of u is defined by

û(s) =
∫ ∞

−∞
e−istu(t)dt.

Let u be defined on R . Then the Fourier transform of the Liouville-Weyl integrals and
differential operators satisfies (see [11, 12])

−̂∞Iα
t u(s) = (is)−α û(s), (2.7)

t̂ Iα
∞u(s) = (−is)−α û(s), (2.8)

−̂∞Dα
t u(s) = (is)α û(s), (2.9)

t̂Dα
∞u(s) = (−is)α û(s). (2.10)

Next, we present some properties for Liouville-Weyl fractional integrals and derivatives
on the real axis, which were proved in [11].

Denote by Lp(R,RN) (1 � p < ∞) , the Banach spaces of functions on R with
values in RN under the norms

‖u‖Lp = (
∫

R
|u(t)|p dt)

1
p ,

and L∞(R,RN) the Banach space of essentially bounded functions from R into RN

equipped with the norm

‖u‖∞ = esssup{|u(t)|/t ∈ R} .

PROPOSITION 1. 1) Let p,q ∈ [1,∞] , α > 0. The operators −∞Iα
t and t Iα

∞ are
bounded from Lp(R,RN) to Lq(R,RN) if and only if

0 < α < 1, 1 < p <
1
α

, q =
p

1−α p
,

2) If α > 0, for “sufficiently good” function f , the relations

(−∞Dα
t (−∞Iα

t f ))(t) = f (t), (tDα
∞(t Iα

∞ f ))(t) = f (t) (2.11)

are true. In particular, these relations hold for f ∈ L1(R,RN) ,
3) Let α,β > 0 and p � 1 be such that α + β = 1

p . If f ∈ Lp(R,RN) , then

(−∞Iβ
t (−∞Iα

t u))(t) =−∞ Iα+β
t u(t), (t Iβ

∞(t Iα
∞u))(t) =t Iα+β

∞ u(t), (2.12)

4) If α > β > 0, then

(−∞Dβ
t (−∞Iα

t u))(t) =−∞ Iα−β
t u(t), (tDβ

∞(t Iα
∞ ))(t) =t Iα−β

∞ u(t). (2.13)
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PROPOSITION 2. If α > 0, then the relations∫
R

ϕ(t)(−∞Iα
t ψ)(t)dt =

∫
R
(t Iα

∞ ϕ)(t)ψ(t)dt, (2.14)

∫
R

u(t)(−∞Dα
t v)(t)dt =

∫
R
(tDα

∞u)(t)v(t)dt, (2.15)

are valid for “sufficiently good” functions ϕ ,ψ ,u,v . In particular, (2.14) holds for func-
tions ϕ ∈ Lp(R,RN) and ψ ∈ Lq(R,RN) , while (2.15) holds for u ∈ t Iα

∞ (Lp(R,RN))
and v ∈ −∞Iα

t (Lq(R,RN)) provided that p > 1, q > 1 and 1
p + 1

q = 1+ α , where

t I
α
∞ (Lp(R,RN)) =

{
u/∃ϕ ∈ Lp(R,RN), u = t I

α
∞ ϕ

}
,

similarly, −∞Iα
t (Lq(R,RN)) can be defined.

2.2. Fractional derivative spaces

In order to establish the variational structure which enables us to reduce the exis-
tence of solutions of (FH S ) to find critical points of the corresponding functional,
it is necessary to construct the appropriate functional spaces.

For α > 0, define the semi-norm

|u|Iα−∞
= ‖−∞Dα

t u‖L2

and the norm
‖u‖Iα−∞

= (‖u‖L2 + |u|2Iα−∞
)

1
2 ,

and let
Iα
−∞ = C∞

0 (R,RN)
‖.‖|Iα−∞

where C∞
0 (R,RN) denotes the space of infinitely differentiable functions from R into

RN with vanishing property at infinity.
Now, we can define the fractional Sobolev space Hα(R,RN) in terms of the

Fourier transform. Choose 0 < α < 1, define the semi-norm

|u|α =
∥∥|s|α û

∥∥
L2

and the norm
‖u‖α = (‖u‖L2 + |u|2α)

1
2 ,

and let
Hα(R,RN) = C∞

0 (R,RN)
‖.‖α .

Moreover, we note that a function u ∈ L2(R,RN) belongs to Iα−∞ if and only if

|s|α û ∈ L2(R,RN).

Especially, we have
|u|Iα−∞

=
∥∥|s|α û

∥∥
L2 .
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Therefore, Iα−∞ and Hα(R,RN) are equivalent with equivalent semi-norms and norms.
Analogous to Iα−∞ , we introduce Iα

∞ . Define the semi-norm

|u|Iα
∞

= ‖tD
α
∞u‖L2

and the norm
‖u‖Iα∞

= (‖u‖L2 + |u|2Iα∞
)

1
2 ,

and let
Iα
∞ = C∞

0 (R,RN)
‖.‖|Iα∞

Then Iα−∞ and Iα
∞ are equivalent with equivalent semi-norms and norms.

Let C(R,RN) denote the space of continuous functions from R into RN . Then
we obtain the following Sobolev lemma.

LEMMA 1. ([20], Theorem 2.1) If α > 1
2 , then Hα(R,RN) ⊂ C(R,RN) , and

there exists a constant C = Cα such that

‖u‖∞ = sup
t∈R

|u(t)| � Cα ‖u‖α ,∀u ∈ Hα(R,RN). (2.16)

REMARK 1. From Lemma 1, we know that if u ∈ Hα(R,RN) with 1
2 < α < 1,

then u ∈ Lp(R,RN) for all p ∈ [2,∞[ , because∫
R
|u(t)|p dt � ‖u‖p−2

∞ ‖u‖2
L2 .

In what follows, we assume that there exists a constant a0 > 0 such that

(L′
0) L(t)x.x � a0 |x|2 , ∀(t,x) ∈ R×RN

and we introduce the following fractional space

Xα =
{

u ∈ Hα(R,RN)/
∫

R
L(t)u(t).u(t)dt < ∞

}
.

Then Xα is a Hilbert space with the inner product

〈u,v〉Xα =
∫

R
[−∞Dα

t u(t).−∞Dα
t v(t)+L(t)u(t).v(t)]dt

and the corresponding norm
‖u‖2

Xα = 〈u,u〉Xα .

It is easy to see that Xα is continuously embedded in Hα(R,RN) . In fact, for u ∈ Xα ,
we have

‖u‖2
Xα =

∫
R
[|−∞Dα

t u(t)|2 +L(t)u(t).u(t)]dt

�
∫

R
[|−∞Dα

t u(t)|2 +a0 |u(t)|2]dt

� inf(1,a0)‖u‖2
Hα � inf(1,a0)‖u‖2

L2 .
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For p ∈]2,∞[ , we have by Remark 1

‖u‖p
Lp =

∫
R
|u(t)|p dt � ‖u‖p−2

∞ ‖u‖2
L2 � Cp−2

α
inf(1,a0)

‖u‖p
Xα = ηp(α)‖u‖p

Xα . (2.17)

The main difficulty in dealing with the existence of infinitely many solutions for
(FH S ) is the lack of compactness of the Sobolev embedding. To overcome this
difficulty under the assumptions of Theorem 1, we employ the following compact em-
bedding lemma.

LEMMA 2. [15] Assume (L′
0) and (L) are satisfied. Then Xα is compactly em-

bedded in L2(R,RN) .

REMARK 2. From Remark 1 and Lemma 2, it is easy to verify that the embedding
of Xα in Lp(R,RN) is also compact for p ∈]2,∞[ .

To study the critical points of the variational functional associated with (FH S ) ,
we need the following variant fountain theorem established by Zou [28].

Let X be a Banach space with the norm ‖.‖ and X =⊕ j∈NXj with dimXj < ∞ for
any j ∈ N . Set Yk = ⊕k

j=1Xj and Zk = ⊕∞
j=kXj . Consider a functionals fλ ∈C1(X ,R)

of the type
fλ (u) = A(u)−λB(u), u ∈ E, λ ∈ [1,2].

LEMMA 3. (Variant fountain theorem) [28] Assume that the functionals fλ sat-
isfy

a) fλ maps bounded sets into bounded sets for λ ∈ [1,2] and

fλ (−u) = fλ (u) f or all (λ ,u) ∈ [1,2]×X ;

b) B(u) � 0 for all u ∈ X and A(u) −→ +∞ or B(u) −→ +∞ as ‖u‖ −→ ∞;
c) There exist ρk > rk > 0 such that for all λ ∈ [1,2]

αk(λ ) = inf
u∈Zk,‖u‖=rk

fλ (u) > βk(λ ) = max
u∈Yk,‖u‖=ρk

fλ (u).

Then
αk(λ ) � ξk(λ ) = inf

γ∈Γk
max
u∈Bk

fλ (γ(u)), ∀λ ∈ [1,2],

where

Bk = {u ∈ Yk/‖u‖ � ρk} and Γk =
{

γ ∈C(Bk,X)/γ is odd, γ|∂Bk
= id

}
.

Moreover, for almost every λ ∈ [1,2] , there exists a sequence (uk
m(λ ))m∈N such that

sup
m∈N

∥∥∥uk
m(λ )

∥∥∥ < ∞, f ′λ (uk
m(λ )) −→ 0, fλ (uk

m(λ )) −→ ξk(λ ) as m −→ ∞.
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3. Proof of theorem 1

First, note that (L0) , (W1) and (W2) imply that there exists a constant a0 > 0 such
that L̃(t) = L(t)+2a0IN � a0IN for all t ∈ R and W̃ (t,x) =W (t,x)+a0 |x|2 � 0 for all
(t,x) ∈ R×RN . Consider the following fractional system{

tDα
∞(−∞Dα

t u)(t)+ L̃(t)u(t) = ∇W̃ (t,u(t)), t ∈ R

u ∈ Hα(R, RN),
(3.1)

then (3.1) is equivalent to (FH S ) . Moreover, it is easy to check that the hypotheses
(W1)–(W4) still hold for W̃ (t,x) provided that those hold for W (t,x) and the function
L̃ satisfies (L′

0) and (L) . Hence in what follows, we always assume without loss of
generality that L satisfies (L′

0) and (L) , W (t,x) � 0 for all (t,x)∈ R×RN and W (t,x)
satisfies (W1)–(W4) .

Consider the variational function f associated to the fractional system (FH S ) :

f (u) =
1
2

∫
R
(|−∞Dα

t u(t)|2 +L(t)u(t).u(t))dt−
∫

R
W (t,u(t))dt

defined on the Hilbert space Xα introduced in Section 2. Set

g(u) =
∫

R
W (t,u)dt, u ∈ Xα .

LEMMA 4. Assume (L′
0) , (L) and (W1) are satisfied. Then g ∈ C1(Xα ,R) and

g′ : Xα −→ (Xα)∗ is compact, and f ∈C1(Xα ,R) . Moreover, for all u,v ∈ Xα

g′(u)v =
∫

R
∇W (t,u).vdt (3.2)

f ′(u)v = 〈u,v〉−
∫

R
∇W (t,u).vdt. (3.3)

Proof. By (W1) , for any s ∈ [0,1] and u,v ∈ Xα , we have

|∇W (t,u+ sv)v|� c(|u+ sv|+ |u+ sv|ν−1) |v|
� c[|u|+ |v|+2ν−2(|u|ν−1 + |v|ν−1)] |v|
� c2v−2[|u| |v|+ |v|2 + |u|v−1 |v|+ |v|v]. (3.4)

The Hölder’s inequality implies∫
R
(|u| |v|+ |u|v−1 |v|)dt � ‖u‖2 ‖v‖2 +‖u‖ν−1

ν ‖v‖ν . (3.5)

Hence, by (3.4), (3.5), the Mean Value Theorem and Lebesgue’s Dominated Conver-
gence Theorem, we get for all u,v ∈ Xα

lim
s−→0

g(u+ sv)−g(u)
s

= lim
s−→0

∫
R

∫ 1

0
∇W (t,u+ sv).vdsdt

=
∫

R
∇W (t,u).vdt = J(u,v). (3.6)
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Moreover, it follows from (2.17), (W1) and (3.5) that

|J(u,v)| �
∫

R
|∇W (t,u)| |v|dt � c

∫
R
(|u| |v|+ |u|ν−1 |v|)dt

� c(‖u‖2 ‖v‖2 +‖u‖ν−1
ν ‖v‖2) � c(η2

2 ‖u‖Xα + ην
ν ‖u‖ν−1

Xα )‖v‖Xα .

Therefore, J(u, .) is linear and bounded, and J(u, .) is the Gâteaux derivative of g at
u .

Next, we prove that J(u, .) is weakly continuous in u . For this end, we first claim
that if un ⇀ u in Xα , then ∇W (t,un) −→ ∇W (t,u) in L2(R) . Arguing indirectly, by
Lemma 2, we may assume that there exists a subsequence (unk) such that

unk −→ u in both L2(R) and L2(ν−1)(R) and unk −→ u a.e. in R as k −→ ∞ (3.7)

and ∫
R

∣∣∇W (t,unk)−∇W(t,u)
∣∣2 dt � ε0, ∀k ∈ N (3.8)

for some positive constant ε0 . By (3.7) and up to a subsequence if necessary, we
can assume that ∑∞

k=1

∥∥unk −u
∥∥

L2 < ∞ and ∑∞
k=1

∥∥unk −u
∥∥

L2(ν−1) < ∞ . Let w(t) =
∑∞

k=1

∣∣unk(t)−u(t)
∣∣ for all t ∈ R , then w ∈ L2(R)∩L2(ν−1)(R) . By (W1) , there holds

for all k ∈ N and t ∈ R∣∣∇W (t,unk)−∇W(t,u)
∣∣2

� (
∣∣∇W (t,unk)

∣∣+ |∇W (t,u)|)2

� 2(
∣∣∇W (t,unk)

∣∣2 + |∇W (t,u)|2)
� 2c2[(

∣∣unk

∣∣+ ∣∣unk

∣∣ν−1)2 +(|u|+ |u|ν−1)2]

� 22c2[
∣∣unk

∣∣2 +
∣∣unk

∣∣2(ν−1) + |u|2 + |u|2(ν−1)]

� 22c2[(
∣∣unk −u

∣∣+ |u|)2 +(
∣∣unk −u

∣∣+ |u|)2(ν−1) + |u|2 + |u|2(ν−1)]

� 22c2[2(
∣∣unk −u

∣∣2 + |u|2)+22ν−3(
∣∣unk −u

∣∣2(ν−1) + |u|2(ν−1))+ |u|2 + |u|2(ν−1)]

� c1(|w|2 + |u|2 + |w|2(ν−1) + |u|2(ν−1))

where c1 is a positive constant. Combining this with (3.7), Lebesgue’s Dominated
Convergence Theorem implies

lim
k−→∞

∫
R

∣∣∇W (t,unk)−∇W(t,u)
∣∣2 dt = 0

which contradicts to (3.8). Hence the claim above is true.
Now, suppose un ⇀ u in Xα , then ∇W (t,un)−→∇W (t,u) in L2(R) . By Hölder’s

inequality and (2.17), we have

‖J(un, .)− J(u, .)‖E∗ = sup
‖v‖=1

∫
R
(∇W (t,un)−∇W(t,u)).vdt

� η2(
∫

R
|∇W (t,un)−∇W(t,u)|2 dt)

1
2 −→ 0 as n −→ ∞.
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This means that u �−→ J(u, .) is weakly continuous and then it is continuous in Xα .
Therefore g ∈C1(Xα ,R) and (3.2) is verified. Furthermore, g′ is compact by the weak
continuity of g′ since Xα is reflexive. Due to the form of f , (3.3) is also verified and
f ∈C1(Xα ,R) .

Finally, let u ∈ Xα be a critical point of f . A standard argument shows that
u ∈C2(R,RN) and satisfies equation (FH S ) . The proof is completed. �

In order to apply the variant fountain theorem to prove our main result, choose an
orthonormal basis (en)n∈N of Xα and let Xj = span

{
e j

}
for all j ∈ N . Define Yk and

Zk by
Yk = ⊕k

j=1Xj, Zk = ⊕∞
j=kXj

and the functionals A,B and fλ on our working space Xα by

A(u) =
1
2
‖u‖2

Xα , B(u) = g(u) =
∫

R
W (t,u)dt, fλ (u) = A(u)−λB(u),

for all (λ ,u) ∈ [1,2]×Xα .
Assumption (W1) and property (2.17) imply that fλ maps bounded sets into

bounded sets uniformly for λ ∈ [1,2] . Note that W (t,−x) = W (t,x) , so we have
fλ (−u) = fλ (u) for all (λ ,u) ∈ [1,2]×Xα . Thus condition a) of Lemma 3 holds.
Since W (t,x) � 0 for all (t,x) ∈ R×RN , it is clear that condition b) is also satisfied.
To verify condition c), we need to establish the three following lemmas.

LEMMA 5. Suppose (L′
0) and (L) hold. Then for any p ∈ [2,∞]

lp(k) = sup
u∈Zk,‖u‖Xα =1

‖u‖Lp −→ 0 as k −→ ∞. (3.9)

Proof. It is clear that 0 < lp(k+1) � lp(k) , so that lp(k) −→ l p as k −→ ∞ . For
every k � 1, there exists uk ∈ Zk such that ‖uk‖Xα = 1 and ‖uk‖Lp > 1

2 lp(k) . For any
v ∈ Xα , let v = ∑∞

i=1 viei . By the Cauchy-Schartz inequality, one has

|〈uk,v〉| =

∣∣∣∣∣〈uk,
∞

∑
i=1

viei〉
∣∣∣∣∣ =

∣∣∣∣∣〈uk,
∞

∑
i=k+1

viei〉
∣∣∣∣∣

� ‖uk‖
X

α

∥∥∥∥∥ ∞

∑
i=k+1

viei

∥∥∥∥∥ �
∞

∑
i=k+1

|vi|‖ei‖Xα −→ 0 as k −→ ∞

which implies that uk ⇀ 0. Without loss of generality, Lemma 2 implies that uk −→ 0
in L2(R) . Thus we have proved that l p(k) = 0. The proof is completed. �

LEMMA 6. Assume (L′
0) , (L) and (W1) are satisfied. Then there exist a positive

integer k0 and a sequence rk −→ +∞ as k −→ ∞ such that

αk(λ ) = inf
u∈Zk,‖u‖Xα =rk

fλ (u) > 0, ∀k � k0. (3.10)
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Proof. From (W1) and the fact that W (t,x) � 0, we have

fλ (u) � 1
2
‖u‖2

Xα −2
∫

R
W (t,u)dt

� 1
2
‖u‖2

Xα −2c(‖u‖2
L2 +‖u‖ν

Lν ),∀(λ ,u) ∈ [1,2]×Xα. (3.11)

Combining (3.9) and (3.11) yields

fλ (u) � 1
2
‖u‖2

Xα −2cl22(k)‖u‖2
Xα −2clν

ν (k)‖u‖ν
Xα , ∀(λ ,u) ∈ [1,2]×Xα . (3.12)

In view of (3.9), there exists an integer k0 such that

2cl22(k) � 1
4
,∀k � k0. (3.13)

For any k � k0 , let us define

rk = (16clν
ν (k))

1
2−ν . (3.14)

Since ν > 2, then rk −→ +∞ as k −→ ∞ . From (3.12)–(3.14), we deduce that for all
k � k0

inf
u∈Zk,‖u‖Xα =1

fλ (u) � 1
2
r2
k −

1
4
r2
k −

1
8
r2−ν
k r2−ν

k rν
k =

1
8
r2
k > 0, (3.15)

which completes the proof of Lemma 6. �

LEMMA 7. Assume (L′
0) , (L) , (W1) and (W2) are satisfied. Then for any k � k0 ,

there exists ρk > rk such that

βk(λ ) = max
u∈Yk,‖u‖Xα =ρk

fλ (u) < 0,

where k0 is the positive integer obtained in Lemma 6.

Proof. Firstly, we claim that for any finite-dimensional subspace F ⊂ Xα , there
exists a constant ε0 > 0 such that

meas({t ∈ R/ |u(t)| � ε0 ‖u‖}) � ε0, ∀u ∈ F\{0} . (3.16)

In not, for any n ∈ N , there exists un ∈ F\{0} such that

meas

({
t ∈ R/ |un(t)| � 1

n
‖un‖Xα

})
<

1
n
.

Let vn = un
‖un‖ ∈ F , then ‖vn‖ = 1 and

meas

({
t ∈ R/ |vn(t)| � 1

n

})
<

1
n
,∀n ∈ N. (3.17)
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Since F is finite-dimensional, then up to a subsequence if necessary, we may assume
vn −→ v0 in Xα for some v0 ∈ Xα . Evidently, ‖v0‖Xα = 1. Note that, since any two
norms on F are equivalent, we have∫

R
|vn− v0|dt −→ 0 as n −→ ∞. (3.18)

The fact that ‖v0‖Xα = 1 implies ‖v0‖L∞ > 0. By the definition of ‖.‖L∞ , there exists
a constant δ0 > 0 such that

meas({t ∈ R/ |v0(t)| � δ0}) � δ0. (3.19)

Otherwise, for each fixed n ∈ N and m > n , we have

meas

({
t ∈ R/ |v0(t)| � 1

n

})
� meas

({
t ∈ R/ |v0(t)| � 1

m

})
� 1

m
.

Letting m −→ ∞ , we obtain meas(
{
t ∈ R/ |v0(t)| � 1

n

}
) = 0. Consequently

0 � meas({t ∈ R/ |v0(t)| �= 0})
= meas

(
∪∞

n=1

{
t ∈ R/ |v0(t)| � 1

n

})
�

∞

∑
n=1

meas

({
t ∈ R/ |v0(t)| � 1

n

})
= 0

which yields v0 = 0 and contradicts ‖v0‖Xα = 1. Then (3.19) holds.
For any n ∈ N , let

Λn =
{

t ∈ R/ |vn(t)| < 1
n

}
, Λ0 = {t ∈ R/ |v0(t)| � δ0} .

Then for n large enough, by (3.17) and (3.19), we have

meas(Λn∩Λ0) � meas(Λ0)−meas(Λc
n) � δ0− 1

n
� δ0

2
.

Consequently, for n large enough, there holds∫
R
|vn − v0|dt �

∫
Λn∩Λ0

|vn− v0|dt �
∫

Λn∩Λ0

(|v0|− |vn|)dt

�
(

δ0− 1
n

)
meas(Λn∩Λ0) � δ0

4
> 0.

This contradicts (3.18). Therefore (3.16) holds. Now, note that for any k ∈ N , Yk is
finite-dimensional, so there exists a constant εk > 0 such that

meas(Λk
u) � εk, ∀u ∈ Yk\{0} , (3.20)
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where
Λk

u = {t ∈ R/ |u(t)| � εk ‖u‖Xα }
for all k ∈ N and u ∈ Yk\{0} . By (W2) , for any k ∈ N , there exists a constant Rk > 0
such that

W (t,x) � |x|2
ε3
k

, ∀t ∈ R and |x| � Rk. (3.21)

Combining (3.20) with (3.21), for any k ∈ N and λ ∈ [1,2] , we have

fλ (u) � 1
2
‖u‖2

Xα −
∫

R
W (t,u)dt � 1

2
‖u‖2

Xα −
∫

R

|u|2
ε3
k

dt

� 1
2
‖u‖2

Xα − ε2
k ‖u‖2

Xα meas(Λk
u)

1

ε3
k

� 1
2
‖u‖2

Xα −‖u‖2
xα = −1

2
‖u‖2

Xα (3.22)

for all u∈Yk with ‖u‖Xα � Rk
εk

. For any k � k0 , choose ρk > max
{

rk,
Rk
εk

}
, then (3.22)

implies

ρk(λ ) = max
u∈Yk,‖u‖Xα =ρk

fλ (u) � −1
2

ρ2
k .

The proof is completed. �
Consequently, Lemmas 6,7 show that condition c) of Lemma 3 is satisfied for all

k � k0 . By the above, all the conditions Lemma 3 hold for all k � k0 . Therefore, for
any k � k0 and λ ∈ [1,2] , there exists a sequence (uk

n)n∈N ⊂ Xα such that

sup
n∈N

∥∥∥uk
n(λ )

∥∥∥ < ∞, f
′
λ (uk

n(λ )) −→ 0 and fλ (uk
n(λ )) −→ ξk(λ ) as n −→ ∞, (2.23)

where
ξk(λ ) = inf

γ∈Γk
sup
u∈Bk

fλ (γ(u)), ∀λ ∈ [1,2]

with Bk = {u ∈ Yk/‖u‖ � ρk} and Γk =
{

γ ∈C(Bk,Xα)/γ is odd, γ|∂Bk
= id

}
. From

(3.15) and Lemma 3, we infer that

ξk(λ ) ∈ [αk,ξ k], ∀k � k0, λ ∈ [1,2], (3.24)

where ξ k = maxu∈Bk f1(u) and αk = r2k
8 −→ ∞ as k −→ ∞ .

In view of (3.23), for any k � k0 , we can choose a sequence λn −→ 1 and the
corresponding sequences (uk

m(λn)) satisfying

sup
m∈N

∥∥∥uk
m(λn)

∥∥∥
Xα

< ∞ and f
′
λn

(uk
m(λn)) −→ 0 as m −→ ∞. (3.25)

LEMMA 8. For any n ∈ N and k � k0 , there exists uk
n ∈ Xα such that

lim
m−→∞

uk
m(λn) = uk

n in Xα . (3.26)
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Proof. Throughout this proof and for the sake of simplicity, we shall let um =
uk

m(λn) for m ∈ N . Without loss of generality, we may assume by (3.23) that

um ⇀ u as m −→ ∞ (3.27)

for some u ∈ Xα . Using (3.3), we get

‖um −u‖2 = f ′λn
(um).(um −u)− f ′λn

(u).(um −u)

+ λn

∫
R
(∇W (t,um)−∇W(t,u)).(um −u)dt. (3.28)

By (3.25), one has
f ′λn

(um).(um −u)−→ 0 as m −→ ∞. (3.29)

Moreover (3.27) yields

f ′λn
(u).(um −u)−→ 0 as m −→ ∞. (3.30)

Now, by (2.17) and Holder’s inequality, we have∣∣∣∣∫
R
(∇W (t,um)−∇W(t,u)).(um −u)dt

∣∣∣∣
� (

∫
R
|∇W (t,um)−∇W(t,u)|2 dt)

1
2 (

∫
R
|um−u|2 dt)

1
2

� η2(
∫

R
|∇W (t,um)−∇W(t,u)|2 dt)

1
2 ‖um −u‖Xα . (3.31)

As in the proof of Lemma 4, by passing to a subsequence if necessary, we may assume
that

∫
R |∇W (t,um)−∇W(t,u)|2 dt −→ 0 as m −→ ∞ . Hence (3.31) implies∫

R
(∇W (t,um)−∇W(t,u)).(um −u)dt −→ 0 as m −→ ∞. (3.32)

Combining (3.28)–(3.30) and (3.32) yields um −→ ∞ as m −→ ∞ in Xα . The proof is
completed. �

Note that (3.23) and (3.24) imply

f ′λn
(uk

n) = 0, fλn(u
k
n) ∈ [αk,ξ k], ∀n ∈ N and k � k0. (3.33)

LEMMA 9. For any k � k0 , the sequence (uk
n)n∈N obtained above is bounded.

Proof. For notational simplicity, we set un = uk
n for all n ∈ N . Assuming indi-

rectly that (un) is unbounded. By going to a subsequence if necessary, we may assume

‖un‖ −→ ∞ and vn =
un

‖un‖ ⇀ v as n −→ ∞. (3.34)

By Lemma 2 and (3.34), without loss of generality, we have

vn −→ v both in L2(R) and Lν(R) and vn(t) −→ v(t) a.e. t ∈ R as n −→ ∞. (3.35)
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First case. When v = 0 occurs. Let (sn) be a sequence such that

fλn(snun) = max
s∈[0,1]

fλn(sun), ∀n ∈ N. (3.36)

For R > 0, let wn = 2
√

Rvn . By (3.35), we have

wn −→ 2
√

Rv = 0 both in L2(R) and Lν(R) (3.37)

which with (W1) implies∣∣∣∣∫
R
W (t,wn)dt

∣∣∣∣ � c
∫

R
(|wn|2 + |wn|ν)dt −→ 0 as n −→ ∞. (3.38)

Note that (3.34) implies that 0 < 2
√

R
‖un‖ < 1 for n large enough. This together with (3.36)

and (3.38) implies

fλn(snun) � fλn(wn) =
1
2
‖un‖2

Xα −λn

∫
R
W (t,wn)dt

� 2R−2
∫

R
W (t,wn)dt � R

for n large enough. Since R is arbitrarily, it follows that

lim
n−→∞

fλn(snun) = +∞. (3.39)

Note that, since fλn(0) = 0 and fλn(un) ∈ [αk,ξ k] , then sn ∈]0,1[ in (3.36) for n large
enough. Therefore

0 = sn
d
ds

( fλn)(sun)|s=sn = f ′λn
(snun).snun. (3.40)

Combining (3.33), (3.39) and (W3) yields

fλn(un)− 1
2

f ′λn
(un).un =

λn

2

∫
R
Ŵ (t,wn)dt � λn

2σ

∫
R
Ŵ (t,snwn)dt

=
1
σ

[ fλn(snun)− 1
2

f ′λn
(snun).snun]

=
1
σ

fλn(snun) −→ +∞ as n −→ ∞,

a contradiction with (3.33).
Second case. When v �= 0 occurs. The set Λ = {t ∈ R/v(t) �= 0} has a positive

measure. By (3.34), it holds that

|un(t)| −→ ∞ as n −→ ∞, ∀t ∈ Λ. (3.41)
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Combining (3.35), (3.41) and (W2) , Fatou’s lemma implies

1
2
− fλn(un)

‖un‖2 = λn

∫
R

W (t,un)
‖un‖2 dt

�
∫

Λ
|vn|2 W (t,un)

|un|2
dt −→ ∞ as n −→ ∞,

which provides a contradiction with (3.33) and (3.34). The proof is completed. �

Finally, using the similar arguments in the proof of Lemma 8 and in view of
Lemma 9 and (3.33), we can show that for any k � k0 , the sequence (uk

n)n∈N possesses
a strong convergent subsequence with the limit uk being a critical point of f = f1 .
Since αk −→ +∞ as k −→ ∞ and f (uk) ∈ [αk,ξ k] for all k � k0 , then f has infinitely
many critical points. Consequently, (FH S ) has infinitely many nontrivial solutions.
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