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ON THE WEAK SOLUTION u ∈ C1−α(I,E) OF A

FRACTIONAL–ORDER WEIGHTED CAUCHY

TYPE PROBLEM IN REFLEXIVE BANACH SPACES
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Abstract. In this paper, we study the existence of a weak solution u ∈C1−α (I,E) of the nonlin-
ear weighted Cauchy type problem of fractional-order.

1. Introduction

In this paper, we study the existence of solutions, in the Banach space C1−α [I,E] ,
for the nonlinear weighted Cauchy-type problem of the following type

⎧⎨
⎩

Dα u(t) = f (t,u(t)), t > 0, α ∈ (0,1)

t1−α u(t)|t=0 = b, b > 0.
(1)

This problem has been studied by many authors for example in ([4]), the author sup-
posed that the function f (t,u) is continuous on R+ ×R , | f (t,u)| � tμe−σtψ(t)|u|m ,
μ � 0, m > 1, σ > 0, ψ(t) is a continuous function on R+ . Also; In ([2]–[3]) the
author proved the existence of L1 and Lp solution of the same problem respectively.

2. Preliminaries

Let L1(I) be the space of Lebesgue integrable functions on the interval I = [0,1] .
Unless otherwise stated, E is a reflexive Banach space with norm ||.|| and dual E∗ . We
will denote by Ew the space E endowed with the weak topology σ(E,E∗) and denote
by C(I,E) the space of continuous functions defined on I = [0,1] with norm

||u||C = sup
t∈[0,1]

||u(t)||.

Also; define the space C1−α(I,E) by

C1−α(I,E) =
{
u : t1−αu(t) is continuous on I = [0,1]

}
,

Mathematics subject classification (2010): 34A12, 34A08, 35D30.
Keywords and phrases: Weighted Cauchy type problem, fractional-order, weak solution.

c© � � , Zagreb
Paper FDC-09-04

55

http://dx.doi.org/10.7153/fdc-2019-09-04


56 A. M. A. EL-SAYED AND SH. A. ABD EL-SALAM

with norm
||u||C1−α = ||t1−α u||C.

We recall that the fractional integral operator of order α > 0 with left-hand point a is
defined by (see [9], [14], [15] and [20])

Iα
a u(t) =

∫ t

a

(t − s)α−1

Γ(α)
u(s) ds.

DEFINITIONS. Let E be a Banach space and let u : I → E . Then

(1) u(.) is said to be weakly continuous (measurable) at t0 ∈ I if for every ϕ ∈ E∗
we have ϕ(u(.)) continuous (measurable) at t0 .

(2) A function h : E → E is said to be weakly sequentially continuous if h takes
weakly convergent sequences in E to weakly convergent sequences in E .

Note that:

(1) If u is weakly continuous on I , then u is strongly measurable (see [7]), hence
weakly measurable.

(2) In reflexive Banach spaces weakly measurable functions are Pettis integrable (see
[1], [7] and [13] for the definition) if and only if ϕ(u(.)) is Lebesgue integrable
on I for every ϕ ∈ E∗ .

Now, we present some auxiliary results that will be needed in this paper. Firstly,
we state O’Regan fixed point theorem ([12]).

THEOREM 2.1. Let E be a Banach space with Q a nonempty, bounded, closed,
convex, equicontinuous subset of C[I,E] . Suppose T : Q → Q is weakly sequentially
continuous and assume TQ(t) is weakly relatively compact in E for each t ∈ I , holds.
Then the operator T has a fixed point in Q.

The following theorems can be found in [5], [22] and [10] respectively:

THEOREM 2.2. (Dominated convergence theorem for Pettis integral) Let u : I →
E . Suppose there is a sequence (un) of Pettis integrable functions from I into E such
that limn→∞ ϕ(un) = ϕ(u) a.e. for ϕ ∈ E∗ . If there is a scalar function ψ ∈ L1(I) with
||un(·)|| < ψ(·) a.e. for all n , then u is Pettis integrable and

∫
J
un(s) ds →

∫
J
u(s) ds weakly ∀ t ∈ I.

THEOREM 2.3. A subset of a reflexive Banach space is weakly compact if and
only if it is closed in the weak topology and bounded in the norm topology.

THEOREM 2.4. Let Q be a weakly compact subset of C[I,E] . Then Q(t) is
weakly compact subset of E for each t ∈ I .
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Finally, we state some results which is an immediate consequence of the Hahn-
Banach theorem.

THEOREM 2.5. Let E be a normed space with u0 �= 0 . then there exists a ϕ ∈ E∗
with ||ϕ || = 1 and ϕ(u0) = ||u0|| .

THEOREM 2.6. If u0 ∈ E is such that ϕ(u0) = 0 for every ϕ ∈ E∗ , then u0 = 0 .

Now consider the fractional-order integral equation

u(t) = b tα−1 +
∫ t

0

(t − s)α−1

Γ(α)
f (s,u(s)) ds, t ∈ [0,1]. (2)

In [12] the author studied the integral equation

y(t) = x0 +
∫ t

0
f (s,y(s)) ds, t ∈ [0,T ], x0 ∈ E

where E = (E, |.|) is a real Banach space, under the assumptions that f (t, .) is weakly
sequentially continuous for each t ∈ [0,T ] and f (.,y(.)) is Pettis integrable on [0,T ]
for each continuous function y : [0,T ] → E and | f (t,y)| � hr(t) for a.e. t ∈ [0,T ] and
all y ∈ E with |y| � r,r > 0,hr ∈ L1[0,T ] .
Also, in [11] the author studied the Volterra-Hammerstein integral equation

y(t) = h(t)+
∫ t

0
k(t,s) f (s,y(s)) ds, t ∈ [0,T ], T > 0,

under the assumptions that f : [0,T ]× B → B is weakly-weakly continuous and h :
[0,T ] → B is weakly continuous, where B is a reflexive Banach space.

Here we study the existence of weak solution of the fractional-order integral equa-
tion (2) such that the function f : I×Br → E satisfies the following conditions:

(1) For each t ∈ I, ft = f (t, .) is weakly sequentially continuous.

(2) For each u ∈ Er, f (.,u(.)) is weakly measurable on I .

(3) for any r > 0, the weak closure of the range of f (I ×Br) is weakly compact in
E (or equivalently; there exists an Mr such that || f (t,u)|| � Mr for all (t,u) ∈
I×Br ).

EXAMPLE 2.1. Let T be the interval [0,1] and define f : T → L∞(T ) by f (t) =
χ[0,t] . This function is weakly measurable and for each φ ∈ L∗

∞ , we have φ f ∈ L1 (each
φ f is a function of bounded variation). Thus, according to Lemma 3.2 , Iα f exists.
Also, the fractional order Pettis integral of f exists see [6, 16, 18].

DEFINITION 2.1. By a weak solution of (2) we mean a function u ∈ C1−α [I,E]
such that for all ϕ ∈ E∗

ϕ(u(t)) = b tα−1 +
∫ t

0

(t − s)α−1

Γ(α)
ϕ( f (s,u(s))) ds, t ∈ [0,1].
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3. Fractional-order integrals in reflexive Banach spaces

Here, we define the fractional-order integral operator in reflexive Banach spaces.
Definition given below is an extension of such a notion for real-valued functions.

DEFINITION 3.1. Let u : I → E be a weakly measurable function, such that
ϕ(u(.)) ∈ L1(I) , and let α > 0. Then the fractional (arbitrary) order Pettis integral
(shortly FPI) Iαu(t) is defined by

Iα u(t) =
∫ t

0

(t − s)α−1

Γ(α)
u(s) ds.

In the above definition the sign ”
∫

” denotes the Pettis integral.

LEMMA 3.1. [16] Let u : I → E be a weakly measurable function, such that
ϕ(u(.)) ∈ L1(I) , and let α > 0 . The fractional (arbitrary) order Pettis integral

Iα u(t) =
∫ t

0

(t− s)α−1

Γ(α)
u(s) ds

exists for almost every t ∈ I as a function from I into E and ϕ(Iαu(t)) = Iα ϕ(u(t)) .

LEMMA 3.2. [17] Let u : I → E be weakly continuous function on [0,1] . Then,
FPI of u exists for almost every t ∈ [0,1] as a weakly continuous function from [0,1]
to E . Moreover,

ϕ(Iαu(t)) = Iα ϕ(u(t)), for all ϕ ∈ E∗.

DEFINITION 3.2. [13] Let u : I → E . We define the fractional-Pseudo derivative
(shortly FPD) of u of order α ∈ (n−1,n) , n ∈ N by

dα

dtα u(t) = DnIn−αu(t).

In the above definition the sign ”D” denotes the Pseudo differential operator.

LEMMA 3.3. [21] Let u : [0,1]→ E be weakly continuous function on [0,1] such
that the real-valued function In−αϕu is n-times differentiable. Then, the FPD of u of
order α ∈ (n−1,n) exists.

DEFINITION 3.3. A function u : I → E is called Pseudo solution of (1) if u ∈
C1−α [I,E] has FPD of order α ∈ (0,1) , t1−αu(t)|t=0 = b , b > 0 and satisfies

d
dt

ϕ(I1−α u(t)) = ϕ( f (t,u(t))), a.e. on [0,1], for each ϕ ∈ E∗.

Now, for the properties of the integrals of fractional-orders in reflexive spaces we
have the following lemma (see [16]):
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LEMMA 3.4. Let u : I → E be weakly measurable and ϕ(u(.)) ∈ L1(I) . If α ,
β ∈ (0,1) , we have:

(1) Iα Iβ u(t) = Iα+β u(t) for a.e. t ∈ I .

(2) limα→1 Iαu(t) = I1u(t) weakly uniformly on I if only these integrals exist on I .

(3) limα→0 Iαu(t) = u(t) weakly in E for a.e. t ∈ I .

(4) If, for a fixed t ∈ I , ϕ(u(t)) is bounded for each ϕ ∈ E∗ , then limt→0Iαu(t) = 0 .

4. Main result

In this section we present our main result by proving the existence of solution of
equation (2) in C1−α [I,E] .

Let E be a reflexive Banach space. And let

Er =
{

u ∈C1−α [I,E] : ||u||C1−α < b+
Mr

Γ(1+ α)

}
.

We will consider the set

Br = {u(t) ∈ E : u ∈ Er, t ∈ I}.
Now, we are in a position to formulate and prove our main result.

THEOREM 4.1. Let the assumptions (1)–(3) are satisfied, then equation (2) has
at least one weak solution u ∈C1−α [I,E] .

Proof. Let us define the operator T as

Tu(t) = b tα−1 +
∫ t

0

(t − s)α−1

Γ(α)
f (s,u(s)) ds, t ∈ [0,1].

We will solve equation (2) by finding a fixed point of the operator T .
We will prove that

T : C1−α [I,E] →C1−α [I,E].

First note that from assumption (2), we get that for each u ∈ C1−α [I,E] , f (.,u(.)) is
weakly measurable on I . Since f has weakly compact range, then ϕ( f (.,u(.))) is
Lebesgue integrable on I for every ϕ ∈ E∗ and thus the operator T is well defined.
Now, we show that if u ∈ C1−α [I,E] , then Tu ∈ C1−α [I,E] . Note that there exists
r > 0 with ||u||C1−α = supt∈I ||t1−αu(t)|| < b+ Mr

Γ(1+α) .
Now assumption (3) implies that

|| f (t,u(t))|| � Mr for t ∈ [0,1].

Let t,τ ∈ [0,1] with t > τ . Without loss of generality, assume t1−αTu(t)−τ1−αTu(τ) �=
0. Then there exists (a consequence of Theorem 2.5) ϕ ∈ E∗ with ||ϕ || = 1 and

||t1−αTu(t)− τ1−αTu(τ)|| = ϕ(t1−αTu(t)− τ1−αTu(τ)).
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Thus

||t1−αTu(t)− τ1−αTu(τ)|| �
∣∣∣∣t1−α

∫ t

0

(t − s)α−1

Γ(α)
ϕ( f (s,u(s))) ds

−τ1−α
∫ τ

0

(τ − s)α−1

Γ(α)
ϕ( f (s,u(s))) ds

∣∣∣∣
�

∣∣∣∣
∫ τ

0

t1−α(t− s)α−1− τ1−α(τ − s)α−1

Γ(α)
ϕ( f (s,u(s))) ds

∣∣∣∣
+

∣∣∣∣
∫ t

τ

t1−α(t− s)α−1

Γ(α)
ϕ( f (s,u(s))) ds

∣∣∣∣
� Mr

Γ(α)

(∫ τ

0
|t1−α(t− s)α−1− τ1−α(τ − s)α−1| ds

+
∫ t

τ
|t1−α(t − s)α−1| ds

)

� Mr

Γ(1+ α)

(
2(t− τ)α + |t− τ|

)
. (3)

which proves that Tu ∈C1−α [I,E] .
Now, let

Q =
{

u ∈ Er : (∀t,τ ∈ I)||t1−αu(t)− τ1−αu(τ)|| � Mr

Γ(1+ α)

(
2(t− τ)α + |t− τ|

)}
,

Note that Q is nonempty, closed, bounded, convex and equicontinuous subset of
C1−α [I,E] . Now, we claim that T : Q → Q and is weakly sequentially continuous.
If this is true then according to Theorem 2.3, TQ is bounded in C1−α [I,E] (hence,
Theorem 2.4, implies TQ(t) is weakly relatively compact in E for each t ∈ I ) and the
result follows immediately from Theorem 2.1. It remains to prove our claim. First we
show that T maps Q into Q . To see this, note that the inequality (3) shows that TQ
is norm continuous. Now, take u ∈ Q ; without loss of generality, we may assume that
t1−αIα f (t,u(t)) �= 0, then, by Theorem 2.5, there exists ϕ ∈ E∗ with ||ϕ || = 1 and
||t1−αIα f (t,u(t))|| = ϕ(t1−αIα f (t,u(t))) . Thus

||t1−αTu(t)|| � b+
Mr

Γ(1+ α)
, (4)

therefore

||Tu||C1−α < b+
Mr

Γ(1+ α)
.

Thus T : Q → Q . Finally, we will show that T is weakly sequentially continuous. To
see this, let {un}∞

n=1 be a sequence in Q and let un(t) → u(t) in Ew for each t ∈ [0,1] .
Recall [10] that a sequence {un}∞

n=1 is weakly convergent in C[I,E] if and only if it
is weakly pointwise convergent in E . Fix t ∈ I . From the weak sequential continuity
of f (t, .) , the Lebsegue dominated convergence theorem (see assumption (3)) for the
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Pettis integral [5] implies for each ϕ ∈ E∗ that ϕ(Tun(t)) → ϕ(Tu(t)) a.e. on I ,
Tun(t) → Tu(t) in Ew . So T : Q → Q is weakly sequentially continuous. The proof is
complete. �

Now, we are looking for sufficient conditions to ensure the existence of Pseudo
solution to the nonlinear weighted Cauchy-type problem (1).

Note that, the following theorem is a generalization of the results of §3.3 in [8]:

THEOREM 4.2. If f : I×Br → E satisfies the assumptions of Theorem 4.1, then
the nonlinear weighted Cauchy-type problem (1) has a fractional-Pseudo derivative
(FPD) u ∈C1−α [I,E] .

Proof. Let us remark, that by assumptions (2), (3) the FPI of f of order α > 0
exists and

ϕ(Iα f (t,u(t))) = Iα ϕ( f (t,u(t))), for all ϕ ∈ E∗.

Let u be a solution of equation (2), then

u(t) = btα−1 +
∫ t

0

(t− s)α−1

Γ(α)
f (s,u(s)) ds, t ∈ [0,1].

It is clear that
t1−αu(t)|t=0 = b.

Furthermore, we have
u(t) = b tα−1 + Iα f (t,u(t)) (5)

since u ∈ C1−α [I,E] , then ϕ(I1−αu(t)) = I1−αϕ(u(t)) , for all ϕ ∈ E∗ (see Lemma
3.2). From equation (5), we deduce that

ϕ(u(t)) = btα−1 + ϕ(Iα f (t,u(t))). (6)

Operating by I1−α on both sides of the equation (6) and using the properties of frac-
tional calculus in the space L1[0,1] (see [19] and [20]) result in

I1−α ϕ(u(t)) = b1 + Iϕ( f (t,u(t))).

Therefore,
ϕ(I1−αu(t)) = b1 + Iϕ( f (t,u(t))).

Thus
d
dt

ϕ(I1−αu(t)) = ϕ( f (t,u(t))) a.e. on [0,1].

That is u has the FPD of order α ∈ (0,1) and u is a solution of the differential equation
(1). Conversely, let u(t) be a solution of (1), integrate both sides, then

I1−αϕ(u(t))− I1−αϕ(u(t))|t=0 = Iϕ( f (t,u(t))),
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operating by Iα on both sides of the last equation, then

Iϕ(u(t))− IαC = I1+α ϕ( f (t,u(t))),

differentiate both sides, then

ϕ(u(t))−C1t
α−1 = Iα ϕ( f (t,u(t))),

from the initial condition, we find that C1 = b , then we obtain (2), i.e. Problem (1) and
equation (2) are equivalent to each other. �
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