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Abstract. This paper deals with some existence results for two classes of coupled systems of
Hilfer and Hilfer-Hadamard random fractional integro-differential equations. The main tool used
to carry out our results is Itoh’s random fixed point theorem.

1. Introduction

Fractional differential equations have recently been applied in various areas of
engineering, mathematics, physics and bio-engineering, and other applied sciences [22,
36]. For some fundamental results in the theory of fractional calculus and fractional
differential equations we refer the reader to the monographs of Abbas et al. [2, 6, 7],
Ahmad et al. [8], Samko et al. [35], Kilbas et al. [28] and Zhou [42], the papers by
Abbas et al. [1, 3, 4, 5], and the references therein. Recently, considerable attention
has been given to the existence of solutions of initial and boundary value problems for
fractional differential equations with Hilfer fractional derivative; see [18, 19, 22, 26,
37, 39].

Coupled differential and integro-differential equations appear in mathematical mod-
eling of many biological phenomena and environmental issues. Lotka-Volterra mod-
els for competitive species are probably the most well-known examples of such cou-
pled equations [13, 21]. A particular case of the Lotka–Volterra model is the famous
predator-prey problem for two competing species. The Wilson-Cowan [40, 41] model
describes the dynamics of interactions between populations of very simple excitatory
and inhibitory model neurons. This model has been widely used in modeling neuronal
populations [24, 30]. For further details on the utility of coupled systems, see [25, 34].
In [16, 17], the authors studied the existence of asymptotically periodic solutions of
linear systems of Volterra difference equations. Recent results on coupled systems of
fractional differential equations can be found in [9, 10, 11].
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The nature of a dynamic system in engineering or natural sciences depends on the
information we have concerning the parameters that describe that system. If the knowl-
edge about a dynamic system is precise then a deterministic dynamical system arises.
Unfortunately in most cases the available data for the description and evaluation of pa-
rameters of a dynamic system are inaccurate, imprecise or confusing. In other words,
evaluation of parameters of a dynamical system is not without uncertainties. When our
knowledge about the parameters of a dynamic system are of statistical nature, that is,
the information is probabilistic, the common approach in mathematical modeling of
such systems is the use of random differential equations or stochastic differential equa-
tions. Random differential equations, as natural extensions of deterministic ones, arise
in many applications and have been investigated by many mathematicians. We refer the
reader to the monographs [12, 29, 38], and the papers [14, 15, 31].

In this paper we discuss the existence of solutions for the following coupled system
of random Hilfer fractional integro-differential equations⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(Dα1,β1
0 u1)(t,w) = f1(t,u1(t,w),u2(t,w),w)

+ 1
Γ(α1)

∫ t
0(t− s)α1−1g1(s,u1(s,w),u2(s,w),w)ds

(Dα2,β2
0 u2)(t,w) = f2(t,u1(t,w),u2(t,w),w)

+ 1
Γ(α2)

∫ t
0(t− s)α2−1g2(s,u1(s,w),u2(s,w),w)ds

; t ∈ I := [0,T ], w ∈ Ω, (1)

supplemented with the initial conditions:⎧⎪⎨
⎪⎩

(I1−γ1
0 u1)(0,w) = φ1(w)

(I1−γ2
0 u2)(0,w) = φ2(w)

; w ∈ Ω, (2)

where T > 0, αi ∈ (0,1) , βi ∈ [0,1] , γi = αi +βi−αiβi ; i = 1,2; (Ω,A ) is a measur-
able space, φi : Ω → R is a measurable function, fi,gi : I×R×R×Ω → R are given
functions, I1−γi

0 is the left-sided mixed Riemann–Liouville integral of order 1− γi, and

Dαi,βi
0 is the Hilfer fractional derivative of order αi and type βi. Next, we consider the

following coupled system of random Hilfer–Hadamard fractional integro-differential
equations⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(HDα1,β1
1 u1)(t,w) = f1(t,u1(t,w),u2(t,w),w)

+ 1
Γ(α1)

∫ t
1

(
ln t

s

)α1−1
g1(s,u1(s,w),u2(s,w),w) ds

s

(HDα2,β2
1 u2)(t,w) = f2(t,u1(t,w),u2(t,w),w)

+ 1
Γ(α2)

∫ t
1

(
ln t

s

)α2−1
g2(s,u1(s,w),u2(s,w),w) ds

s

; t ∈ [1,T ], w ∈ Ω, (3)

equipped with the initial conditions:⎧⎪⎨
⎪⎩

(HI1−γ1
1 u1)(1,w) = ψ1(w)

(HI1−γ2
1 u2)(1,w) = ψ2(w)

; w ∈ Ω, (4)
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where T > 1, αi ∈ (0,1) , βi ∈ [0,1] , γi = αi + βi −αiβi , ψi : Ω → R ; i = 1,2 is a
measurable function, fi,gi : [1,T ]×R×R×Ω → R are given function, HI1−γi

1 is the

left-sided mixed Hadamard integral of order 1−γi, and HDαi,βi
1 is the Hilfer–Hadamard

fractional derivative of order αi and type βi ; i = 1,2.

2. Preliminaries

Let C be the Banach space of all continuous functions u from I into R with the
supremum (uniform) norm

‖u‖∞ := sup
t∈I

|u(t)|.

As usual, AC(I) denotes the space of absolutely continuous functions from I into R.
We denote by AC1(I) the space defined by

AC1(I) := {u : I → R :
d
dt

u(t) ∈ AC(I)}.

By L1(I), we denote the space of Lebesgue-integrable functions u : I → R with the
norm

‖u‖1 =
∫ T

0
|u(t)|dt.

Let L∞(I) be the Banach space of measurable functions u : I →R which are essentially
bounded, equipped with the norm

‖u‖L∞ = inf{c > 0 : |u(t)| � c, a.e. t ∈ I}.

By Cγ (I) and C1
γ (I), we denote the weighted spaces of continuous functions defined

by
Cγ (I) = {u : (0,T ] → R : t1−γu(t) ∈C},

with the norm
‖u‖Cγ := sup

t∈I
|t1−γu(t)|,

and

C1
γ (I) = {u ∈C :

du
dt

∈Cγ},
with the norm

‖u‖C1
γ
:= ‖u‖∞ +‖u′‖Cγ .

Also, by C := Cγ1 ×Cγ2 we denote the product weighted space with the norm

‖(u,v)‖C = ‖u‖Cγ1
+‖v‖Cγ2

.

DEFINITION 2.1. A function T : Ω×R→R is called jointly measurable if T (·,u)
is measurable for all u ∈ R and T (w, ·) is continuous for all w ∈ Ω.
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DEFINITION 2.2. A function f : I×R×Ω → R is called random Carathéodory
if the following conditions are satisfied:

(i) The map (t,w) → f (t,u,w) is jointly measurable for all u ∈ R, and

(ii) The map u → f (t,u,w) is continuous for all t ∈ I and w ∈ Ω.

Let E be a Banach space and T : Ω×E → E be a mapping. Then T is called
a random operator if T (w,u) is measurable in w for all u ∈ E and it expressed as
T (w)u = T (w,u). In this case we also say that T (w) is a random operator on E. A
random operator T (w) on E is called continuous (resp. compact, totally bounded
and completely continuous) if T (w,u) is continuous (resp. compact, totally bounded
and completely continuous) in u for all w ∈ Ω. The details of completely continuous
random operators in Banach spaces and their properties appear in Itoh [23].

DEFINITION 2.3. Let P(Y ) be the family of all nonempty subsets of Y and C
be a mapping from Ω into P(Y ). A mapping T : {(w,y) : w ∈ Ω, y ∈C(w)} → Y is
called random operator with stochastic domain C if C is measurable (i.e., for all closed
A ⊂ Y , {w ∈ Ω,C(w)∩A �= /0} is measurable) and for all open D ⊂ Y and all y ∈ Y ,
{w ∈ Ω : y ∈ C(w),T (w,y) ∈ D} is measurable. T will be called continuous if every
T (w) is continuous. For a random operator T, a mapping y : Ω → Y is called random
(stochastic) fixed point of T if for almost all w ∈ Ω , y(w) ∈ C(w) and T (w)y(w) =
y(w) and for all open D ⊂ Y , {w ∈ Ω : y(w) ∈ D} is measurable.

Now, we give some results and properties of fractional calculus.

DEFINITION 2.4. [6, 28, 35] The left-sided mixed Riemann–Liouville integral of
order r > 0 of a function u ∈ L1(I) is defined by

(Ir
0u)(t) =

1
Γ(r)

∫ t

0
(t− s)r−1u(s)ds; for a.e. t ∈ I,

where Γ(·) is the (Euler’s) Gamma function defined by

Γ(ξ ) =
∫ ∞

0
tξ−1e−t dt; ξ > 0.

Notice that for all r,r1,r2 > 0 and each u ∈C, we have Ir
0u ∈C, and

(Ir1
0 Ir2

0 u)(t) = (Ir1+r2
0 u)(t); for a.e. t ∈ I.

DEFINITION 2.5. [6, 28, 35] The Riemann–Liouville fractional derivative of or-
der r ∈ (0,1] of a function u ∈ L1(I) is defined by

(Dr
0u)(t) =

(
d
dt

I1−r
0 u

)
(t)

=
1

Γ(1− r)
d
dt

∫ t

0
(t − s)−ru(s)ds; for a.e. t ∈ I.
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Let r ∈ (0,1] , γ ∈ [0,1) and u ∈C1−γ(I). Then the following expression leads to
the left inverse operator as follows.

(Dr
0I

r
0u)(t) = u(t); for all t ∈ (0,T ].

Moreover, if I1−r
0 u ∈C1

1−γ(I), then the following composition is proved in [35]

(Ir
0D

r
0u)(t) = u(t)− (I1−r

0 u)(0+)
Γ(r)

tr−1; for all t ∈ (0,T ].

DEFINITION 2.6. [6, 28, 35] The Caputo fractional derivative of order r ∈ (0,1]
of a function u ∈ L1(I) is defined by

(cDr
0u)(t) =

(
I1−r
0

d
dt

u

)
(t)

=
1

Γ(1− r)

∫ t

0
(t− s)−r d

ds
u(s)ds; for a.e. t ∈ I.

In [22], Hilfer studied applications of a generalized fractional operator having the
Riemann–Liouville and the Caputo derivatives as specific cases (see also [26, 37].

DEFINITION 2.7. (Hilfer derivative) Let α ∈ (0,1) , β ∈ [0,1] , u ∈ L1(I) ,
I(1−α)(1−β )
0 u ∈ AC(I). The Hilfer fractional derivative of order α and type β of w
is defined as

(Dα ,β
0 u)(t) =

(
Iβ (1−α)
0

d
dt

I(1−α)(1−β )
0 u

)
(t); for a.e. t ∈ I. (5)

SOME PROPERTIES. Let α ∈ (0,1) , β ∈ [0,1] , γ = α +β −αβ , and u ∈ L1(I).
(P1). The operator (Dα ,β

0 u)(t) can be written as

(Dα ,β
0 u)(t) =

(
Iβ (1−α)
0

d
dt

I1−γ
0 u

)
(t) =

(
Iβ (1−α)
0 Dγ

0u
)

(t); for a.e. t ∈ I.

Moreover, the parameter γ satisfies

γ ∈ (0,1], γ � α, γ > β , 1− γ < 1−β (1−α).

(P2). The generalization (5) for β = 0, coincides with the Riemann–Liouville
derivative and for β = 1 with the Caputo derivative.

Dα ,0
0 = Dα

0 , and Dα ,1
0 = cDα

0 .

(P3). If Dβ (1−α)
0 w exists and in L1(I), then

(Dα ,β
0 Iα

0 u)(t) = (Iβ (1−α)
0 Dβ (1−α)

0 u)(t); for a.e. t ∈ I.
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Furthermore, if u ∈Cγ(I) and I1−β (1−α)
0 u ∈C1

γ (I), then

(Dα ,β
0 Iα

0 u)(t) = u(t); for a.e. t ∈ I.

(P4). If Dγ
0u exists and in L1(I), then

(Iα
0 Dα ,β

0 u)(t) = (Iγ
0Dγ

0u)(t) = u(t)− I1−γ
0 (0+)

Γ(γ)
tγ−1; for a.e. t ∈ I.

LEMMA 2.8. Let h ∈Cγ (I). Then the Cauchy problem⎧⎪⎨
⎪⎩

(Dα ,β
0 u)(t) = h(t); t ∈ I,

(I1−γ
0 u)(t)|t=0 = φ ,

(6)

has a unique solution given by

u(t) =
φ

Γ(γ)
tγ−1 +(Iα

0 h)(t). (7)

Proof. Let u(·) be a solution of problem (6). Then, we have

(Iα
0 Dα ,β

0 u)(t) = (Iα
0 h)(t).

Thus, from the property (P4) we get

u(t)− I1−γ
0 (0+)

Γ(γ)
tγ−1 = (Iα

0 h)(t).

Hence, the solution u(·) is given by (7). �

We need the following Itoh’s random fixed point theorem.

THEOREM 2.9. [23] Let X be a non-empty, closed convex bounded subset of the
separable Banach space E and let N : Ω×X → X be a compact and continuous ran-
dom operator. Then the random equation N(w)u = u has a random solution.

3. Coupled systems of Hilfer fractional random integro-differential equations

In this section, we are concerned with the existence of solutions for the system (1).
Let us start by defining what we mean by a random solution of the system (1).

DEFINITION 3.1. By a random solution of the problem (1) we mean a coupled
measurable functions (u1,u2) : Ω→Cγ1 ×Cγ2 that satisfies the conditions (I1−γi

0 ui)(0+,w)
= φi(w) ; i = 1,2, and the equations (Dαi,βi

0 ui)(t,w) = fi(t,u1(t,w),u2(t,w),w) ; i =
1,2 on I×Ω.



COUPLED SYSTEMS OF FRACTIONAL RANDOM INTEGRO-DIFFERENTIAL EQUATIONS 7

The following hypotheses will be used in the sequel.

(H1) The functions fi,gi; i = 1,2 are random Carathéodory on I×R×R×Ω .

(H2) There exist measurable and bounded functions pi,qi : Ω→ L∞(I, [0,∞)) ; i = 1,2,
such that

| fi(t,u1,u2,w)|� pi(t,w)max{|u1|, |u2|}
1+ |u1|+ |u2| ; for a.e. t ∈ I, and each ui ∈R, w∈Ω,

and

|gi(t,u1,u2,w)|� qi(t,w)max{|u1|, |u2|}
1+ |u1|+ |u2| ; for a.e. t ∈ I, and each ui ∈R, w∈Ω.

Now, we shall prove the following theorem concerning the existence of random solu-
tions of the system (1).

THEOREM 3.2. Assume that the hypotheses (H1) and (H2) hold. Then the system
(1) has at least one random solution defined on I×Ω.

Proof. Define the operators Ni : Ω×Cγi →Cγi ; i = 1,2 by

(Ni(w)ui)(t) =
φi(w)
Γ(γi)

tγi−1 +
∫ t

0
(t − s)αi−1 fi(s,u1(s,w),u2(s,w),w)

Γ(αi)
ds

+
1

Γ2(αi)

∫ t

0

∫ s

0
(t−s)αi−1(s−y)αi−1gi(y,u1(y,w),u2(y,w),w)dyds, (8)

and consider the continuous operator N : Ω×C → C defined by

N(w)(u1,u2) = (N1(w)u1,N2(w)u2). (9)

Set
p∗i = sup

w∈Ω
‖pi(w)‖L∞ , q∗i = sup

w∈Ω
‖qi(w)‖L∞ , φ∗

i = sup
w∈Ω

|φi(w)|; i = 1,2.

For each i = 1,2, the map φi is measurable for all w ∈ Ω. Again, as the indefinite
integral is continuous on I, then Ni(w) defines a mapping Ni : Ω×Cγi → Cγi . Thus
(u1,u2) is a random solution for the system (1) if and only if (u1,u2) = N(w)(u1,u2).

Next, for any ui ∈Cγi ; i = 1,2, and each t ∈ I and w ∈ ω , we have

|t1−γi(Ni(w)ui)(t)|

� |φi(w)|
Γ(γi)

+
t1−γI

Γ(αi)

∫ t

0
(t − s)αi−1| fi(s,u1(s,w),u2(s,w),w)|ds

+
t1−γi

Γ2(αi)

∫ t

0

∫ s

0
(t− s)αi−1(s− y)αi−1|gi(y,u1(y,w),u2(y,w),w)|dyds
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� |φi(w)|
Γ(γi)

+
t1−γi

Γ(αi)

∫ t

0
(t − s)αi−1pi(s,w)ds

+
t1−γi

Γ2(αi)

∫ t

0

∫ s

0
(t− s)αi−1(s− y)αi−1qi(s,w)dyds

� φ∗
I

Γ(γi)
+

p∗i T 1−γi

Γ(αi)

∫ t

0
(t− s)αi−1ds+

q∗i T 1−γi

Γ2(αi)

∫ t

0

∫ s

0
(t − s)αi−1(s− y)αi−1)dyds

� φ∗
i

Γ(γi)
+

p∗i T 1−γi+αi

Γ(1+ αi)
+

q∗i T 1−γi+2αi

Γ2(1+ αi)
.

Thus

‖N(w)(u1,u2)‖C �
2

∑
i=1

φ∗
i

Γ(γi)
+

p∗i T
1−γi+αi

Γ(1+ αi)
+

q∗i T
1−γi+2αi

Γ2(1+ αi)
:= R. (10)

This proves that N(w) transforms the ball

BR := B(0,R) = {(u1,u2) ∈ C : ‖(u1,u2)‖C � R}
into itself. We shall show that the operator N : Ω×BR →BR satisfies all the assumptions
of Theorem 2.9. The proof will be given in several steps.

Step 1. N(w) is a random operator on Ω×BR into BR.
Since for each i = 1,2, fi(t,u1,u2,w) is random Carathéodory, the maps w →

fi(t,u1,u2,w) and w → gi(t,u1,u2,w) are measurable in view of Definition 2.1. Simi-
larly, the product (t−s)αi−1 fi(s,u1(s,w),u2(s,w),w) of a continuous and a measurable
function is again measurable. Further, the integral is a limit of a finite sum of measur-
able functions, therefore, the map

w 
→ φi(w)
Γ(γi)

tγi−1 +
∫ t

0

(t − s)αi−1

Γ(αi)
fi(s,u1(s,w),u2(s,w),w)ds

+
1

Γ2(αi)

∫ t

0

∫ s

0
(t − s)αi−1(s− y)αi−1gi(y,u1(y,w),u2(y,w),w)dyds

is measurable. As a result, N(w) is a random operator on Ω×BR into BR.
Step 2. N(w) is continuous.
Let {(u1n,u2n)}n∈N be a sequence such that (u1n,u2n)→ (u1,u2) in BR. Then, for

each i = 1,2, t ∈ I, and w ∈ Ω, we have

|t1−γi(Ni(w)uin)(t)− t1−γi(Ni(w)ui)(t)|

� t1−γi

Γ(αi)

∫ t

0
(t − s)αi−1| fi(s,u1n(s,w),u2n(s,w),w)− fi(s,u1(s,w),u2(s,w),w)|ds

+
1

Γ2(αi)

∫ t

0

∫ s

0
(t − s)αi−1(s− y)αi−1

×|gi(y,u1n(y,w),u2n(y,w),w)−gi(y,u1(y,w),u2(y,w),w)|dyds. (11)

Since (u1n,u2n) → (u1,u2) as n → ∞ and fi and gi are random Carathéodory, then by
the Lebesgue dominated convergence theorem, equation (11) implies

‖N(w)(u1n,u2n)−N(w)(u1,u2)‖C → 0 as n → ∞.
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Step 3. N(w)BR is uniformly bounded.
This is clear since N(w)BR ⊂ BR and BR is bounded.
Step 4. N(w)BR is equicontinuous.
Let t1, t2 ∈ I, t1 < t2 and let (u1,u2) ∈ BR. Then, for each i = 1,2, and w ∈ Ω,

we have

|t1−γi
2 (Ni(w)ui)(t2)− t1−γi

1 (Ni(w)ui)(t1)|
�

∣∣∣∣t1−γi
2

∫ t2

0
(t2 − s)αi−1 fi(s,u1(s,w),u2(s,w),w)

Γ(αi)
ds

−t1−γi
1

∫ t1

0
(t1 − s)αi−1 fi(s,u1(s,w),u2(s,w),w)

Γ(αi)
ds

+t1−γi
2

∫ t2

0

∫ s

0
(t2 − s)αi−1(s− y)αi−1 gi(s,u1(s,w),u2(s,w),w)

Γ2(αi)
dyds

−t1−γi
1

∫ t1

0

∫ s

0
(t1 − s)αi−1(s− y)αi−1 gi(s,u1(s,w),u2(s,w),w)

Γ2(αi)
dyds

∣∣∣∣
� t1−γi

2

∫ t2

t1
(t2− s)αi−1 | fi(s,u1(s,w),u2(s,w),w)|

Γ(αi)
ds

+
∫ t1

0
|t1−γi

2 (t2 − s)αi−1− t1−γi
1 (t1 − s)αi−1| | fi(s,u1(s,w),u2(s,w),w)|

Γ(αi)
ds

+t1−γi
2

∫ t2

t1

∫ s

0
(t2 − s)αi−1(s− y)αi−1 |gi(s,u1(s,w),u2(s,w),w)|

Γ2(αi)
dyds

+
∫ t1

0

∫ s

0
|t1−γi

2 (t2 − s)αi−1− t1−γi
1 (t1− s)αi−1|(s− y)αi−1

×|gi(s,u1(s,w),u2(s,w),w)|
Γ2(αi)

dyds.

Thus,

|t1−γi
2 (Ni(w)ui)(t2)− t1−γi

1 (Ni(w)ui)(t1)|
� t1−γi

2

∫ t2

t1
(t2 − s)αi−1 pi(s,w)

Γ(αi)
ds+

∫ t1

0
|t1−γi

2 (t2− s)αi−1− t1−γi
1 (t1 − s)αi−1| pi(s,w)

Γ(αi)
ds

+t1−γi
2

∫ t2

t1

∫ s

0
(t2− s)αi−1(s− y)αi−1 qi(s,w)

Γ2(αi)
dyds

+
∫ t1

0

∫ s

0
|t1−γi

2 (t2− s)αi−1− t1−γi
1 (t1 − s)αi−1|(s− y)αi−1 qi(s,w)

Γ2(αi)
dyds.

Hence, we get

|t1−γi
2 (Ni(w)ui)(t2)− t1−γi

1 (Ni(w)ui)(t1)|

�
(

p∗i +q∗i
Tαi−1

Γ(αi)

)[
T 1−γi+αi

Γ(1+ αi)
(t2 − t1)αi

+
1

Γ(αi)

∫ t1

0
|t1−γi

2 (t2− s)αi−1− t1−γi
1 (t1 − s)αi−1|ds

]
.
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As t1 −→ t2, the right-hand side of the above inequality tends to zero.
As a consequence of steps 1 to 4 together with the Arzelá-Ascoli theorem, we

can conclude that N : Ω×BR → BR is continuous and compact. From an application
of Theorem 2.9, we deduce that the operator equation N(w)(u1,u2) = (u1,u2) has a
random solution. This implies that the random system (1) has a random solution. �

4. Hilfer–Hadamard fractional random integro-differential equations

Now, we are concerned with some existence results for the coupled system (3).
Set C := C([1,T ]). Denote the weighted space of continuous functions defined by

Cγ,ln([1,T ]) = {w(t) : (ln t)1−γw(t) ∈C},

with the norm
‖w‖Cγ,ln := sup

t∈[1,T ]
|(ln t)1−rw(t)|.

By Cln := Cγ1,ln×Cγ2,ln we denote the product weighted space with the norm

‖(u,v)‖Cln = ‖u‖Cγ1,ln +‖v‖Cγ2,ln .

Let us recall some definitions and properties of Hadamard fractional integration and
differentiation. We refer to [28] for a more detailed analysis.

DEFINITION 4.1. [28] (Hadamard fractional integral) The Hadamard fractional
integral of order q > 0 for a function g ∈ L1([1,T ]), is defined as

(HIq
1g)(x) =

1
Γ(q)

∫ x

1

(
ln

x
s

)q−1 g(s)
s

ds,

provided the integral exists.

EXAMPLE 4.2. Let 0 < q < 1. Then

HIq
1 ln t =

1
Γ(2+q)

(ln t)1+q, for a.e. t ∈ [0,e].

Set

δ = x
d
dx

, q > 0, n = [q]+1,

and
ACn

δ := {u : [1,T ] → R : δ n−1[u(x)] ∈ AC(I)}.
Analogous to the Riemann–Liouville fractional calculus, the Hadamard fractional deriva-
tive is defined in terms of the Hadamard fractional integral in the following way:
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DEFINITION 4.3. [28] (Hadamard fractional derivative). The Hadamard frac-
tional derivative of order q > 0 applied to the function w ∈ ACn

δ is defined as

(HDq
1w)(x) = δ n(HIn−q

1 w)(x).

In particular, if q ∈ (0,1], then

(HDq
1w)(x) = δ (HI1−q

1 w)(x).

EXAMPLE 4.4. Let 0 < q < 1. Then

HDq
1 ln t =

1
Γ(2−q)

(ln t)1−q, for a.e. t ∈ [0,e].

It has been proved (see e.g. Kilbas [[27], Theorem 4.8]) that in the space L1(I,R),
the Hadamard fractional derivative is the left-inverse operator to the Hadamard frac-
tional integral, i.e.

(HDq
1)(

HIq
1w)(x) = w(x).

From Theorem 2.3 of [28], we have

(HIq
1 )(HDq

1w)(x) = w(x)− (HI1−q
1 w)(1)
Γ(q)

(lnx)q−1.

Analogous to the Hadamard fractional calculus, the Caputo–Hadamard fractional deriva-
tive is defined in the following way:

DEFINITION 4.5. (Caputo–Hadamard fractional derivative) The Caputo-Hada-
mard fractional derivative of order q > 0 applied to the function w ∈ ACn

δ is defined
as

(HcDq
1w)(x) = (HIn−q

1 δ nw)(x).

In particular, if q ∈ (0,1], then

(HcDq
1w)(x) = (HI1−q

1 δw)(x).

From the Hadamard fractional integral, the Hilfer–Hadamard fractional derivative (in-
troduced for the first time in [32]) is defined in the following way:

DEFINITION 4.6. (Hilfer–Hadamard fractional derivative) Let α ∈ (0,1), β ∈
[0,1], γ = α +β −αβ , w ∈ L1(I), and HI(1−α)(1−β )

1 w ∈ AC(I). The Hilfer–Hadamard
fractional derivative of order α and type β applied to the function w is defined as

(HDα ,β
1 w)(t) =

(
HIβ (1−α)

1 (HDγ
1w)

)
(t)

=
(

HIβ (1−α)
1 δ (HI1−γ

1 w)
)

(t); for a.e. t ∈ [1,T ].
(12)
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This new fractional derivative (4.6) may be viewed as interpolating the Hadamard
fractional derivative and the Caputo–Hadamard fractional derivative. Indeed for β =
0 this derivative reduces to the Hadamard fractional derivative and when β = 1, we
recover the Caputo–Hadamard fractional derivative.

HDα ,0
1 = HDα

1 , and HDα ,1
1 = HcDα

1 .

Now we give a similar existence result for the system (3). The following hypotheses
will be used in the sequel.

(H ′
1) The functions fi , gi ; i = 1,2 are random Carathéeodory on [1,T ]×R×R×Ω,

(H ′
2) There exist measurable and bounded functions pi,qi : Ω → L∞([1,T ], [0,∞)),

such that

| fi(t,u1,u2,w)|� pi(t,w)max{|u1|, |u2|}
1+ |u1|+ |u2| ; for a.e. t ∈ [1,T ], and each ui ∈R, w∈Ω.

and

|gi(t,u1,u2,w)|� qi(t,w)max{|u1|, |u2|}
1+ |u1|+ |u2| ; for a.e. t ∈ [1,T ], and each ui ∈R, w∈Ω.

THEOREM 4.7. Assume that the hypotheses (H ′
1) and (H ′

2) hold. Then the cou-
pled system (3) has at least one random solution defined on [1,T ]×Ω.

Proof. Define the operators Ni : Ω×Cγi,ln →Cγi,ln ; i = 1,2 by

(Ni(w)ui)(t) =
ψi(w)
Γ(γi)

(ln t)γi−1 +
∫ t

1

(
ln

t
s

)αi−1 fi(s,u1(s,w),u2(s,w),w)
sΓ(αi)

ds

+
1

Γ2(αi)

∫ t

1

∫ s

1

(
ln

t
s

)αi−1
(

ln
s
y

)αi−1 gi(y,u1(y,w),u2(y,w),w)
sy

dyds,

(13)

and consider the continuous operator N : Ω×Cln → Cln defined by

N(w)(u1,u2) = (N1(w)u1,N2(w)u2). (14)

Set

p∗i = sup
w∈Ω

‖pi(w)‖L∞ , q∗i = sup
w∈Ω

‖qi(w)‖L∞ , ψ∗
i = sup

w∈Ω
|ψi(w)|; i = 1,2.

For each i = 1,2, the map ψi is measurable for all w ∈ Ω. Again, as the indefinite inte-
gral is continuous on [1,T ], then Ni(w) defines a mapping Ni : Ω×Cγi,ln →Cγi ,ln. Thus
(u1,u2) is a random solution for the system (3) if and only if (u1,u2) = N(w)(u1,u2).

Next, for any ui ∈Cγi,ln; i = 1,2, and each t ∈ [1,T ] and w ∈ ω , we get

|(ln t)1−γi(Ni(w)ui)(t)| � ψ∗
i

Γ(γi)
+

p∗i (lnT )1−γi+αi

Γ(1+ αi)
+

q∗i (lnT )1−γi+2αi

Γ2(1+ αi)
.
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Thus

‖N(w)(u1,u2)‖Cln �
2

∑
i=1

ψ∗
i

Γ(γi)
+

p∗i (lnT )1−γi+αi

Γ(1+ αi)
+

q∗i (lnT )1−γi+2αi

Γ2(1+ αi)
:= R′. (15)

This proves that N(w) transforms the ball

B′
R := B′(0,R) = {(u1,u2) ∈ Cln : ‖(u1,u2)‖Cln � R′}

into itself. We shall show that the operator N : Ω×B′
R →B′

R satisfies all the assumptions
of Theorem 2.9. The proof will be given in four steps.

Step 1. N(w) is a random operator on Ω×B′
R into B′

R.

Since for each i = 1,2, fi(t,u1,u2,w) is random Carathéodory, the maps w →
fi(t,u1,u2,w) and w → gi(t,u1,u2,w) are measurable in view of Definition 2.1. Simi-

larly, the product
(
ln t

s

)αi−1
fi(s,u1(s,w),u2(s,w),w) of a continuous and a measurable

function is again measurable. Further, the integral is a limit of a finite sum of measur-
able functions, therefore, the map

w 
→ ψi(w)
Γ(γi)

(ln t)γi−1 +
∫ t

1

(
ln

t
s

)αi−1 fi(s,u1(s,w),u2(s,w),w)
sΓ(αi)

ds

+
1

Γ2(αi)

∫ t

1

∫ s

1

(
ln

t
s

)αi−1
(

ln
s
y

)αi−1 gi(y,u1(y,w),u2(y,w),w)
sy

dyds

is measurable. As a result, N(w) is a random operator on Ω×B′
R into B′

R.

Step 2. N(w) is continuous.
Let {(u1n,u2n)}n∈N be a sequence such that (u1n,u2n)→ (u1,u2) in B′

R. Then, for
each i = 1,2, t ∈ I, and w ∈ Ω, we have

|(ln t)1−γi(Ni(w)uin)(t)− (lnt)1−γi(Ni(w)ui)(t)|

� (ln t)1−γi

Γ(αi)

∫ t

1

(
ln

t
s

)αi−1
| fi(s,u1n(s,w),u2n(s,w),w)− fi(s,u1(s,w),u2(s,w),w)|ds

+
1

Γ2(αi)

∫ t

1

∫ s

1

(
ln

t
s

)αi−1
(

ln
s
y

)αi−1

×|gi(y,u1n(y,w),u2n(y,w),w)−gi(y,u1(y,w),u2(y,w),w)|dyds. (16)

Since (u1n,u2n) → (u1,u2) as n → ∞ and fi and gi are random Carathéodory, then by
the Lebesgue dominated convergence theorem, equation (16) implies

‖N(w)(u1n,u2n)−N(w)(u1,u2)‖Cln → 0 as n → ∞.

Step 3. N(w)B′
R is uniformly bounded.

This is clear since N(w)B′
R ⊂ B′

R and B′
R is bounded.
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Step 4. N(w)B′
R is equicontinuous.

Let t1, t2 ∈ I, t1 < t2 and let (u1,u2) ∈ B′
R. Then, for each i = 1,2, and w ∈ Ω,

we get

|(ln t2)1−γi(Ni(w)ui)(t2)− (lnt1)1−γi(Ni(w)ui)(t1)|

�
(

p∗i +q∗i
(lnT )αi−1

Γ(αi)

)[
(lnT )1−γi+αi

Γ(1+ αi)

(
ln

t1
t2

)αi

+
1

Γ(αi)

∫ t1

1
|(ln t2)1−γi

(
ln

t2
s

)αi−1
− (lnt1)1−γi

(
ln

t1
s

)αi−1
|ds

]
.

As t1 −→ t2, the right-hand side of the above inequality tends to zero.
As a consequence of the above steps, from the Arzelá-Ascoli theorem, we can

conclude that N : Ω×B′
R → B′

R is continuous and compact. From an application of
Theorem 2.9, we deduce that the operator equation N(w)(u1,u2) = (u1,u2) has a ran-
dom solution which is a random solution for the random system (3). �

5. An example

Let

E = l1 =

{
w = (w1, w2, . . . , wn, . . .) :

∞

∑
n=1

|wn| < ∞

}
,

be the Banach space with norm ‖w‖E = ∑∞
n=1 |wn| , Ω = (−∞,0) be equipped with

the usual σ -algebra consisting of Lebesgue measurable subsets of (−∞,0). As an ap-
plication of our results we consider the following system of Hilfer random fractional
integro-differential equations of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(D
1
3 , 1

2
0 u)(t,w) = f1(t,u(t,w),v(t,w),w)

+ 1
Γ( 1

3 )

∫ t
0(t− s)−

2
3 g1(s,u(s,w),v(s,w),w)ds; t ∈ [0,1],

(D
1
4 , 1

6
0 v)(t,w) = f2(t,u(t,w),v(t,w),w)

+ 1
Γ( 1

4 )

∫ t
0(t− s)−

3
4 g2(s,u(s,w),v(s,w),w)ds; t ∈ [0,1],

(I
1
3
0 u)(t,w)|t=0 = (I

5
8
0 v)(t,w)|t=0 = 1+w2,

; w ∈ Ω, (17)

where ⎧⎪⎨
⎪⎩

f1(t,u,v,w) =
t
−1
4 |u|sin t

(1+w2 +
√

t)(1+ |u|+ |v|); t ∈ (0,1] u,v ∈ R,

f1(0,u,v) = 0; u,v ∈ R,

g1(t,u,v,w) =
t

1
4 |v|

1+w2 + |u|+ |v|; t ∈ [0,1] u,v ∈ R,
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⎧⎪⎨
⎪⎩

f2(t,u,v,w) =
t
−1
4 |v|(1+ t ln t)

(1+
√

t)+ (1+w2 + |u|+ |v|) ; t ∈ (0,1] u,v ∈ R,

f2(0,u,v) = 0; u,v ∈ R,

and

g2(t,u,v,w) =
t

1
4 |v|

1+w2 + |v| ; t ∈ [0,1] u,v ∈ R.

Clearly, the functions fi and gi; i = 1,2 are random Carathéodory.
The hypothesis (H2) is satisfied with⎧⎪⎨

⎪⎩
p1(t,w) =

t
−1
4 |sin t|

1+w2 +
√

t
; t ∈ (0,1],

p1(0) = 0.

⎧⎪⎨
⎪⎩

p2(t,w) =
t
−1
4 |1+ t ln t|
1+

√
t

; t ∈ (0,1],

p2(0) = 0.

and q1(t,w) = q2(t) = t
1
4 ; t ∈ (0,1], Hence, Theorem 3.2 implies that the coupled

system (17) has at least one solution defined on [0,1].
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