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ON THE WEAK SOLUTION u € C,_(I,E) OF A
FRACTIONAL-ORDER WEIGHTED CAUCHY
TYPE PROBLEM IN REFLEXIVE BANACH SPACES

A.M. A. EL-SAYED AND SH. A. ABD EL-SALAM

(Communicated by N. Vasylyeva)

Abstract. In this paper, we study the existence of a weak solution u € Cj_y(I,E) of the nonlin-
ear weighted Cauchy type problem of fractional-order.

1. Introduction

In this paper, we study the existence of solutions, in the Banach space Cj_q[I,E],
for the nonlinear weighted Cauchy-type problem of the following type

D% u(t) = f(t,u(t)), t >0, oo (0,1)
(1
"% u(t)];—o = b, b>0.

This problem has been studied by many authors for example in ([4]), the author sup-
posed that the function f(r,u) is continuous on Rt x R, |f(t,u)| < the 'y (t)|ul™,
u=>0,m>1,0>0, y() is a continuous function on R*. Also; In ([2]-[3]) the
author proved the existence of L; and L, solution of the same problem respectively.

2. Preliminaries

Let L;(I) be the space of Lebesgue integrable functions on the interval 7 = [0, 1].
Unless otherwise stated, E is a reflexive Banach space with norm ||.|| and dual E*. We
will denote by E,, the space E endowed with the weak topology ¢ (E,E*) and denote
by C(I,E) the space of continuous functions defined on I = [0, 1] with norm

[lullc = sup [lu(z)|]-

1€[0,1]
Also; define the space Cy_y(I,E) by
Ci_o(I,E) = {u:t""®u(t) is continuouson /= [0,1]},
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with norm

—[jri-

luller o ullc.

We recall that the fractional integral operator of order o > 0 with left-hand point a is
defined by (see [9], [14], [15] and [20])

1 (f— g)01
1% u(t) :/a uu(s) ds.

DEFINITIONS. Let E be a Banach space and let u : I — E. Then

(1) u(.) is said to be weakly continuous (measurable) at 7y € I if for every ¢ € E*
we have ¢(u(.)) continuous (measurable) at 7.

(2) A function h : E — E is said to be weakly sequentially continuous if % takes
weakly convergent sequences in E to weakly convergent sequences in E.

Note that:

(1) If u is weakly continuous on 7, then u is strongly measurable (see [7]), hence
weakly measurable.

(2) Inreflexive Banach spaces weakly measurable functions are Pettis integrable (see
[11, [7] and [13] for the definition) if and only if @(u(.)) is Lebesgue integrable
on [ forevery ¢ € E*.

Now, we present some auxiliary results that will be needed in this paper. Firstly,
we state O’Regan fixed point theorem ([12]).

THEOREM 2.1. Let E be a Banach space with Q a nonempty, bounded, closed,
convex, equicontinuous subset of C[I,E|. Suppose T : Q — Q is weakly sequentially
continuous and assume T Q(t) is weakly relatively compact in E for each t € I, holds.
Then the operator T has a fixed point in Q.

The following theorems can be found in [5], [22] and [10] respectively:

THEOREM 2.2. (Dominated convergence theorem for Pettis integral) Let u: [ —
E. Suppose there is a sequence (uy) of Pettis integrable functions from I into E such
that limy,—.e @(up) = @(u) a.e. for ¢ € E*. If there is a scalar function y € Ly (I) with
[lun()|| < w(-) a.e. forall n, then u is Pettis integrable and

/u,,(s) ds — /u(s) ds weakly V't el.
J J

THEOREM 2.3. A subset of a reflexive Banach space is weakly compact if and
only if it is closed in the weak topology and bounded in the norm topology.

THEOREM 2.4. Let Q be a weakly compact subset of C[I,E]. Then Q(t) is
weakly compact subset of E foreacht €1.
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Finally, we state some results which is an immediate consequence of the Hahn-
Banach theorem.

THEOREM 2.5. Let E be a normed space with uy # 0. then there exists a ¢ € E*
with ||@[| =1 and @(uo) = ||uo]|.

THEOREM 2.6. If ug € E is such that @(up) =0 for every ¢ € E*, then up = 0.

Now consider the fractional-order integral equation

oa—1

u(t):bt“*1+/0[ %

In [12] the author studied the integral equation

f(s,u(s)) ds, t€][0,1]. )

o) =0+ [ Fls.y(s) ds, 1€[0.T), xo € E

where E = (E,|.|) is a real Banach space, under the assumptions that f(z,.) is weakly
sequentially continuous for each 7 € [0,7] and f(.,y(.)) is Pettis integrable on [0, 7]
for each continuous function y : [0,7] — E and |f(¢,y)| < h(t) fora.e. r € [0,T] and
all y € E with |y| <rnr >0,k € L1[0,T].

Also, in [1 1] the author studied the Volterra-Hammerstein integral equation

y(t):h(t)—l-/otk(t,s) Fls.)(s)) ds, 1€[0,T], T >0,

under the assumptions that f : [0,7] x B — B is weakly-weakly continuous and 7 :
[0,T] — B is weakly continuous, where B is a reflexive Banach space.

Here we study the existence of weak solution of the fractional-order integral equa-
tion (2) such that the function f : I x B, — E satisfies the following conditions:

(1) Foreacht €1, f; = f(t,.) is weakly sequentially continuous.
(2) Foreach u € E,, f(.,u(.)) is weakly measurable on 1.

(3) for any r > 0, the weak closure of the range of f(I X B,) is weakly compact in
E (or equivalently; there exists an M, such that ||f(z,u)|| < M, for all (r,u) €
IxB,).

EXAMPLE 2.1. Let T be the interval [0,1] and define f: T — L™(T) by f(¢) =
Xjo.) - This function is weakly measurable and for each ¢ € LZ,, we have ¢ f € L; (each
¢ f is a function of bounded variation). Thus, according to Lemma 3.2 , I*f exists.
Also, the fractional order Pettis integral of f exists see [0, 16, 18].

DEFINITION 2.1. By a weak solution of (2) we mean a function u € C|_[l,E]
such that for all ¢ € E*

(t—s)%!

ou(r)) =br*! —|—/0[ T o (f(s,u(s))) ds, r€][0,1].
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3. Fractional-order integrals in reflexive Banach spaces

Here, we define the fractional-order integral operator in reflexive Banach spaces.
Definition given below is an extension of such a notion for real-valued functions.

DEFINITION 3.1. Let u : I — E be a weakly measurable function, such that
o(u(.)) € Li(I), and let @ > 0. Then the fractional (arbitrary) order Pettis integral
(shortly FPI) I%u(t) is defined by

In the above definition the sign ” [ denotes the Pettis integral.

LEMMA 3.1. [16] Let u:I— E be a weakly measurable function, such that
o(u(.)) € Li(I), and let o > 0. The fractional (arbitrary) order Pettis integral

exists for almost every t € I as a function from I into E and @(I%u(t)) =I%@(u(z)).

LEMMA 3.2. [17] Let u:1— E be weakly continuous function on [0,1]. Then,
FPI of u exists for almost every t € [0,1] as a weakly continuous function from [0,1]
to E. Moreover,

o(I%(@t)) =1%p(u(t)), forall ¢ €E".

DEFINITION 3.2. [13] Let u: I — E. We define the fractional-Pseudo derivative
(shortly FPD) of u of order o € (n—1,n), n € N by
d* _
ﬁ M(I) = Dnln au(t).
In the above definition the sign ”D” denotes the Pseudo differential operator.

LEMMA 3.3. [21] Let u:[0,1] — E be weakly continuous function on [0, 1] such
that the real-valued function I"~%@u is n-times differentiable. Then, the FPD of u of
order o € (n— 1,n) exists.

DEFINITION 3.3. A function u : I — E is called Pseudo solution of (1) if u €
C)_[I,E] has FPD of order o € (0,1), t'=%u(t)|,—o = b, b > 0 and satisfies

%(p(ll_oC u(t)) = o(f(t,u(t))), ae.on [0,1], foreach ¢ € E*.

Now, for the properties of the integrals of fractional-orders in reflexive spaces we
have the following lemma (see [16]):
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LEMMA 3.4. Let u: 1 — E be weakly measurable and ¢(u(.)) € Li(I). If o,
B €(0,1), we have:
(1) 1%1Pu(t) = 1Bu(r) forae tel.
(2) limg 1 I%u(t) = I'u(t) weakly uniformly on I if only these integrals exist on I.
(3) limg_oI%u(r) = u(t) weakly in E fora.e. t €1.
(4) If, forafixedt € I, @(u(t)) is bounded for each ¢ € E*, then lim;_,oI%u(t) = 0.

4. Main result

In this section we present our main result by proving the existence of solution of
equation (2) in C_q[I,E].
Let E be a reflexive Banach space. And let

M,
E, —ducC ,IE: h—r L
{uecialr) e <v+ s}

We will consider the set
B, ={u(t)eE: uck, tel}.

Now, we are in a position to formulate and prove our main result.

THEOREM 4.1. Let the assumptions (1)—(3) are satisfied, then equation (2) has
at least one weak solution u € Ci_q|[l,E].

Proof. Let us define the operator T as

t(t—s)%!

Tu(t tha_l—i—/ —_—

We will solve equation (2) by finding a fixed point of the operator T .
We will prove that

f(s,u(s)) ds, t€][0,1].

T :Ci_oll,E] = C1_o[LE].
First note that from assumption (2), we get that for each u € C\_o[I,E], f(.,u(.)) is
weakly measurable on . Since f has weakly compact range, then @(f(.,u(.))) is
Lebesgue integrable on I for every ¢ € E* and thus the operator 7' is well defined.
Now, we show that if u € Cy_q[I,E], then Tu € Cy_4[I,E]. Note that there exists
r>0 with ||ullc,_, = sup,; ||t %u(?)|| < b+ %
Now assumption (3) implies that

1f (t.u(0))| < M, for 1 €0, 1].

Let 7,7 € [0,1] with # > 7. Without loss of generality, assume ' ~*Tu(t) — t'~*Tu(1) #
0. Then there exists (a consequence of Theorem 2.5) ¢ € E* with ||¢|| =1 and

167 Tu(e) = o'~ Tu(o)|| = ('~ “Tu(t) — t'~*Tu(7)).
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Thus

t —g o—1
e [ (G uts)) ds

Htl—aTu(t)—Tl_aTu(T)H < I'a)

T —g o—1
o [T (s uts)) ds

)
T4l-0 _Safl_ -« _safl
<| [ = 9™ o(f(s,uls)) ds
t +l—o _S(xfl
H [ ettt ds
< l—*lz/[(;) </OT |t17a(t_s)a71_Tlfa(T_S)afl‘ ds

!

-l-/ 1% — )% ds)
T
M,

<=—F—(2(t—0)*+t—1] ). 3
i (2= 0= ) ®
which proves that Tu € Cy_y|[I,E].

Now, let

0= {u CE, : (Ve,te D[t %u(t) — ' %u(1)|| < % (2(t —1)% |t — r) },

Note that Q is nonempty, closed, bounded, convex and equicontinuous subset of
Ci_q|[l,E]. Now, we claim that 7 : Q — Q and is weakly sequentially continuous.
If this is true then according to Theorem 2.3, T'Q is bounded in C_4[I,E] (hence,
Theorem 2.4, implies TQ(r) is weakly relatively compact in E for each ¢ € I') and the
result follows immediately from Theorem 2.1. It remains to prove our claim. First we
show that 7 maps Q into Q. To see this, note that the inequality (3) shows that TQ
is norm continuous. Now, take u € Q; without loss of generality, we may assume that
t1=%1%f(¢,u(t)) # 0, then, by Theorem 2.5, there exists ¢ € E* with ||¢|| = 1 and
|1 =1% f(t,u(r) ]| = @(e' 1% f(t,u(r))). Thus

M,
11— r
t *Tult)|| < b+ ———, 4
Tl < b+ o @
therefore

T b _ M .

[1Tulle, o < +1"(1+oc)

Thus T : Q — Q. Finally, we will show that T is weakly sequentially continuous. To
see this, let {u,};"_, be a sequence in Q and let u,(r) — u(r) in E,, foreach r € [0,1].
Recall [10] that a sequence {u,};_, is weakly convergent in C[/,E] if and only if it
is weakly pointwise convergent in E. Fix ¢t € I. From the weak sequential continuity
of f(¢,.), the Lebsegue dominated convergence theorem (see assumption (3)) for the
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Pettis integral [5] implies for each ¢ € E* that @(Tu,(t)) — @(Tu(r)) a.e. on I,
Tu,(t) — Tu(t) in E\,,. So T : Q — Q is weakly sequentially continuous. The proof is
complete. [J

Now, we are looking for sufficient conditions to ensure the existence of Pseudo
solution to the nonlinear weighted Cauchy-type problem (1).
Note that, the following theorem is a generalization of the results of §3.3 in [8]:

THEOREM 4.2. If f: I X B, — E satisfies the assumptions of Theorem 4.1, then
the nonlinear weighted Cauchy-type problem (1) has a fractional-Pseudo derivative
(FPD) u € Ci_4|[I,E].

Proof. Let us remark, that by assumptions (2), (3) the FPI of f of order o0 > 0
exists and

o(I%f(t,u(t))) =1%p(f(t,u(t))), forall ¢ € E*.

Let u be a solution of equation (2), then

1 (f—s o—1
u(t) = b1 —l—/o %f(&u(s)) ds, 1€]0,1].

It is clear that
7%u(1) ;=0 = b.

Furthermore, we have
u(t) =bt* "+ 1% f(t,u(r)) (5)

since u € C)_q[I,E], then @(I'"%u(t)) = I'"%@(u(t)), for all ¢ € E* (see Lemma
3.2). From equation (5), we deduce that

P(u(r)) = b1+ (1% f(1,u(r))). (6)

Operating by I'=% on both sides of the equation (6) and using the properties of frac-
tional calculus in the space L;[0, 1] (see [19] and [20]) result in

1" “o(u(t)) = by +1o(f(1,u(1))).

Therefore,
Q' %u(t)) = by +19(f(1,u(r))).
Thus
C (o)) = 9(f,u(1))) ae.on [0,1].

That is u has the FPD of order o € (0, 1) and u is a solution of the differential equation
(1). Conversely, let u(¢) be a solution of (1), integrate both sides, then

I %@(u(t)) = 1" “@(u(t)) -0 = 1o (f (1, u(r))),
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operating by I on both sides of the last equation, then

Io(u(t) —1°C = 1" (f(r,u(1))),

differentiate both sides, then

o(u(t)) = Cit* ' =1%0(f(1,u(r))),

from the initial condition, we find that C; = b, then we obtain (2), i.e. Problem (1) and
equation (2) are equivalent to each other. [J
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