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Abstract. Recently, Hussain et al. in the paper [Some k-fractional associates of Hermite—Hada-
mard’s inequality for quasi-convex functions and applications to special means, Fractional Dif-
ferential Calculus, 7(2) 2017, 301-309] established some new Hermite—Hadamard type inequal-
ities for functions whose absolute values are quasi-convex via the k-Riemann—Liouville frac-
tional integral operators. The purpose of this article is to extend and generalize the results,
obtained in the aforementioned paper, via the (k,s)-fractional integrals.

1. Introduction

Let / C R be an interval. We say that a function f: I — R is convex if for every
a,bel and r € [0,1], we have

flta+(1—=0)b) <tf(a)+(1—1)f(D).

For this class of functions, we have the following relation:

1459 < e [ o< HOSIEL,

The above inequality is known in the literature as the Hermite—Hadamard integral
inequality for convex functions [4]. Since the advent of the above inequality, loads of
work have been done around it — ranging from extensions, improvements to general-
izations. For the purpose of this work, we will discuss this inequality for the class of
quasi-convex functions. We start by presenting the definition in what follows.

DEFINITION 1. A function f :1 — R is quasi-convex if for every a,b € [ and
€10, 1], we have

f(ta+(1—1)b) < max{f(a),f(b)}.
Mathematics subject classification (2010): 26A33, 26D15, 26A51.
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It is a general knowledge that every convex function is quasi-convex, but the con-
verse is not necessarily true (see [6]). An analogue of the Hermite—Hadamard inequality
for quasi-convex functions was given by Dragomir and Pearce [2, 3]. Specifically, they
proved

THEOREM 1. Let f:1— R be a quasi-convex function and f € Li[a,b]. Then
the following inequality holds:

bia /abf(x)dx < max{f(a),f(b)}.

It has now become a trending aspect of mathematical research to generalize classi-
cal known results (in particular, those partaining to inequalities) via fractional integral
operators. Worthy of mention is the k-Riemann-Liouville fractional integral operator
[9] which generalizes the known Riemann-Liouville fractional operator. For more on
this subject, we invite the interested- reader to see the papers [7, 12, 13, 14] and the
references given therein.

Recently, Hussain et al. [5] generalized Theorem 1 and other results in the liter-
ature by proving the following four theorems via the k-Riemann—Liouville fractional
integral operators.

THEOREM 2. Let f : [a,b] — R be a positive function and f € Ly[a,b]. If f is
quasi-convex on [a,b], then the subsequent inequality for the k-fractional integrals is
valid

Fk(oc +

S A0+ A2 (0] < maxt () S} 0

THEOREM 3. Let f: [a,b] — R be a differentiable function on (a,b). If |f'| is
quasi-convex on [a,b], o > 0, the subsequent inequality for the k-fractional integral
is valid

fla)+fb) Tula+k) 3
‘ 2 ‘sz_@% | FES )+ I @)

S %(1 - 2%) max{|f'(a)l,[F'(B)]}. ()
k

THEOREM 4. Let f : [a,b] — R be a differentiable function on (a,b) such that
feLila,b]. If |f'|1 is quasi-convex on [a,b] and q > 1, then the subsequent inequality
for the k-fractional integral is valid

flA+fb) Tiletbr o a
2 Zécb—a)% L/a*f(bH S5 fa)] ‘

< (max{lF @I B, )
21+ )"

_—

where Il—7—|—é =1and ¥ €[0,1].
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THEOREM 5. Let f : [a,b] — R be a differentiable function on (a,b) such that
f1 € Lyla,b]. If |f'|1 is quasi-convex on [a,b| and q > 1. Then the subsequent inequal-
ity for the k-fractional integral is valid

fla)+f(b)  Ti(a+k)
2 2(b—a)t

[ FLr®)+ kfb“ﬂa)}‘

<ty (1= 5p) (mastir@ilrom)”.

In 2016, Sarikaya et al. gave a generalization of the k-Riemann-Liouville frac-
tional integral operators as follows:

DEFINITION 2. ([11]) The (k,s)-Riemann-Liouville fractional integral operators
2 A% and i _#7% of order o > 0 for areal valued continuous function f(x) are defined
as

1-2
. a%f(x):i(S]}:()a)k / @ Y f () dr x> a (5)
and
I=2 b
e =S [ e e a<s, @

where k>0, s € R\ {—1}, T} is the k-gamma function given by the following integral
00 k
T (x) = / Pl T di (Re(x) > 0)
0

with the properties: T (x+ k) = xI'x(x) and Ty (k) = 1.

Using the above defined operators, Agarwal et al. [1] established the following
Hermite—Hadamard type result for convex functions.

THEOREM 6. Let o, k>0, s € R\{—1}. If f is a convex function on |a,b], then
we have

SF0)+ s8] < L)

a+by _ (s+1)iT(a+k)
f( 2 )g 4(bs+ — sty E [k

where the function F is defined by (7) below.

Inspired by the above works, it is our purpose in this present paper to obtain some
generalizations of Theorems 2, 3, 4 and 5 via the (k,s)-Riemann-Liouville fractional
integral operators j _# % and j_#,% . Our results reduce to those theorems for the case
when s = 0 (see Remarks 1-4). To the best of our knowledge, the results presented
here are new for the case s £ 0.
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2. Main results

We start by making the following observations. Given f defined on I with [a,b] C
I°, we define the functions F, f : [a,b] — R by

f(x):=fla+b—x) and F(x):= f(x)+ f(x). 7

For the operators to be well defined, we shall assume throughout that f € L..[a,b].
Now, using the substitutions 1 = =% and u = Z%)’C in (5) and (6), respectively, one gets

that

=% ux —u)a)’f(ux —u)a
L0 = (- O [Pl LW Tt (L e)

kT (ox) [xs+1 — (ux+(1— u)a)s-H] -

and

p Sy (x) = (b=

)(54_1)1*7 /1 (wx+ (1 —u)b)’f(ux+ (1 —u)b) du. (9)
0

ka(a) [(ux+(1_u)b)s+l_xs+l] -

Noting that f((1 —u)a+ub) = f(ua+ (1 —u)b), we also obtain

a)(s—|—1)1‘(7X /1 (ux+(1—u)a)sf((l—u)x—i-ua)du
0

FIEF(x) = (x— o 10
R ) Tt (1w F (10)
and
oo o DT (et (1= w)b) f((1 = w)x+ ub)
H o Fx) = (b=2) k() /0 [(ux—|—(1 —u)b)-"“—x-"“]l_% du (i
By substituting x = b and x =« in (10) and (11) respectively, one obtains
s us (s+ D) F U (ub+ (1 —wa) f((1 —u)b+ ua)
1 F(b) = (b— du, (12
1 Farf(b) = (b—a) (@) /o b b (1w ] u,  (12)
and
c sar o DT (wat (1= uw)b)* (1= u)a+ ub)
AT = =0 e ) s (1wt

Similar substitutions can be done in (8) and (9). We are now in position to state and
prove our first result.

THEOREM 7. Let o, k>0, s € R\ {—1}, f:1— R be a positive function on
[a,b) C I°, and f € Ly[a,b] with a < b. If, in addition, f is quasi-convex on |a,b), then
we have the following (k,s) -fractional integral inequality:

(s+ DT +k) [SfﬁF(b)Jri/th(a) <max{f(a),f(b)}. (14

4(bs+1 — as+1)% k
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Proof. Using the fact that f is quasi-convex on [a,b], we have that for 7 € [0, 1],
flta+(1=1)b) < max{f(a),f(b)} (15)

and

F((1=1)a+1tb) <max{f(a),f(b)}. (16)
Adding Inequalities (15) and (16), one gets

fla+(1=0)b)+ f((1 —t)a+1b) < 2max{f(a), f(b)}. (17)
Multiplying both sides of (17) by

(s+ 1) % (tb+ (1 —1)a)*
kT () [+ — (tb+ (1 _t)a)s+1]l_%

(b—a)

and integrating over [0, 1] with respect to 7, we get

. (s+ )% L (tb+(1—0)a) f(1—1)b+1a)
(b-a) ki (er) /0 [bs+1_(tb+(1_t)a)s+1]1*% a

. (s+1)'"% L (th+(1—1)a)’f(th+ (1—1)a)
+(=a) kT (ex) /0 [+ — (th+ (1 —1)a)+1]' % !
<2man{ (o) fO) - ST [T 0 g
- ’ KOi(0) Jo [pstt — (b4 (1 —1)a)y 1] F

Using (8) and (12), we get

2(S+ 1)17%(b.\'+1 _a.\'Jrl)%

ST Dt @, o)

e I F(B) +i J7f(b) <

That is,
2(bs+1 _ as+1) &

" ZEF(b) < - ax{f(a), f(b)}. (19)
LAEEO) < o @5 0)
Similarly, multiplying again both sides of (17) by
(s+ 1) % (tb+ (1 —1)a)®

(b—a)

o
k

ka(a) [(tb+(1—t)a)5+1—as+1]l
and integrating with respect to ¢ over [0, 1] to arrive at

2(bs+1 _ as-&-l)%

T (g M@0, 0)

v Iy Fla) <

The desired inequality follows from adding (19) and (20). U
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REMARK 1. Theorem 7 becomes Theorem 2 by choosing s = 0

For the rest of our results, we will need the following lemmas.

LEMMA 1. ([1]) Ler a, k>0 and s e R\{—1}. If f: 1 — R is differentiable on
I° with a,b € I° such that ' € L|a,b] with a < b, then the following identity holds

1 ;f o (2(21 L _r’;(jfltf [ pere)+ir8F@

= bs+1 _as+1 / Vos@)f (ta+ (1 —1)b)dt, (21)
where Vg 5:10,1] — R is defined by
Vo) i=[(ta+ (1 —0)by =@ T —[(th+ (1 —1)a) ' —a**1] F
+ [0 = b+ (1 =) F = [ = (tat (1-0)p)* 1 .
LEMMA 2. Under the conditions of Lemma 1, we have that
/ Vs (1) dt = (m1+9t2+m3+m4)

where

and
b o b o
Ry —/ [(b+a—u)! aSH]?du—/” [(b+a—u)t —a ] * du
a -

Proof. The proof of this lemma is also given in [10]. For completeness, we outline
the proof here. Using the substitution u =ra+ (1 —1)b, we get

/01 Vo ()] dr = blTa / ’ | o) 22)
where
o) = (@ =@ [(b+a—uyt - o)
L R ) L At L
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The required result follows from (22) and by observin% that the function & is a non-
decreasing function on [a,b], @(a) = —2(b*"! —a**1)T <0, @(%L) =0, and thus

(23)

. b
{Jo(u)éo if aéug%,
O

) >0 if S <u<b.

THEOREM 8. Let a, k>0, s € R\ {—1}, f:1— R be a differentiable function
on I° and a,b € I° with a < b. Suppose f € Li|a,b] and |f'| is quasi-convex on [a,D],
then we have the following (k,s) -fractional integral inequality:

fl@)+fB)  (s+DITk(a+k) s .

' 2 B 4(b.\'+l_a_y+1)% [k a*F(b>+kjb7F(a)]
Ri+Ro+Rs+ Ry , ,

s 4(b5+1_as+1)% max{|f"(a)l, |/ (b)]}- (24)

Proof. The function |f’| is quasi-convex implies that for 7 € [0, 1], we have
|f'(ta+ (1 =1)b)| < max{|f'(a)[.1f'(B)|}- (25)

Using Lemmas | and 2, Inequality (25) and the properties of modulus, we obtain

'f(a) ) D@ o z/ﬁ”a)]‘

4(bs+1 — as+1)% k

< Wf’%l) [ 1Vas)lf at (1-)0)

< 4(b+b%+> [ Vastlmaxti @) 170

= e @O [ W0l

= e sl @O (% 9 )
_ Ri+Ro+R3+ Ry

max{|f’(a)|,|f' (b)[}.

4(bs+! — as+1)%

The desired result follows. [

REMARK 2. If we set s =0 in Theorem 8, then we recapture Theorem 3 by ob-
serving (for this case) that

R =Ry =Ry =Ry = H{Q [(b_a)%ﬂ_z(b;a)%ﬂ]
k
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THEOREM 9. Let f be differentiable on I° with a,b € I° such that [’ € Ly[a,b].
If |f'|9 is quasi-convex on |a,b] and q > 1, then the following (k,s)-fractional integral
inequality holds:

fl@)+fB) (s+DIT(a+k) s o
' 2 B 4(b5+1 _1;54,-1)% [kaﬁF(b)'i'k/bF(a)}'

( [ Vst Pdt) (maxF @I G) . o

(strl aerl;
here L+ 1 =1
weep—|—q

Proof. The function |f’|7 is quasi-convex implies that for 7 € [0, 1], we have

|[f'(ta+ (1 —1)b)| < max{|f'(a)|*,|f'(b)|*}. 27

Using Lemma 1, Inequality (27), the Holder’s inequality and the properties of
modulus, we get

‘f(a)Jrf( ) <s+1>krk<a+k
2 4(bs+l_as+l

[ FEF( +z/b°‘F<a>]‘

b—a

= 4(bs+1 — as+1)%

N i
(b\+l_a8+1%</ |VO“ |pdt> </0 |f/(ta+(1_t)b)|th>

(bxﬂ_asﬂ ( / Vs ) |f’dt> (max{|f @717 )17} )"

Hence, the proofis complete. [

[ 1¥asl a1 )

REMARK 3. By setting s =0 in Theorem 9, we recover Theorem 4. For this case
Vo) =20b-a)f [(1-nf ],

THEOREM 10. Let f be differentiable on I° with a,b € I° such that f € Ly[a,b].
If |f'|9 is quasi-convex on |a,b] and q > 1, then the following (k,s)-fractional integral
inequality holds:

fl@)+£(b)  (s+D)iT(a+k)p .
2 B 4(bs+1_l;s+1)% [kfﬁF(b)"_kfh*F(a)}

9?1 +5R2+9?3+9?4 ,
Py (max{|7'(@)[",F B)I7})". (28)

<=
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Proof. Following a similar approach as in the proof of the above theorem, we have
[by using Lemmas 1 and 2 combined with the power mean inequality plus Inequality

@71

fla)+f() (s+1)ka(a+k)
2 4(bs+1 _as+1)

b—a
<m/ Vsl (ta+ (1~ 1)b)| di

[ FLF®) +i 78 F )

q

1
b—a K 1 ,
S A — / IV (1)t /O Vas(@)|If (ta+ (1 —1)b)|7dr

4(b5+1 — )T

b—a oot
v / q / q q
< a7 (@0 | Vel
%+%+%+%

4(b5+1 — st T <meﬂf%a”qu( ”q}>§

That gives the intended inequality. [

REMARK 4. Theorem 10 boils down to Theorem 5 by setting s = 0.

3. Conclusion

Four results of the Hermite—Hadamard type for quasi-convex functions have been
established. For s = 0, we get results obtained in [5]. More results can be derived by
making appropriate choice of the parameters o, k and s. For example, if we choose
k=1 and thereafter take limit s — — 17, then we obtain results involving the Hadamard
fractional integral operator [8].

Acknowledgement. Many thanks to the anonymous referee for his/her valuable
comments and suggestions.

REFERENCES

[1] P. AGARWAL, M. JLELI AND M. TOMAR, Certain Hermite—Hadamard type inequalities via general-
ized k-fractional integrals, J. inequal. and Appl. 2017 2017:55.

[2] S.S. DRAGOMIR AND C. E. M. PEARCE, Quasi-convex functions and Hadamard’s inequality, Bull.
Austral. Math. Soc. 57 (1998), 377-385.

[3] S.S. DRAGOMIR AND C. E. M. PEARCE, Selected Topics on Hermite—Hadamard Inequalities and
Applications, RGMIA Monograph, Victoria University, 2000.

[4] J. HADAMARD, Etude sur les propriétés des fonctions entiéres et en particulier d'une fonction con-
sidérée par Riemann, J. Math. Pures Appl. 9 (1893), 171-216.

[5] R. HUSSAIN, A. ALI, A. LATIF AND G. GULSHAN, Some k-fractional associates of Hermite—
Hadamard’s inequality for quasi-convex functions and applications to special means, Fractional Dif-
fer. Calc. 7 (2) (2017), 301-309.

[6] D. A. ION, Some estimates on the Hermite—Hadamard inequality through quasi-convex functions,
Annals of University of Craiova, Math. Sci. Ser. 34 (2007), 82-87.



336 E.R. NWAEZE

[7]1 M.JLELI, D. O. REGAN AND B. SAMET, On Hermite—Hadamard type inequalities via generalized
fractional integrals, Turk. J. Math. 40 (2016), 1221-1230.
[8] A. A. KILBAS, H. M. SRIVASTAVA AND J. J. TRUJILLO, Theory and Applications of Fractional
Differential Equations, Elsevier Amsterdam 2006.
[9] S. MUBEEN AND G. M. HABIBULLAH, k-fractional integrals and applicatons, Int. J. Contemp.
Math. Sciences 7 (2) (2012), 89-94
[10] E. R. NWAEZE AND D. F. M. TORRES, Novel results on Hermite-Hadamard kind inequalities for
1N -convex functions by means of (k,r)-fractional integral operators, arXiv: 1802.05619v1.
[11] M. Z. SARIKAYA, Z. DAHMANI, M. E. KIRIS AND F. AHMAD, (k,s) -Riemann—Liouville fractional
integral and applications, Hacet. J. Math. Stat. 45 (1) (2016), 77-89.
[12] E. SET, M. TOMAR, M. Z. SARIKAYA, On generalized Griiss type inequalities via k-Riemann—
Liouville fractional integral, Appl. Math. Comput. 269 (2015), 29-34.
[13] E. SET AND B. CELIK, Fractional Hermite—Hadamard type inequalities for Quasi-convex functions,
Ordu Univ. J. Sci. Tech. 6 (1) (2016), 137-149.
[14] M. TOMAR, S. MUBEEN AND J. CHOI, Certain inequalities associated with Hadamard k-fractional
integral operators, J. Inequal. Appl. 2016 2016:234.

(Received November 16, 2017) Eze R. Nwaeze
Department of Mathematics

Tuskegee University

Tuskegee, AL 36088, USA

e-mail: enwaeze@tuskegee.edu

Fractional Differential Calculus
www.ele-math.com
fdc@ele-math.com



