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Abstract. In this article we investigate the controllability problem of linear and nonlinear frac-
tional integrodifferential systems. We justify the controllability concepts on a fractional inte-
grodifferential linear system, and use results, as well as Schauder’s fixed point theorem, to obtain
the controllability of the corresponding nonlinear system. Some applications are introduced to
explain the theoretic parts.

1. Introduction

Controllability problem has attracted a lot of mathematicians and engineers atten-
tion since it plays a great role in control theory and engineering and has very important
applications in these fields. Therefore, the contributions on exact and approximate
controllability have been appeared in the recent years (see [6], [7] and the references
therein).

However, by the recent developments on the theory of fractional differential equa-
tions, the controllability has new trends in studying the fractional control systems as
more accurate models than the corresponding classical systems. These new models,
motivate the researchers to investigate the controllability problems of such linear con-
trol systems (see [1], [3], [4], [9] and references therein).

On the other hand, these researches open the gate of nonlinear investigations of
controllability problem for some fractional control systems (see [8], [11], [13], [14],
[16]). The existence of solution for nonlinear fractional system is the main tool to solve
the problem, hence, the researchers used fixed point theorems for solving controllability
problems [10].

The kernel of classical controllability operator eAt is uniformly convergent and
possess the semigroup property whereas in the correspond fractional system (tα−1

Eα ,α(Atα) , 0 < α < 1) is singular at t = 0, and does not satisfy the semigroup prop-
erty. This causes some difficulties to generalize the theory to all fractional systems,
hence many constrains and restrictions must be imposed to guarantee the solvability of
these problems. One of these problems is due to the term tα−1, therefore if one avoids
it in the kernel of controllability operator, then the problem will be easier. For instance,
the author in [16], used a fractional integrator I1−α

0 in the control and nonlinear terms
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of the given fractional system in order to avoid any such problems. Therefore, by us-
ing the analytic resolvent method and the continuity of a resolvent, the approximate
controllability problem has been solved.

Motivated by the cited works, we investigate the controllability of the fractional
system {

CDα
0 x(t) = Ax(t)+ I1−α

0 Bu(t)+ f (t,x(t) ,u(t)) , t ∈ J = (0,T ],

x(0) = x0,
(1)

where 0 < α < 1, x(t) ∈ Rn , and u(t) ∈ Rm, for t ∈ J, are vector-valued functions,
A ∈ M(n,n) and B ∈ M(n,m) are respectively n× n and n×m matrices, and f : J ×
Rn ×Rm → Rn is a given function. We prove that this system is controllable using
Schauder’s fixed point theorem.

2. Preliminaries

Some facts and preliminaries about fractional calculus are recalled in this section
(for more details see [2], and [5]).

DEFINITION 1. The Riemann-Liouville (left-sided) fractional integral of a con-
tinuous real valued function f is defined by

Iα
0 f (t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, t ∈ J, n−1 < α � n.

The inverse operator of the Riemann-Liouville integral of a function may be de-
fined in the Caputo sense as in the next definition.

DEFINITION 2. The Caputo derivative of f : J → R is defined as

CDα
0 f (t) =

⎧⎨⎩ 1
Γ(n−α)

∫ t
0

f (n)(s)
(t−s)α+1−n ds, n−1 < α < n,

dn

dtn f (t) , α = n ∈ N.

The two parameter Mittag-Leffler function is defined as

Eα ,β (z) =
∞

∑
k=0

zk

Γ(kα + β )
, α,β > 0, z ∈ C.

We notice that Eα ,1 = Eα is the one parameter Mittag-Leffler function. If A is an
n×n -matrix, we infer to use in the sequel the following notation

Eα ,β (Atα) =
∞

∑
k=0

Aktkα

Γ(kα + β )
.

We introduce next some basic facts about Laplace transform which is an effective tool
in control theory.
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The Laplace transform of a real function f defined for all real numbers t � 0, is
given by

L ( f ) (λ ) =
∫ ∞

0
e−λ t f (t)dt, λ ∈ C.

The Laplace transform of the fractional integral and Caputo derivative are given
by ⎧⎨⎩L

{
CD

α
t0 f (t)

}
(λ ) = λ αF (λ )−∑n−1

k=0 f (k) (0)λ α−1−k,

L
{
I1−α
0 f (t)

}
(λ ) = λ α−1F (λ ) .

(2)

Moreover, if Reλ > ‖A‖ 1
α , the inverse Laplace transform of the resolvent operator

in terms of Mittag-Leffler function is given by⎧⎨⎩ L −1
{

λ α−1(λ α I−A)−1
}

(t) = Eα (Atα) ,

L −1
{
(λ α I−A)−1

}
(t) = tα−1Eα ,α (Atα) .

(3)

3. Controllability of linear systems

We establish in this section some relevant characteristics of the linear fractional
control system {

CDα
0 x(t) = Ax(t)+ I1−α

0 Bu(t)+ f (t) , t ∈ J,

x(0) = x0,
(4)

that may needed next in the sequel. Here x∈Rn , u∈Rm , and f ∈Rn are all continuous
vector-valued functions (or in L1(0,T )). Moreover, we assume that A ∈ M(n,n) , and
B ∈ M(n,m). The first result is to obtain the integral solution of the linear system (4)

by using Laplace transformation technique. Hereafter, we assume that Reλ > ‖A‖ 1
α .

LEMMA 1. The solution of the differential equation( 4) is given by

x(t) = Eα (Atα)x0 +
∫ t

0
Eα

(
A(t − s)α)

Bu(s)ds (5)

+
∫ t

0
(t− s)α−1 Eα ,α

(
A(t − s)α)

f (s)ds.

Proof. Applying the Laplace transform to (5), we have

L
{CDα

0 x(t)
}

= L {Ax(t)}+L
{
I1−α
0 Bu(t)

}
+L { f (t)} ,

which implies, by (2), that

λ αX (λ )−λ α−1x(0) = AX (λ )+ λ α−1BU (λ )+F (λ ) ,
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where L {u(t)} = U (λ ) , and L { f (t)} = F(λ ) . Therefore

X (λ ) = λ α−1(λ α I−A)−1x0+λ α−1 (λ α I−A)
−1

BU (λ )+(λ αI−A)−1F (λ ) .

Applying the property (3), we have the result. �
The Mittag-Leffler matrix Eα ∈M(n,n) , hence we define the controllability oper-

ator Ct : Rm → Rn by

Ct u =
t∫

0

Eα((t− s)α A)Bu(s)ds. (6)

Then, Ct is bounded for any t ∈ J, and u∈ Rm. The adjoint operator C ∗
T : Rn → Rm of

CT is given by
C ∗

T = B∗Eα((T −·)α A∗),

where B∗, A∗ are the transposes of B , and A respectively. The controllability Gram-
nian W = CTC ∗

T is given by

W =
∫ T

0
Eα(A(T − t)α)BB∗Eα(A∗(T − t)α)dt.

DEFINITION 3. The system (4) is said to be (complete or exact) controllable in J
if given any state y ∈ Rn , there exists a control function u ∈ Rm such that x(T ;u) = y.

In accordance with equation (5), we have

CT u = x(T ;u)−Eα (ATα)x0−
∫ T

0
(T − s)α−1 Eα ,α(A(T − s)α)) f (s)ds.

The right term always transmits the state x(T ;u) ∈ Rn to another state in Rn by sub-
tracting the constant vector function

Eα (AT α)x0 +
∫ T

0
(T − s)α−1 Eα ,α(A(T − s)α)) f (s)ds.

Hence, the problem is devoting on the surjectivity of the operator CT , i.e. ImCT =
Rn. Therefore, many equivalence statements can be established for the controllability
criteria

In fact, the complete controllability is the strongest definition of controllability
that may not be satisfied in many applications, hence, some other weaker definition of
controllability is required. For instance, the closure of the image of CT is the whole
state space Rn, symbolically, ImCT = Rn . This is called the approximate controllabil-
ity of the system (for more details see [6]). The following result is a consequence of
this definition.

If every non-zero state x0 ∈Rn can be steered to the null state 0∈Rn by a steering
control then the system is said to be null controllable. The next result will be established
by posing the existence of Mittag-Leffler inverse function E−1

α [12]. One can assume
that zero is not an eigenvalue of the matrix Eα (ATα) .
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THEOREM 1. If E−1
α exists then, the linear system (4) is completely controllable

if and only if it is null controllable.

Proof. It is obvious that complete controllability implies null controllability. We
now show that null controllability implies complete controllability. Suppose that the
system is null-controllable and let x1 = x0−E−1

α (ATα)y . Thus there exists a control u
such that

0 = Eα (ATα)x1 +
∫ T

0
Eα

(
A(T − s)α)

Bu(s)ds

+
∫ T

0
(T − s)α−1Eα ,α(A(T − s)α)) f (s)ds

= Eα (ATα)
(
x0 −E−1

α (ATα)y
)
+

∫ T

0
Eα

(
A(T − s)α)

Bu(s)ds

+
∫ T

0
(T − s)α−1Eα ,α(A(T − s)α)) f (s)ds.

Then

y = Eα (ATα)x0 +
∫ T

0
(T − s)α−1Eα ,α

(
A(T − s)α)

Bu(s)ds

+
∫ T

0
Eα(A(T − s)α)) f (s)ds

= x(T ).

Hence, the completely controllability of the system (4) is satisfied. This finishes the
proof. �

PROPOSITION 1. Assume that θ > 0, then

〈W z,z〉 = ‖C ∗
T z‖2 =

∫ T

0

∥∥B∗Eα(A∗(T − t)α)z
∥∥2

dt � θ ‖z‖2 > 0, z �= 0, (7)

if and only if all eigenvalues of W are positive.

Proof. The condition (7) implies that W is coercive, that leads to the positivity of
W . Again, (7) and Cauchy-Schwartz inequality imply that

‖W z‖‖z‖ � 〈W z,z〉 � θ ‖z‖2 ,

hence ‖W z‖ � θ ‖z‖ , that is kerW = {0} is injective and then it is nonsingular linear
operator on Rn . Let W −1 be an inverse of the operator W , then it is obvious that W −1

is bounded on its image subspace. Then ImW is equivalent to domain of W −1 = Rn

which implies that ImCT ⊇ ImW = Rn . Using (7) again, we deduce the same properties
for the operator C ∗

T . If the fractional system (4) is controllable on J , and W is not
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positive definite. There exists a nonzero vector function z ∈ Rn such that z∗W z = 0
and satisfies ∫ T

0
z∗Eα(A(T − t)α)BB∗Eα(A∗(T − t)α)zdt = 0.

We deduce that
z∗Eα(A(T − s)α)B = 0.

The controllability of the system (4) implies that there exists a nonzero control u such
that

0 = z+
∫ T

0
Eα

(
A(T − s)α)

Bu(s)ds,

which implies that

0 = z∗z+
∫ T

0
z∗Eα

(
A(T − s)α)

Bu(s)ds.

Then z∗z = 0 that implies z = 0. This contradicts the assumption z �= 0. Thus W
is positive definite. The positive definiteness of W implies that all eigenvalues of W
are positive which exclude the zero eigenvalue. Hence, (7) is valid for any θ > 0. �

It may be happened that many controls steers the system from initial state to final
state at time T , but one of them is more efficient than others. The optimal control u
that has minimum energy functional ‖u‖2 =

∫ T
0 ‖u(s)‖2 ds is one of the most popular

approach.

LEMMA 2. Let W be nonsingular, then the control ũ ∈ Rm defined by

ũ(t) = B∗Eα
(
A∗(T − t)α)

×W −1
(

y−Eα (ATα)x0 −
∫ T

0
(T − s)α−1Eα ,α(A(T − s)α)) f (s)ds

)
, (8)

for t ∈ J, is optimal and steers the system (4) from initial state x0 to final state y at
time T.

Proof. Let u ∈ Rm be any control function that steers the system from initial state
x0 to final state y at time T . Then

‖u‖2 = ‖ũ‖2 +‖u− ũ‖2+2Re〈ũ,u− ũ〉 .
In virtue of (8), we have

〈ũ,u− ũ〉
=

∫ T

0
〈ũ(t),u(t)− ũ(t)〉dt

=
〈

W −1
(

y−Eα (ATα)x0 −
∫ T

0
(T − t)α−1Eα ,α(A(T − t)α)) f (t)dt

)
,∫ T

0
Eα

(
A(T − t)α)

B [u(t)− ũ(t)]dt

〉
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=
〈

W −1
(

y−Eα (ATα)x0−
∫ T

0
(T−t)α−1Eα ,α(A(T−t)α)) f (t)dt

)
,CT [u(t)−ũ(t)]

〉
.

Since both of u , and ũ are steering the state x0 to y at time T , then CT [u(t)− ũ(t)] = 0.
Hence

‖u‖2 −‖ũ‖2 = ‖u− ũ‖2 � 0,

which shows that the norm of ũ is less than or equal the norm of any other control u.
It remains to show that ũ steers the state x0 to y at time T. For this, we have

x(T ) = Eα (AT α)x0 +
∫ T

0
Eα

(
A(T − t)α)

BB∗Eα
(
A∗(T − t)α)

×W −1
(

y−Eα (ATα)x0−
∫ T

0
(T − s)α−1Eα ,α(A(T − s)α)) f (s)ds

)
dt

+
∫ T

0
(T − s)α−1Eα ,α(A(T − s)α)) f (s)ds

= Eα (AT α)x0 +W W −1

×
(

y−Eα (AT α)x0−
∫ T

0
(T − s)α−1Eα ,α(A(T − s)α)) f (s)ds

)
+

∫ T

0
(T − s)α−1Eα ,α(A(T − s)α)) f (s)ds

= y.

This finishes the proof. �

The above arguments can be used to prove many tools for obtaining the complete
and approximate controllability of the system (4), we mention only the following basic
result.

THEOREM 2. The system (4) is controllable if any only if W (or C ∗
T ) satisfies

any one of the following:

1. W is coercive;

2. W is positive definite;

3. W is nonsingular;

4. ImW = R
n, and kerW = {0}.

The rank condition is an effective tool to determine whether the system is control-
lable. The rank condition is given by

rank
[
B|AB| . . . |An−1B

]
= n, (9)

where An = 0.
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THEOREM 3. The linear system (4) is controllable if and only if the rank condition
(9) is hold.

Proof. The solution of the system (4) satisfies the equation

CT u = x(T ;u)−Eα (AT α)x0−
∫ T

0
(T − s)α−1 Eα ,α(A(T − s)α)) f (s) ∈ R

n, (10)

at time T, where

CT u =
∫ T

0
Eα

(
A(T − s)α)

Bu(s)ds.

If An = 0, then the Mittag-Leffler function is reduced as

Eα
(
A(T − s)α)

=
n−1

∑
k=0

(T − s)αkAk

Γ(kα +1)
.

Therefore

CT u =
∫ T

0

n−1

∑
k−0

(T − s)αk

Γ(kα +1)
AkBu(s)ds

=
n−1

∑
k=0

AkB

(
1

Γ(kα +1)

∫ T

0
(T − s)αku(s)ds

)

=
n−1

∑
k=0

AkBvα
k .

where vα
k = Ikα+1

0 u(T ) ∈ Rm. Symbolically, we have

CT u =
[
B AB . . .An−1B

]
⎡⎢⎢⎢⎣

vα
0

vα
1
...

vα
n−1

⎤⎥⎥⎥⎦ .

Therefore, equation (10) has a unique solution vα
k if and only if the condition (9) is

hold that implies det
[
B AB . . .An−1B

] �= 0. Hence, it would always be possible to find
at least one function u ∈ R

m to ensure the existence of the vectors vα
k . �

4. Controllability of nonlinear systems

Consider the nonlinear fractional control system (1). Using Lemma 1, we can
write the integral solution of (1) as

x(t) = Eα (Atα)x0 +
∫ t

0
Eα

(
A(t− s)α)

Bu(s)ds

+
∫ t

0
(t− s)α−1Eα ,α(A(t− s)α)) f (s,x(s) ,u(s))ds. (11)
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The analogous optimal control for non linear system of the corresponding control (8) is
given by

u(t) = B∗Eα
(
A∗(T − t)α)

W −1 (12)

×
[
y−Eα (AT α)x0−

∫ T

0
(T − s)α−1Eα ,α

(
A(T − s)α)

f (s,x(s) ,u(s))ds

]
,

provided that the linear system is controllable. Let Q be the Banach space of all con-
tinuous Rn ×Rm -valued functions defined on the interval J equipped with be norm
‖(x,u)‖ = sup{‖x‖ ,‖u‖} , where ‖x‖ = sup{‖x(t)‖ , t ∈ J} and ‖u‖ = sup{‖u(t)‖ ,
t ∈ J} , that is, Q = C(J,Rn)×C(J,Rm) where C(J,Rn) is the Banach space of contin-
uous Rn -valued function defined on the interval J with the supremum norm. The norm

of a vector function x(t) = [x1(t) x2(t) · · ·xn(t)]∗ ∈Rn is defined as ‖x(t)‖=
n
∑
i=1

|xi(t)| ,
t ∈ J . For our convenience, let us introduce the following notations:

a1 = supt∈J

∥∥Eα(A(T − t)α∥∥,
a2 = supt∈J ‖Eα(Atα)x0‖,
a3 = supt∈J

∥∥Eα ,α(A(T − t)α∥∥ ,

γi =
a1a3T

α

α ‖μi‖‖B∗‖∥∥W −1
∥∥ , where μi : J→R is L1 -function for i = 1,2, . . . , n .

bi = 2a3
Tα

α ‖μi‖ ,

d1 = a1 ‖B∗‖∥∥W −1
∥∥{‖y‖+a2} ,

d2 = 2a2,
ci = max{γi,bi} , and
d = max{d1,d2} .

THEOREM 4. Let f : J×R
n×R

m → R
n be given by

f (t,x,u) = [μ1 (t)ϕ1 (x,u) μ2 (t)ϕ2 (x,u) · · ·μn (t)ϕn (x,u)]∗

where ϕi : Rn ×Rm → R is measurable functions for i = 1,2, . . . , n. Suppose that the
linear system (4) is controllable. Then the nonlinear system (1) is controllable on J if
2a1T ‖B‖ � 1, and

lim
r→∞

(
r−

n

∑
i=1

ci sup{|ϕi (x,u)| : ‖(x,u)‖ � r}
)

= +∞. (13)

Proof. Define the operator ρ : Q → Q by

ρ (z,v) = (x,u) ,

where x and u are given by (11) and (12) respectively. By Lebesgue dominated con-
vergence theorem, it is obvious that ρ is continuous on Q. Let

ωi (r) = sup{|ϕi (x,u)| ;‖(x,u)‖ = r} , i = 1,2, . . . ,n,
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then by using the given condition (13), for any constant d > 0 there exists r0 > 0 such
that r0 −∑n

i=1 ciωi(r0) � d which implies that ∑n
i=1 ciωi (r0)+d � r0. Let ‖z‖ � r0

and ‖v‖ � r0, then by (11) and (12), we have

‖u(t)‖
� ‖B∗‖∥∥Eα

(
A∗(T − t)α)∥∥∥∥W −1

∥∥
×

(
‖y‖+‖Eα (ATα)x0‖+

∫ T

0
(T−t)α−1 ∥∥Eα ,α

(
A(T−s)α)∥∥‖ f (s,z(s) ,v(s))‖ds

)
� a1 ‖B∗‖∥∥W −1

∥∥{‖y‖+a2}+
a1a3T α

α
‖B∗‖∥∥W −1

∥∥ n

∑
i=1

‖μi‖|ϕi(z,v)|

� d1 +
a1a3T α

α
‖B∗‖∥∥W −1

∥∥ n

∑
i=1

‖μi‖ωi (r0)

= d1 +
n

∑
i=1

γiωi (r0)

� d +
n

∑
i=1

ciωi (r0).

On the other hand,

‖x(t)‖ � ‖Eα (Atα)x0‖+
∫ t

0

∥∥Eα
(
A(t− s)α)∥∥‖B‖‖v(s)‖ds

+
∫ t

0
(t− s)α−1∥∥Eα ,α(A(t− s)α)

∥∥‖ f (s,z(s) ,v(s))‖ds

� a2 +a1‖B‖r0

∫ t

0
ds+a3

n

∑
i=1

‖μi‖ωi (r0)
∫ t

0
(t− s)α−1ds

� 1
2

(
d2 +

n

∑
i=1

ciωi (r0)

)
+Ta1‖B‖r0

� 1
2

(
d2 +

n

∑
i=1

ciωi (r0)

)
+

1
2
r0.

Therefore ‖u‖ � r0 , and ‖x‖ � r0 . Thus we have proved that, if

Q(r0)={(z,v) ∈ Q : ‖z‖ � r0 and ‖v‖ � r0} ,

then ρ maps Q(r0) into itself and clearly Q(r0) is closed and bounded.
Next, we prove ρ(Q(r)) is equicontinuous for all r > 0. Let t1,t2 ∈ J with t1 < t2

and for all (x,u) ∈ Q(r) , we have

‖u(t1)−u(t2)‖
=

∥∥(
B∗Eα

(
A∗(T − t1)

α)−B∗Eα
(
A∗(T − t2)

α))
×W −1

[
y−Eα (AT α)x0 −

∫ T

0
Eα

(
A(T − s)α)

f (s,z(s) ,v(s))ds

]∥∥∥∥
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� ‖B∗‖
∞

∑
k=0

‖A∗‖k ∣∣(T − t1)kα − (T − t2)kα
∣∣

Γ(kα +1)

∥∥W −1
∥∥

×
(
‖y‖+‖Eα (ATα)x0‖+

∫ T

0
(T−s)α−1 ∥∥Eα ,α

(
A(T−s)α)∥∥‖ f (s,z(s) ,v(s))‖ds

)
�

∞

∑
k=0

‖A∗‖k ∣∣(T − t1)kα − (T − t2)kα
∣∣

Γ(kα +1)

(
‖y‖+a2 +a3T

α
n

∑
i=1

ciωi (r)

)
‖B∗‖∥∥W −1

∥∥ .

On the other hand, we have

‖x(t1)− x(t2)‖
=

∥∥∥∥Eα (Atα
1 )x0 +

∫ t1

0
Eα

(
A(t1 − s)α)

Bv(s)ds

+
∫ t1

0
(t1− s)α−1Eα ,α(A(t1 − s)α) f (s,z(s) ,v(s))ds−Eα (Atα

2 )x0

−
∫ t2

0
Eα

(
A(t2−s)α)

Bv(s)ds−
∫ t2

0
(t2−s)α−1Eα ,α(A(t2−s)α) f (s,z(s) ,v(s))ds

∥∥∥∥
� ‖x0‖

∞

∑
k=0

‖A‖k ∣∣(T − t1)kα − (T − t2)kα ∣∣
Γ(kα +1)

+r‖B‖
∞

∑
k=0

‖A‖k

Γ(kα +1)

∣∣∣∣∫ t1

0

(
(t1− s)kα−(t2− s)kα

)
ds

∣∣∣∣
+

∞

∑
k=0

n

∑
i=1

ciωi (r)‖A‖k

Γ(kα + α)

∣∣∣∣∫ t1

0

(
(t1− s)kα+α−1− (t2− s)kα+α−1

)
ds

∣∣∣∣
+r‖B‖

∞

∑
k=0

‖A‖k

Γ(kα +1)

∣∣∣∣∫ t2

t1
(t2 − s)kαds

∣∣∣∣
+

∞

∑
k=0

n

∑
i=1

ciωi (r)‖A‖k

Γ(kα + α)

∣∣∣∣∫ t2

t1
(t2 − s)kα+α−1ds

∣∣∣∣
� ‖x0‖

∞

∑
k=0

‖A‖k ∣∣(T − t1)kα − (T − t2)kα ∣∣
Γ(kα +1)

+r‖B‖
∞

∑
k=0

‖A‖k

Γ(kα +2)

(∣∣∣tkα+1
1 − tkα+1

2

∣∣∣+(t2− t1)
kα+1

)
+

∞

∑
k=0

n

∑
i=1

ciωi (r)‖A‖k

Γ(kα + α +1)

(∣∣∣tkα+α
1 − tkα+α

2

∣∣∣+(t2− t1)
kα+α

)
+r‖B‖

∞

∑
k=0

‖A‖k

Γ(kα +2)
(t2− t1)

kα+1 +
∞

∑
k=0

n

∑
i=1

ciωi (r)‖A‖k

Γ(kα + α +1)
(t2− t1)

kα+α .

Thus the right-hand side of the above two inequalities is independent of (x,u) ∈ Q(r)
and tends to zero as |t1 − t2| → 0, hence ρ (Q(r)) is equicontinuous for all finite r > 0
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so ρ is compact by Arzela-Ascoli Theorem and by regularity assumption on f the op-
erator ρ is completely continuous. Now the Schauder fixed point Theorem guarantees
that ρ has a fixed point (z,v) ∈ Q(r0) such that ρ (z,v) = (z,v) . Thus, indeed the
solution of the system (1) is x(t) that given by (11) and as the proof of Lemma 2, it is
easy to verify that x(T ) = y, hence the system (1) is controllable on J . This finishes
the proof. �

5. Applications

We introduce in this section a couple of examples to illustrate the applicability of
the obtained results.

EXAMPLE 1. Consider the following nonlinear fractional dynamical system rep-
resented by the scalar fractional differential equation:⎧⎨⎩CD

1
2
0 x(t) = x(t)+ I1−α

0 u(t)+ tu(t)sinx(t), t ∈ [0,1] ,

x(0) = 0,
(14)

where A = B = 1,α = 1
2 , and , f (t,x(t) ,u(t)) = tu(t)sinx(t) . The Mittag-Leffler func-

tion is given by

E 1
2
((1− s)1/2) =

∞

∑
k=0

(1− s)k/2

Γ
(

k
2 +1

) =
2− er f c

√
1− s

es−1 .

By numerical calculations, one can see that the controllability Gramnian is approxi-
mated as

W =
∫ 1

0

(
2− er f c

√
1− s

es−1

)2

ds ≈ 9.4774.

Therefore, the linear system of (14) is controllable using the control function

u(t) =
2− er f c

√
1− t

9.4774et−1

×
[
x(1)−

∫ 1

0
(1−s)α−1

(
1√
π

+
2
√

1−s
es−1 −2

√
1−ser f c

√
1−s

es−1

)
su(s) sinx(s)ds

]
.

Another numerical calculations lead to

lim
r→∞

(r−12sup{|u(t)| |sinx(t)| : ‖(x,u)‖ = r})= lim
r→∞

(r−12r) = −∞,

and 2a1T ‖B‖ ≈ 10.4, hence the conditions of Theorem 4 are not satisfied, hence no
sufficient evidence to ensure that the system (14) is controllable.

EXAMPLE 2. Consider the fractional differential system⎧⎪⎨⎪⎩
CD0.2

0 x(t) = Ax(t)+ I1−α
0 Bu(t)+ f (t,x(t) , u(t)) , t ∈ [0,0.2] ,

x(0) =
[

1
1

]
,

(15)
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with A =
[

0 1
0 0

]
, B =

[
0
1

]
, x(t) =

[
x1 (t)
x2 (t)

]
, and f (t,x,u) =

[
0

x2(t)
1+x2

1(t)+u2
1(t)

]
. Since

A2 = 0, then, the Mittag-Leffler matrices are given by

E0.2
(
A(t− s)α)

=

[
1 (t−s)0.2

Γ(1.2)
0 1

]
,

and

E0.2,0.2
(
A(t− s)α)

=

[
1 (t−s)0.2

Γ(0.4)
0 1

]
.

By simple matrix calculations one can see that the controllability matrix

W =
[

0.552 0.332
0.332 1

]
,

which has an inverse

W −1 =
[

2.261 −0.7498
−0.7498 1.2486

]
.

We can ensure that the corresponding linear system of (15) is controllable. Observe that

the control function is defined by.u(t) =
[

u1(t)
u2(t)

]
such that

u1(t) =
(
1.511+2.463(0.2− t)0.2)
×

(
x1 (1)−1.789−0.451

∫ 1

0

(0.2− s)−0.6 ‖x2(s)‖
1+ x2

1 (t)+u2
1(t)

ds

)
,

and

u2(t) =
(
0.4988−0.8166(0.2− t)0.2)(

x2 (1)−1−
∫ 1

0

(0.2− s)−0.8 ‖x2(s)‖
1+ x2

1 (t)+u2
1(t)

ds

)
.

Let us now check the conditions of Theorem 4. Since, a1 = 1.7894, and ‖B‖= 1, then
2a1T ‖B‖ ≈ 0.72 < 1. Furthermore,

lim
r→∞

(
r− c2 sup

{∣∣∣∣ ‖x2‖
1+ x2

1 +u2
1

∣∣∣∣ : ‖(x,u)‖ = r

})
� lim

r→∞

(
r− c2

2r

)
= +∞.

Therefore, all conditions of Theorem 4 are satisfied, then the system (15) is controllable.
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