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Abstract. In this article we establish the variant of Hardy-type and refined Hardy-type inequal-
ities for a generalized Riemann-Liouville fractional integral operator and Riemann-Liouville
k -fractional integral operator using convex and monotone convex functions. We also discuss one
dimensional cases of our related results. As special cases of our general results we obtain the
consequences of Iqbal et al. [11]. We also obtained exponentially convex linear functionals for
the generalized fractional integral operators. Moreover, it includes Cauchy means for the above
mentioned operators.

1. Introduction

The subject of fractional calculus achieve a significant popularity during last few
decades due to its demonstrated applications in the fields of science and engineering. It
provide several potentially useful tools for solving differential and integral equations.
Now a days the applications of fractional calculus include fluid flow, rheology, dynami-
cal processes in self-similar and porous structures, diffusive transport akin to diffusion,
electrical networks, probability and statistics, control theory of dynamical systems,
Optics and signal processing, and so on. Many mathematician originate Hardy-type
inequalities for different fractional order integrals and derivatives.

The general theory for the Hardy-type inequalities attracted the scientists a long
time, see e.g., the books ([19], [17]). One reason is that such inequalities has many
useful applications like to stable the degenerate stationary waves (see [15]). It catches
the attention of many mathematicians and they furnish interesting generalizations and
improvements of such inequalities. Čižmešija, Krulić Himmelreich, Pečarić, Iqbal,
Samraiz and Persson ([5], [2], [18], [1], [12], [8]) has studied a lot of Hardy-type in-
equalities which is an incredible contribution in theory of inequalities. But our purpose
is to present such type of inequalities for generalized Riemann-Loiouville fractional
integral operators via convex and monotone convex functions.

The first definition is presented in [22].
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DEFINITION 1. Let I be an interval in R. A function Φ : I → R is called convex
if

Φ(λx+(1−λ )y) � λ Φ(x)+ (1−λ )Φ(y), (1)

for all points x,y ∈ I and all λ ∈ [0,1]. The function Φ is strictly convex if inequality
(1) holds strictly for all distinct points in I and λ ∈ (0,1).

The generalized Lp space given in [21] is defined as follows:

DEFINITION 2. A space Lp,r[a,b] is defined as a space of continuous real valued
functions h(y) on [a,b], such that

(∫ b

a
|h(y)|pyrdy

) 1
p

< ∞,

where 1 � p < ∞, and r � 0. Specially for r = 0, p = 1, Lp,r[a,b] = L1[a,b].

Next we give the well known definition of Riemann-Liouville fractional integrals,
(see [16]).

DEFINITION 3. Let [a,b] be a finite interval on R. The left and right sided Riemann-
Liouville fractional integrals Iα

a+ f and Iα
b− f of order α > 0 are defined as:

Iα
a+ f (x) =

1
Γ(α)

x∫
a

(x− y)α−1 f (y)dy, x > a,

and

Iα
b− f (x) =

1
Γ(α)

b∫
x

(y− x)α−1 f (y)dy, x < b,

respectively. Here Γ represents Gamma function.

DEFINITION 4. Let Φ : I −→ R be a convex function, then the sub-differential of
Φ in x is denoted by ∂Φ(x) and is defined as:

∂Φ(x) = {y ∈ R : y is the slope of a support line at x}.
Let (Σ1,Ω1,μ1) and (Σ2,Ω2,μ2) be measure spaces with positive σ -finite mea-

sures and U( f ,k) denote the class of functions g : Ω1 → R with the representation

g(x) =
∫

Ω2

k(x,t) f (t)dμ2(t)

and Ak be an integral operator defined by

Ak f (x) :=
g(x)
K(x)

=
1

K(x)

∫
Ω2

k(x,t) f (t)dμ2(t), (2)



ON SOME HARDY-TYPE INEQUALITIES FOR GENERALIZED FRACTIONAL INTEGRALS 35

where k : Ω1 ×Ω2 → R is a measurable and non-negative kernel, f : Ω2 → R is a
measurable function and

0 < K(x) :=
∫

Ω2

k(x,t)dμ2(t), x ∈ Ω1. (3)

The following theorem is given in [18].

THEOREM 1. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with positive
σ -finite measures, u be a weight function on Ω1 , k a non-negative measurable kernel
on Ω1 ×Ω2 , and K be defined on Ω1 by (3) . Suppose K(x) > 0 for all x ∈ Ω1 , that

the function x �→ u(x) k(x,t)
K(x) is integrable on Ω1 for each t ∈ Ω2 and that v is defined

on Ω2 by

v(t) :=
∫

Ω1

u(x)
k(x,t)
K(x)

dμ1(x) < ∞. (4)

If Φ is a convex function on the interval I ⊆ R , then the inequality∫
Ω1

u(x)Φ(Ak f (x))dμ1(x) �
∫

Ω2

v(t)Φ( f (t))dμ2(t) (5)

holds for all measurable function f : Ω2 → R , such that Im f ⊆ I , where Ak is defined
by (2) .

Substitute k(x, t) by k(x,t) f2(t) and f by f1
f2

, where fi : Ω2 → R , (i = 1,2) are
measurable functions in Theorem 1, we obtain the following result presented in [9].

THEOREM 2. Let (Ω1,Σ1,μ1) and (Ω2,Σ2,μ2) be measure spaces with σ -finite
measures, u be a weight function on Ω1, k a non-negative measurable kernel on Ω1×
Ω2. Assume that the function x �→ u(x) k(x,t)

g2(x)
is integrable on Ω1 for each fixed t ∈ Ω2.

Define p on Ω2 by

p(t) := f2(t)
∫

Ω1

u(x)
k(x,t)
g2(x)

dμ1(x) < ∞.

If Φ : I → R is a convex function and g1(x)
g2(x)

, f1(t)
f2(t)

∈ I, then the inequality

∫
Ω1

u(x)Φ
(

g1(x)
g2(x)

)
dμ1(x) �

∫
Ω2

p(t)Φ
(

f1(t)
f2(t)

)
dμ2(t) (6)

holds for all gi ∈ U( fi,k) , (i = 1,2) and for all measurable function fi : Ω2 → R ,
(i = 1,2) .

REMARK 1. If Φ is strictly convex on I and f1(x)
f2(x)

is non-constant, then the in-

equality given in (6) is strict.
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New refined general weighted Hardy-type inequality with a non-negative kernel
and related to an arbitrary convex function is given in the following theorem (see [4]).

THEOREM 3. Let the assumptions of Theorem 1 be satisfied. Moreover, if Φ is a
convex function on an interval I ⊆ R and ϕ : I → R is any function, such that ϕ(x) ∈
∂Φ(x) for all x ∈ IntI , then the inequality

∫
Ω2

v(t)Φ( f (t))dμ2(t)−
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x)

�
∫

Ω1

u(x)
K(x)

∫
Ω2

k(x,t) | |Φ( f (t))−Φ(Ak f (x))|

− |ϕ(Ak f (x))| · | f (t)−Ak f (x)| | dμ2(t)dμ1(x)

holds for all measurable function f : Ω2 → R .
If Φ is a monotone convex function on an interval I ⊆ R, then the inequality

∫
Ω2

v(t)Φ( f (t))dμ2(t)−
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x)

�
∣∣∣∣∣
∫

Ω1

u(x)
K(x)

∫
Ω2

sgn( f (t)−Ak f (x))k(x,t)
[
Φ( f (t))−Φ(Ak f (x))

−|ϕ(Ak f (x))| · ( f (t)−Ak f (x))
]
dμ2(t)dμ1(x)

∣∣∣∣∣ (7)

holds for all measurable function f : Ω2 → R, where Ak f is defined by (2).
If φ is a non-negative monotone concave function, then the order of the terms on

left hand side of (7) is reversed.

In the following theorem, we give a refinement of a Hardy–type inequality ob-
tained by S. Kaijser et al. in [13].

THEOREM 4. Let u : (0,b)→ R be a weight function such that the functions x �→
u(x)
x · k(x,t)

K(x) are integrable on (t,b) for each fixed t ∈ (0,b) , and let the function w :

(0,b) → R be defined by

w(t) = t

b∫
t

k(x,t)
K(x)

u(x)
dx
x

,

where 0 < b � ∞ and k : (0,b)× (0,b) → R be a non-negative measurable function,
such that

K(x) =
x∫

0

k(x,t) dt > 0, x ∈ (0,b).
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If Φ is a convex function on an interval I ⊆R and ϕ : I →R is such that ϕ(x)∈ ∂Φ(x)
for all x ∈ Int I , then the inequality

b∫
0

w(t)Φ( f (t))
dt
t
−

b∫
0

u(x)Φ(Ak f (x))
dx
x

�
b∫

0

u(x)
K(x)

x∫
0

k(x,t). ||Φ( f (t))−Φ(Ak f (x))|− |ϕ(Ak f (x))|

×| f (t)−Ak f (x)| |dt
dx
x

(8)

holds for all measurable function f : (0,b)→R with values in I, where Ak f is defined
by

Ak f (x) =
1

K(x)

x∫
0

k(x,t) f (t) dt, x ∈ (0,b).

If the function Φ is concave, the order of integrals on the left-hand side of (8) is
reversed. If Φ is a monotone convex on the interval I ⊆R, then the following inequality

b∫
0

w(t)Φ( f (t))
dt
t
−

b∫
0

u(x)Φ(Ak f (x))
dx
x

�
∣∣∣ b∫

0

u(x)
K(x)

x∫
0

sgn( f (t)−Ak f (x))k(x,t)
[

Φ( f (t)−Φ(Ak f (x))

−|ϕ(Ak f (x))|.( f (t)−Ak f (x))
]
dt

dx
x

∣∣∣
holds for all measurable function f : (0,b) → R with values in I .

Next mean value theorem is given in [6] which involve functions of the space
C2(I) i.e., the functions having continuous derivatives up to order 2 over the set I .

THEOREM 5. Let (Ω1,Σ1,μ1) , (Ω2,Σ2,μ2) be measure spaces with σ -finite mea-
sures and u : Ω1 → R be a weight function. Let I be compact interval of R , h̃ ∈C2(I) ,
and f : Ω2 → R a measurable function. Then there exists η ∈ I such that∫

Ω2

v(t)h̃( f (t))dμ2(t)−
∫

Ω1

u(x)h̃(Ak f (x))dμ1(x)

=
h̃′′(η)

2

⎡
⎣∫

Ω2

v(t) f 2(t)dμ2(t)−
∫

Ω1

u(x)(Ak f (x))2 dμ1(x)

⎤
⎦ ,

where Ak f and v are defined by (2) and (4) respectively.
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2. Exponential convexity

We continue with the definition of exponentially convex function as originally
given by Bernstein in [3].

DEFINITION 5. A function Φ : (a,b) → R is exponentially convex if it is contin-
uous and

n

∑
i, j=1

tit jΦ(xi + x j) � 0,

for all n∈N and all sequences (tn)n∈N and (xn)n∈N of real numbers, such that xi +x j ∈
(a,b) , 1 � i, j � n .

LEMMA 1. Let s ∈ R and let the function ϕs : (0,∞) → R be defined by

ϕs(x) =

⎧⎪⎪⎨
⎪⎪⎩

xs

s(s−1) , s �= 0,1,

− logx, s = 0,

x logx, s = 1.

(9)

Then ϕ ′′
s (x) = xs−2 , that is ϕs is a convex function.

The upcoming theorem is presented in [6].

THEOREM 6. Let the conditions of Theorem 1 be satisfied and ϕs be defined by
(9) . Let f be a positive function. Then the function ξ : R → [0,∞) defined by

ξ (s) =
∫

Ω2

v(t)ϕs( f (t))dμ2(t)−
∫

Ω1

u(x)ϕs(Ak f (x))dμ1(x),

is exponentially convex.

THEOREM 7. Let the conditions of Theorem 5 be satisfied. Moreover, ζ , h̃∈C2(I)
such that h̃′′(x) �= 0 for every x ∈ I and

∫
Ω2

v(t) h̃( f (t))dμ2(t)−
∫

Ω1

u(x) h̃(Ak f (x))dμ1(x) �= 0.

Then there exists η ∈ I such that

ζ ′′(η)
h̃′′(η)

=

∫
Ω2

v(t)ζ ( f (t))dμ2(t)−
∫

Ω1

u(x)ζ (Ak f (x))dμ1(x)

∫
Ω2

v(t) h̃( f (t))dμ2(t)−
∫

Ω1

u(x) h̃(Ak f (x))dμ1(x)

holds.
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By considering the positive difference of inequality (5), we define the following
positive linear functional:

Δ1(Φ) =
∫

Ω2

v(t)Φ( f (t))dμ2(t)−
∫

Ω1

u(x)Φ(Ak f (x))dμ1(x). (10)

We also define a linear functional by taking the positive difference of the left-hand side
and right-hand side of the inequality (6) given in Theorem 2 as:

Δ2(Φ) =
∫

Ω2

p(t)Φ
(

f1(t)
f2(t)

)
dμ2(t)−

∫
Ω1

u(x)Φ
(

g1(x)
g2(x)

)
dμ1(x). (11)

First, we give some necessary details about the divided differences. Let I ⊆ R be
an interval and f : I → R be a function. Then for distinct points zi ∈ I, i = 0,1,2, the
divided differences of first and second order are defined by:

[zi,zi+1; f ] =
f (zi+1)− f (zi)

zi+1− zi
(i = 0,1) ,

[z0,z1,z2; f ] =
[z1,z2; f ]− [z0,z1; f ]

z2− z0
. (12)

The values of the divided differences are independent of the order of points z0,z1,z2

and may be extended to include the cases when some or all points are equal, that is

[z0,z0; f ] = lim
z1→z0

[z0,z1; f ] = f ′(z0),

provided that f ′ exists.
Now passing through the limit z1 → z0 and replacing z2 by z in (12) , we have

[z0,z0,z; f ] = lim
z1→z0

[z0,z1,z; f ] =
f (z)− f (z0)− (z− z0) f ′(z0)

(z− z0)
2 z �= z0,

provided that f ′ exists. Also passing to the limit zi → z (i = 0,1,2) in (12) , we have

[z,z,z; f ] = lim
zi→z

[z0,z1,z2; f ] =
f ′′(z)

2
,

provided that f ′′ exists.
One can observe that if for all z0,z1 ∈ I , [z0,z1, f ] � 0, then f is increasing on I

and if for all z0,z1,z2 ∈ I , [z0,z1,z2; f ] � 0, then f is convex on I .
Next, we recall the notion of n -exponential convexity given in [24].

DEFINITION 6. For any open interval I of R the function Φ : I → R is n -expo-
nentially convex in the Jensen sense on I if

n

∑
i, j=1

tit jΦ
(

ζi + ζ j

2

)
� 0
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holds for all choices of ti ∈ R, ζi ∈ I, i = 1, . . . ,n.
A function Φ : I → R is n -exponentially convex on I if it is n -exponentially

convex in the Jensen sense and continuous on I .

The following theorem is given in [10].

THEOREM 8. Let Γ = {Φp : p ∈ J} be a family of functions defined on I , such
that the function p �→ [z0,z1,z2;Φp] is n-exponentially convex in the Jensen sense on
J for every three distinct points z0, z1, z2 ∈ I . Let Δi (i = 1,2) be linear functionals
defined by (10) , (11) . Then the function p �→ Δi(Φp) (i = 1,2) is n-exponentially
convex in the Jensen sense on J, if it is continuous on J.

The rest of the paper is planned in the following way: In Section 3, we prove new
Hardy-type inequalities and their refinements involving generalized Riemann-Liouville
fractional integral operator. Section 4 deals with Hardy-type, refined Hardy-type in-
equalities for generalized k -Riemann-Liouville fractional integral operator. In each
section, we originate the results regarding Cauchy means and exponentially convex lin-
ear functionals.

3. Results for generalized Riemann-Liouville fractional integral operator

In this section, first we give the definition of generalized Riemann-Liouville frac-
tional integral operator presented in [14].

DEFINITION 7. Let α > 0, a � 0 and r �= −1, be real numbers and let f ∈
L1,r[a,b]. Then the generalized Riemann-Liouville fractional integral Iα ,r

a is defined by

Iα ,r
a f (x) =

(r+1)1−α

Γ(α)

x∫
a

(xr+1 − tr+1)α−1tr f (t)dt, x ∈ (a,b). (13)

We note that if r → −1+ the integral operator (13) reduces to the famous Hadamard
fractional integral:

Iα ,−1+

a f (x) =
1

Γ(α)

x∫
a

(
log

x
t

)α−1 f (t)
t

dt. (14)

THEOREM 9. Let f ∈ L1,r[a,b] such that r �= −1, a � 0 . Suppose u is a weight

function on (a,b) and that a function x �→ α(r+1) (xr+1−tr+1)α−1

(xr+1−ar+1)α tru(x) is integrable on

(a,b) for each t ∈ (a,b) the weight function s is defined by

s(t) := α(r+1)tr
b∫

t

u(x)
(xr+1 − tr+1)α−1

(xr+1 −ar+1)α dx < ∞. (15)
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If Φ is a convex function on the interval I ⊆ R , then the inequality

b∫
a

u(x)Φ

⎛
⎝ α(r+1)

(xr+1 −ar+1)α

x∫
a

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠ dx �

b∫
a

s(t)Φ( f (t))dt (16)

holds for all measurable function f : (a,b) → R .

Proof. Applying Theorem 1 with Ω1 = Ω2 = (a,b), dμ1(x) = dx , dμ2(t) = dt,

k̃(x,t) =

{
(r+1)1−α

Γ(α) (xr+1 − tr+1)α−1tr, a � t � x ;
0, x < t � b ,

(17)

we get

K̃(x) =
1

Γ(α +1)(r+1)α (xr+1 −ar+1)α (18)

and the integral operator Ak f (x) takes the form

Ãk f (x) =
α(r+1)

(xr+1 −ar+1)α

x∫
a

(xr+1− tr+1)α−1tr f (t)dt, (19)

we get inequality (16). �

COROLLARY 1. In particular if r →−1 and a > 0 in Theorem 9, we get

s̃(t) :=
α
t

b∫
t

u(x)

(
log x

t

)α−1(
log x

a

)α dx

and the inequality (16) reduces to

b∫
a

u(x)Φ

⎛
⎝α

x∫
a

(
log x

t

)α−1(
log x

a

)α
f (t)
t

dt

⎞
⎠dx �

b∫
a

s̃(t)Φ( f (t))dt.

THEOREM 10. Let u be a weight function defined on (a,b) , Iα ,r
a be the general-

ized Riemann-Liouville fractional integral operator of order α > 0 , a � 0 and r �=−1 .

Assume that the function x �→ (xr+1−tr+1)α−1

Iα,r
a f2(x)

u(x) is integrable on (a,b), then for each

t ∈ (a,b) the weight function q(t) is defined by

q(t) :=
(r+1)1−α

Γ(α)
tr f2(t)

b∫
t

u(x)
(xr+1 − tr+1)α−1

Iα ,r
a f2(x)

dx < ∞.
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If Φ : I → R is a convex function and Iα,r
a f1(x)
Iα,r
a f2(x)

, f1(t)
f2(t)

∈ I, then the inequality

b∫
a

u(x)Φ
(

Iα ,r
a f1(x)
Iα ,r
a f2(x)

)
dx �

b∫
a

q(t)Φ
(

f1(t)
f2(t)

)
dt (20)

holds for all measurable function fi : (a,b) → R, (i = 1,2) .

Proof. Applying Theorem 2 with Ω1 = Ω2 = (a,b), dμ1(x) = dx , dμ2(t) = dt,
gi(x) = Iα ,r

a fi(x) , i = 1,2 and k̃(x,t) given in (17), we get inequality (20). �

COROLLARY 2. In particular if we choose r →−1 in Theorem 10, we get

q̃(t) =
1

Γ(α)
f2(t)
t

b∫
t

u(x)

Iα ,−1+
a f2(x)

(
log

x
t

)α−1
dx

and the inequality (20) takes the form

b∫
a

u(x)Φ

(
Iα ,−1+
a f1(x)

Iα ,−1+
a f2(x)

)
dx �

b∫
a

q̃(t)Φ
(

f1(t)
f2(t)

)
dt.

In next theorem we give the refinement of Theorem 10.

THEOREM 11. Let the assumptions of Theorem 9 be satisfied. Moreover, if Φ
is a convex function on an interval I ⊆ R and ϕ : I → R is any function, such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I , then the inequality

b∫
a

s(t)Φ( f (t))dt −
b∫

a

u(x)Φ

⎛
⎝ α(r+1)

(xr+1 −ar+1)α

x∫
a

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠dx

�
b∫

a

u(x)
α(r+1)

(xr+1 −ar+1)α

x∫
a

(xr+1 − tr+1)α−1tr

×
∣∣∣∣∣∣
∣∣∣∣∣∣Φ( f (t))−Φ

⎛
⎝ α(r+1)

(xr+1−ar+1)α

x∫
a

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠
∣∣∣∣∣∣

−
∣∣∣∣∣∣ϕ
⎛
⎝ α(r+1)

(xr+1 −ar+1)α

x∫
a

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠
∣∣∣∣∣∣

×
∣∣∣∣∣∣ f (t)−

α(r+1)
(xr+1−ar+1)α

b∫
a

(xr+1 − tr+1)α−1tr f (t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣dtdx (21)

holds for all measurable function f : (a,b) → R .
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If Φ is a monotone convex function on an interval I ⊆ R, then the inequality

b∫
a

s(t)Φ( f (t))dt−
b∫

a

u(x)Φ

⎛
⎝ α(r+1)

(xr+1 −ar+1)α

x∫
a

(xr+1− tr+1)α−1tr f (t)dt

⎞
⎠dx

�
∣∣∣∣∣

b∫
a

u(x)
α(r+1)

(xr+1 −ar+1)α

x∫
a

sgn

(
f (t)− α(r+1)

(xr+1−ar+1)

x∫
a

(xr+1− tr+1)α−1tr f (t)dt

)

×(xr+1− tr+1)α−1tr
[

Φ( f (t))−Φ

⎛
⎝ α(r+1)

(xr+1−ar+1)α

x∫
a

(xr+1− tr+1)α−1tr f (t)dt

⎞
⎠

−
∣∣∣∣∣∣ϕ
⎛
⎝ α(r+1)

(xr+1 −ar+1)α

x∫
a

(xr+1− tr+1)α−1tr f (t)dt

⎞
⎠
∣∣∣∣∣∣

×
⎛
⎝ f (t)− α(r+1)

(xr+1 −ar+1)α

x∫
a

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠
]

dtdx

∣∣∣∣∣ (22)

holds for all measurable function f : (a,b) → R.

Proof. Applying Theorem 3 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt,
k̃(x,t) , K̃(x), and Ãk f (x) are given by (17), (18) and (19) respectively, we get inequal-
ities (21) and (22) respectively. �

REMARK 2. Choose a particular convex function Φ(x) = xν ,ν � 1 and weight
function u(x) = 1

αΓ(α)(r+1)α (xr+1−ar+1)α in Theorem 9, we obtain

p̃(t) =
b∫

t

(r+1)1−α

Γ(α)
(xr+1 − tr+1)α−1trdx,

which can be written as:

p̃(t) =
(r+1)1−α

Γ(α)
tr

b∫
t

x(r+1)(α−1)
(

1−
( t

x

)r+1
)α−1

dx.

Substituting y = 1− ( t
x)

r+1 and after a little calculation, we get

p̃(t) =
tα(r+1)

Γ(α)(r+1)α

1−( t
b )(r+1)∫
0

xα−1 (1− x)
r

r+1−α−1 dx,

which involve incomplete Beta function Bx(p,q) =
x∫
0

t p−1(1− t)q−1dt, (see [7, page

910]) i.e.,

p̃(t) =
tα(r+1)

(r+1)α Γ(α)
B1−( t

b )(r+1)

(
α,

r
r+1

−α
)

:= K1(t).
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Using the above calculated weight function in inequality (16), we obtain

K̃1−ν(b)
b∫

a

Iα ,r
a f ν (x)dx � tα(r+1)

(r+1)α Γ(α)
B1−( a

b )(r+1)

(
α,

r
r+1

−α
) b∫

a

f ν (t)dt.

Consequently, we have the inequality of G. H. Hardy as follows:

‖Iα ,r
a f‖ν(a,b) �

⎛
⎝ tα(r+1)B1−( a

b )(r+1) (α, r
r+1 −α)

(r+1)α Γ(α)K̃1−ν(b)

⎞
⎠

1
ν

‖ f‖ν(a,b).

Result for one dimensional setting involving generalized Riemann-Liouville frac-
tional integral is as follows:

THEOREM 12. Let u : (0,b) → R be a weight function, such that the function

x �→ (xr+1−tr+1)α−1

x(r+1)α
u(x)
x , r �= −1 is integrable on (t,b), then the function j : (0,b) → R

be defined by

j(t) := tr+1α(r+1)
b∫

t

(xr+1− tr+1)α−1

x(r+1)α u(x)
dx
x

,

where 0 < b � ∞ and k̂ : (0,b)×(0,b)→R be a non-negative measurable kernel, such
that

K̂(x) =
x(r+1)α

Γ(α +1)(r+1)α > 0, x ∈ (0,b).

If Φ is a convex function on an interval I ⊆R and ϕ : I →R is such that ϕ(x)∈ ∂Φ(x)
for all x ∈ Int I , then the inequality

b∫
0

j(t)Φ( f (t))
dt
t
−

b∫
0

u(x)Φ

⎛
⎝α(r+1)

x(r+1)α

x∫
0

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠ dx

x

�
b∫

0

u(x)
(r+1)α
x(r+1)α

x∫
0

(xr+1 − tr+1)α−1tr

×
∣∣∣∣∣∣
∣∣∣∣∣∣Φ( f (t))−Φ

⎛
⎝α(r+1)

x(r+1)α

x∫
0

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠
∣∣∣∣∣∣

−
∣∣∣∣∣∣ϕ
⎛
⎝α(r+1)

x(r+1)α

x∫
0

(xr+1− tr+1)α−1tr f (t)dt

⎞
⎠
∣∣∣∣∣∣

×
∣∣∣∣∣∣ f (t)−

α(r+1)
x(r+1)α

x∫
0

(xr+1 − tr+1)α−1tr f (t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣dt

dx
x

(23)
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holds for all measurable function f : (0,b) → R and the integral operator Ak f takes
the form

Âk f (x) :=
α(r+1)
x(r+1)α

x∫
0

(xr+1 − tr+1)α−1tr f (t)dt, x ∈ (0,b).

If the function Φ is a concave, the order of integrals on the left-hand side of (23) is
reversed. If Φ is a monotone convex on the interval I ⊆R, then the following inequality

b∫
0

j(t)Φ( f (t))
dt
t
−

b∫
0

u(x)Φ

⎛
⎝α(r+1)

x(r+1)α

x∫
0

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠ dx

x

�
∣∣∣∣∣

b∫
0

u(x)
α(r+1)
x(r+1)α

x∫
0

sgn

⎛
⎝ f (t)− α(r+1)

x(r+1)α

x∫
0

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠

×(xr+1− tr+1)α−1tr ·
[

Φ( f (t)−Φ

⎛
⎝α(r+1)

x(r+1)α

x∫
0

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠

−
∣∣∣∣∣∣ϕ
⎛
⎝α(r+1)

x(r+1)α

x∫
0

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠
∣∣∣∣∣∣

×
⎛
⎝ f (t)− α(r+1)

x(r+1)α

x∫
0

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠
]
dt

dx
x

∣∣∣∣∣ (24)

holds for all measurable function f : (0,b) → R .

Proof. Applying Theorem 4 with Ω1 = Ω2 = (0,b), dμ1(x) = dx, dμ2(t) = dt,

k̂(x,t) =

{
(r+1)1−α

Γ(α) (xr+1 − tr+1)α−1tr, 0 � t � x ;

0, x < t � b ,

we get inequalities (23) and (24) respectively. �

THEOREM 13. Let f ∈ L1,r[a,b] , Iα ,r
a be the generalized fractional integral of

order α > 0 and r �= −1 with u : (a,b) → R a weight function. Let I be a compact
interval of R , h̃ ∈C2(I) , and f : (a,b) → R a measurable function. Then there exists
η ∈ I such that the equation

b∫
a

s(t)h̃( f (t))dt −
b∫

a

u(x)h̃

⎛
⎝ α(r+1)

(xr+1 −ar+1)α

x∫
a

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠dx

=
h̃′′(η)

2

⎡
⎢⎣

b∫
a

s(t) f 2(t)dt−
b∫

a

u(x)

⎛
⎝ α(r+1)

(xr+1−ar+1)α

x∫
a

(xr+1−tr+1)α−1tr f (t)dt

⎞
⎠

2

dx

⎤
⎥⎦ ,

(25)
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holds true.

Proof. Applying Theorem 5 with Ω1 = Ω2 = (a,b), dμ1(x) = dx , dμ2(t) = dt,
s(t) and Ãk f are defined by (15) and (19) respectively, we get the required Cauchy
mean presented in (25). �

Next theorem provide the exponential convexity of the linear functional by taking
the non-negative difference of Hardy-type inequality given in (16).

THEOREM 14. Let the conditions of Theorem 9 be satisfied and ϕs be defined by
Lemma 1 . Let f be a positive function, then the function Ψ : R → [0,∞) defined by

Ψ(s) =
b∫

a

s(t)ϕs( f (t))dt−
b∫

a

u(x)ϕs

⎛
⎝ α(r+1)

(xr+1−ar+1)α

x∫
a

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠dx

is exponentially convex.

Proof. Applying Theorem 6 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and k̃(x, t) given by (17), we obtain the required result. �

THEOREM 15. Let the conditions of Theorem 13 be satisfied. Moreover, g, h̃ ∈
C2(I) such that h̃′′(x) �= 0 for every x ∈ I and

b∫
a

s(t) h̃( f (t))dt −
b∫

a

u(x) h̃

⎛
⎝ α(r+1)

(xr+1 −ar+1)α

x∫
a

(xr+1 − tr+1)α−1tr f (t)dt

⎞
⎠dx �= 0.

Then there exists η ∈ I such that it holds

g′′(η)
h̃′′(η)

=

b∫
a

s(t)g( f (t))dt −
b∫
a

u(x)g

(
α(r+1)

(xr+1−ar+1)α

x∫
a
(xr+1− tr+1)α−1tr f (t)dt

)
dx

b∫
a

s(t) h̃( f (t))dt −
b∫
a

u(x) h̃

(
α(r+1)

(xr+1−ar+1)α

x∫
a
(xr+1− tr+1)α−1tr f (t)dt

)
dx

(26)

Proof. Applying Theorem 7 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt,
s(t) and Ãk f are defined by (15) and (19) respectively, we get (26). �

Under the assumptions of Theorem 9, we define a linear functional by taking the
positive difference of the inequality stated in (16) as:

η1(Φ)=
b∫

a

s(t)Φ( f (t))dt−
b∫

a

u(x)Φ

⎛
⎝ α(r+1)

(xr+1−ar+1)α

x∫
a

(xr+1−tr+1)α−1tr f (t)dt)

⎞
⎠dx.

(27)
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We also define a linear functional by taking the positive difference of the left-hand side
and right-hand side of the inequality (20) given in Theorem 10 as:

η2(Φ) =
b∫

a

q(t)Φ
(

f1(t)
f2(t)

)
dt−

b∫
a

u(x)Φ
(

Iα ,r
a f1(x)
Iα ,r
a f2(x)

)
dx. (28)

THEOREM 16. Let Γ = {Φp : p ∈ J} be a family of functions defined on I , such
that the function p �→ [z0,z1,z2;Φp] is n-exponentially convex in the Jensen sense on
J for every three distinct points z0, z1, z2 ∈ I . Let ηi (i = 1,2) be linear functionals
defined by (27) , (28) . Then the function p �→ ηi(Φp) (i = 1,2) is n-exponentially
convex in the Jensen sense on J, if it is continuous on J.

Proof. Applying Theorem 8 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt,
we get the desired outcome. �

REMARK 3. If we choose r = 0, in inequalities (16), (20), (21), (22), (23), (24)
and equations (25), (26), we acquire [11, Corollary 3].

REMARK 4. If we choose r → −1+, in inequalities (21), (22), (23), (24) and
equations (25), (26), we get the results for the famous Hadamard fractional integral
operator presented in (14).

4. Consequences for the Riemann-Liouville k -fractional integral

In this section, we derive results for the Riemann-Liouville k -fractional integral
presented in [20] and is defined as:

DEFINITION 8. Let f ∈ L1[a,b] , then the Riemann-Liouville k -fractional integral
Iα
a,k of order α > 0 and k > 0, is given by

Iα
a,k f (x) =

1
kΓk(α)

x∫
a

(x− t)
α
k −1 f (t)dt, t ∈ (a,b), (29)

where Γk is defined by

Γk(t) =
∞∫

0

xt−1e
−xk
k dx, Re(x) > 0.

Moreover, if we choose k = 1 the integral operator (29) represents the left sided Riemann-
Liouville fractional integral.
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THEOREM 17. Let f ∈ L1[a,b] and u be a weight function on (a,b). Suppose

x �→ α
k

(x−t)
α
k −1

(x−a)
α
k

u(x) is integrable on (a,b) for each t ∈ (a,b) and that the function β

is defined by

β (t) :=
α
k

b∫
t

u(x)
(x− t)

α
k −1

(x−a)
α
k

dx < ∞. (30)

If Φ is a convex function on the interval I ⊆ R , then the inequality

b∫
a

u(x)Φ

⎛
⎝ α

k(x−a)
α
k

x∫
a

(x− t)
α
k −1 f (t)dt

⎞
⎠ dx �

b∫
a

β (t)Φ( f (t))dt (31)

holds for all measurable function f : (a,b) → R .

Proof. Applying Theorem 1 with Ω1 = Ω2 = (a,b), dμ1(x) = dx , dμ2(t) = dt,

ǩ(x,t) =

{
1

kΓk(α) (x− t)
α
k −1, a � t � x ;

0, x < t � b ,
(32)

Ǩ(x) =
1

αΓk(α)
(x−a)

α
k , (33)

and

Ǎk f (x) =
α

k(x−a)
α
k

x∫
a

(x− t)
α
k −1 f (t)dt, (34)

we ge inequality (31). �
In next result we give the quotient form of Theorem 17.

THEOREM 18. Let u be a weight function, Iα
a,k be the generalized Riemann-

Liouville k -fractional integral operator of order α > 0 and k > 0 . Assume that the

function x �→ 1
kΓk(α)

(x−t)
α
k −1

Iα
a,k f2(x)

u(x) is integrable on (a,b), then for each t ∈ (a,b), define

a function γ by

γ(t) :=
1

kΓk(α)
f2(t)

b∫
t

u(x)
(x− t)

α
k −1

Iα
a,k f2(x)

dx < ∞.

If Φ : I → R is a convex function and
Iα
a,k f1(x)
Iα
a,k f2(x)

, f1(t)
f2(t)

∈ I, then the inequality

b∫
a

u(x)Φ

(
Iα
a,k f1(x)

Iα
a,k f2(x)

)
dx �

b∫
a

γ(t)Φ
(

f1(t)
f2(t)

)
dt (35)

holds for all measurable function fi : (a,b) → R , (i = 1,2) .
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Proof. Applying Theorem 2 with Ω1 = Ω2 = (a,b), dμ1(x) = dx , dμ2(t) = dt ,
and ǩ(x, t) given by (32), we arrive at inequality (35). �

THEOREM 19. Let the assumptions of Theorem 17 be satisfied. Moreover, if Φ
is a convex function on an interval I ⊆ R and ϕ : I → R is any function, such that
ϕ(x) ∈ ∂Φ(x) for all x ∈ Int I , then the inequality

b∫
a

β (t)Φ( f (t))dt −
b∫

a

u(x)Φ

⎛
⎝ α

k(x−a)
α
k

x∫
a

(x− t)
α
k −1 f (t)dt

⎞
⎠dx

�
b∫

a

u(x)
α

k(x−a)
α
k

x∫
a

(x− t)
α
k −1

∣∣∣∣∣∣
∣∣∣∣∣∣Φ( f (t))−Φ

⎛
⎝ α

k(x−a)
α
k

x∫
a

(x− t)
α
k −1 f (t)dt

⎞
⎠
∣∣∣∣∣∣

−
∣∣∣∣∣∣ϕ
⎛
⎝ α

k(x−a)
α
k

x∫
a

(x−t)
α
k −1 f (t)dt

⎞
⎠
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ f (t)−

α
k(x−a)

α
k

x∫
a

(x−t)
α
k −1 f (t)dt

∣∣∣∣∣∣
∣∣∣∣∣∣dtdx

(36)

holds for all measurable function f : (a,b) → R .
If Φ is a monotone convex function on an interval I ⊆ R, then the inequality

b∫
a

β (t)Φ( f (t))dt−
b∫

a

u(x)Φ

⎛
⎝ α

k(x−a)
α
k

x∫
a

(x− t)
α
k −1 f (t)dt

⎞
⎠dx

�
∣∣∣∣∣

b∫
a

u(x)
α

k(x−a)
α
k

b∫
a

sgn

⎛
⎝ f (t)− α

k(x−a)
α
k

x∫
a

(x− t)
α
k −1 f (t)dt

⎞
⎠(x− t)

α
k −1

×
[

Φ( f (t))−Φ

⎛
⎝ α

k(x−a)
α
k

x∫
a

(x− t)
α
k −1 f (t)dt

⎞
⎠

−
∣∣∣∣∣∣ϕ
⎛
⎝ α

k(x−a)
α
k

x∫
a

(x−t)
α
k −1 f (t)dt

⎞
⎠
∣∣∣∣∣∣
⎛
⎝ f (t)− α

k(x−a)
α
k

x∫
a

(x−t)
α
k −1 f (t)dt

⎞
⎠]dtdx

∣∣∣∣∣
(37)

holds for all measurable function f : (a,b) → R and for all fixed t ∈ (a,b) .

Proof. Applying Theorem 3 by with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and ǩ(x, t) is given by (32), we get inequalities (36) and (37) respectively. �

REMARK 5. Choose the particular convex function Φ(x) = xν ,ν � 1 and weight
function u(x) = 1

αΓk(α) (x−a)
α
k in Theorem 17, we obtain

β̃ (t) =
1

Γk(α +1)
(b− t)

α
k =: K2(t).
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The inequality (31) can be written as:

b∫
a

(
1

αΓk(α)
(x−a)

α
k

)⎛⎝ 1
1

αΓk(α) (x−a)
α
k

x∫
a

1
kΓk(α)

(x−t)
α
k −1 f (t)dt

⎞
⎠

ν

dx�
b∫

a

β (t) f ν (t)dt,

it can also be written as
b∫

a

(
1

αΓk(α)
(x−a)

α
k

)1−ν
⎛
⎝ x∫

a

1
kΓk(α)

(x− t)
α
k −1 f (t)dt

⎞
⎠

ν

dx �
b∫

a

β (t) f ν (t)dt

this implies that

b∫
a

Ǩ1−ν(x)

⎛
⎝ x∫

a

1
kΓk(α)

(x− t)
α
k −1 f (t)dt

⎞
⎠

ν

dx � 1
Γk(α +1)

b∫
a

(b− t)
α
k f ν (t)dt

Ǩ1−ν(b)
b∫

a

Iα
a,k f ν (x)dx � 1

Γk(α +1)
(b−a)

α
k

b∫
a

f ν (t)dt.

After some calculation, we turn up the inequality

‖Iα
a,k f‖ν(a,b) �

(
(b−a)

α
k

Γk(α +1)Ǩ1−ν(b)

) 1
ν

‖ f‖ν(a,b),

which is an inequality of G. H. Hardy.

THEOREM 20. Let u : (0,b) → R be a weight function such that the function

x �→ α
k

(x−t)
α
k −1

(x−a)
α
k

u(x)
x is integrable on (t,b) for each t ∈ (0,b) , and let the function λ :

(0,b) → R be defined by

λ (t) := t
α
k

b∫
t

(x− t)
α
k −1

x
α
k

u(x)dx,

where 0 < b � ∞ and k : (0,b)× (0,b) → R be a non-negative measurable kernel,
such that

K(x) =
1

αΓ(α)
x

α
k > 0, x ∈ (0,b).

If Φ is a convex function on an interval I ⊆R and ϕ : I →R is such that ϕ(x)∈ ∂Φ(x)
for all x ∈ Int I , then the inequality

b∫
0

λ (t)Φ( f (t))
dt
t
−

b∫
0

u(x)Φ

⎛
⎝ α

kx
α
k

x∫
0

(x− t)
α
k −1 f (t)dt

⎞
⎠ dx

x

�
b∫

0

u(x)
α

kx
α
k

x∫
0

(x− t)
α
k −1

∣∣∣∣∣∣
∣∣∣∣∣∣Φ( f (t))−Φ

⎛
⎝ α

kx
α
k

x∫
0

(x− t)
α
k −1 f (t)dt

⎞
⎠
∣∣∣∣∣∣
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−
∣∣∣∣∣∣ϕ
⎛
⎝ α

kx
α
k

x∫
0

(x− t)
α
k −1 f (t)dt

⎞
⎠
∣∣∣∣∣∣
∣∣∣∣∣∣ f (t)−

⎛
⎝ α

kx
α
k

x∫
0

(x− t)
α
k −1 f (t)dt

⎞
⎠
∣∣∣∣∣∣
∣∣∣∣∣∣dt

dx
x

(38)

holds for all measurable function f : (0,b) → R and

Ak f (x) :=
α

kx
α
k

x∫
0

(x− t)
α
k −1 f (t)dt, x ∈ (0,b).

If the function Φ is concave, the order of integrals on the left-hand side of (38) is
reversed. If Φ is monotone convex on the interval I ⊆ R, then the following inequality

b∫
0

λ (t)Φ( f (t))
dt
t
−

b∫
0

u(x)Φ

⎛
⎝ α

kx
α
k

x∫
0

(x− t)
α
k −1 f (t)dt)

⎞
⎠ dx

x

�
∣∣∣∣∣

b∫
0

u(x)
α

kx
α
k

x∫
0

sgn

⎛
⎝ f (t)− α

kx
α
k

x∫
0

(x− t)
α
k −1 f (t)dt

⎞
⎠

×(x− t)
α
k −1

[
Φ( f (t))−Φ

⎛
⎝ α

kx
α
k

x∫
0

(x− t)
α
k −1 f (t)dt

⎞
⎠

−
∣∣∣∣∣∣ϕ
⎛
⎝ α

kx
α
k

x∫
0

(x− t)
α
k −1 f (t)dt

⎞
⎠
∣∣∣∣∣∣
⎛
⎝ f (t)− α

kx
α
k

x∫
0

(x− t)
α
k −1 f (t)dt

⎞
⎠]dt

dx
x

∣∣∣∣∣
(39)

holds for all measurable function f : (0,b) → R.

Proof. Applying Theorem 4 with Ω1 = Ω2 = (a,b), dμ1(x) = dx , dμ2(t) = dt,

k(x,t) =

{
1

kΓk(α) (x− t)
α
k −1, 0 � t � x ;

0, x < t � b ,

we get inequalities (38) and (39) respectively. �
Next we give the mean value theorems for the Riemann-Liouville k -fractional

integral operator.

THEOREM 21. Let f ∈ L1[a,b] , Iα
a,k be the generalized fractional integral of or-

der α � 0 and k > 0 and let u : (a,b) → R be a weight function. Moreover, I a
compact interval of R , h̃ ∈C2(I) , and f : (a,b) → R a measurable function such that
Im f ⊆ I . Then there exists η ∈ I such that the equation

b∫
a

β (t)h̃( f (t))dt −
b∫

a

u(x)h̃

⎛
⎝ α

k(x−a)
α
k

x∫
a

(x− t)
α
k −1 f (t)dt

⎞
⎠dx
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=
h̃′′(η)

2

⎡
⎢⎣

b∫
a

β (t) f 2(t)dt−
b∫

a

u(x)

⎛
⎝ α

k(x−a)
α
k

x∫
a

(x− t)
α
k −1 f (t)dt

⎞
⎠

2

dx

⎤
⎥⎦ (40)

holds true, where β and Ǎk f are defined by (30) and (34) respectively.

Proof. Applying Theorem 5 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt,
we get equation (40). �

THEOREM 22. Let the conditions of Theorem 17 be satisfied and ϕs be defined
by (9) . Let f be a positive function. Then the function ϒ : R → [0,∞) defined by

ϒ(s) =
b∫

a

β (t)ϕs( f (t))dt −
b∫

a

u(x)ϕs

⎛
⎝ α

k(x−a)
α
k

x∫
a

(x− t)
α
k −1 f (t)dt

⎞
⎠dx (41)

is exponentially convex.

Proof. Applying Theorem 6 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt
and the value of Ǎk f is defined by (34), we get (41). �

THEOREM 23. Let the conditions of Theorem 22 be satisfied. Moreover, g, h̃ ∈
C2(I) such that h̃′′(x) �= 0 for every x ∈ I and

b∫
a

β (t) h̃( f (t))dt −
b∫

a

u(x) h̃

⎛
⎝ α

k(x−a)
α
k

x∫
a

(x− t)
α
k −1 f (t)dt

⎞
⎠dx �= 0.

Then there exists η ∈ I such that

g′′(η)
h̃′′(η)

=

b∫
a

β (t)g( f (t))dt−
b∫
a

u(x)g

(
α

k(x−a)
α
k

x∫
a
(x− t)

α
k −1 f (t)dt)

)
dx

b∫
a

β (t) h̃( f (t))dt −
b∫
a

u(x) h̃

(
α

k(x−a)
α
k

x∫
a
(x− t)

α
k −1 f (t)dt

)
dx

. (42)

Proof. Applying Theorem 7 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt ,
ǩ(x,t) and Ǩ(x) are given by (32) and (33) respectively, we get (42). �

Under the assumptions of the Theorem 17, we define a linear functional by taking
the positive difference of the inequality stated in (31) as:

Ω1(Φ) =
b∫

a

β (t)Φ( f (t))dt−
b∫

a

u(x)Φ

⎛
⎝ α

k(x−a)
α
k

x∫
0

(x− t)
α
k −1 f (t)dt)

⎞
⎠dx. (43)
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We also define a linear functional by taking the positive difference of the left-hand side
and right-hand side of the inequality (35) given in Theorem 18 as:

Ω2(Φ) =
b∫

a

γ(t)Φ
(

f1(x)
f2(x)

)
dt−

b∫
a

u(x)Φ

(
Iα
a,k f1(x)

Iα
a,k f2(x)

)
dx. (44)

THEOREM 24. Let Γ = {Φp : p ∈ J} be a family of functions defined on I , such
that the function p �→ [z0,z1,z2;Φp] is n-exponentially convex in the Jensen sense on
J for every three distinct points z0, z1, z2 ∈ I . Let Ωi (i = 1,2) be linear functionals
defined by (43)and (44) . Then the function p �→ Ωi(Φp) (i = 1,2) is n-exponentially
convex in the Jensen sense on J, if it is continuous on J.

Proof. Applying Theorem 8 with Ω1 = Ω2 = (a,b), dμ1(x) = dx, dμ2(t) = dt,
we get the desired outcome. �

REMARK 6. If we choose k = 1, in inequalities (31), (35), (36), (37), (38), (39)
and equations (40), (42), we acquire [11, Corollary 3].
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