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NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

WITH m–POINT INTEGRAL BOUNDARY CONDITIONS

TUGBA SENLIK CERDIK, NUKET AYKUT HAMAL AND FULYA YORUK DEREN

(Communicated by J. Tariboon)

Abstract. In this paper, we consider the existence and uniqueness of solution for a fractional
order differential equation involving the Riemann-Liouville fractional derivative. By applying
some standard fixed point theorems, we obtain new results on the existence and uniqueness of
solution.

1. Introduction

In this paper, we focus on the existence and uniqueness of solutions for nonlinear
fractional differential equation given by

⎧⎪⎨
⎪⎩

−Dpx(t) = A1 f1(t,x(t))+A2Iq f2(t,x(t)), n−1 < p � n,n � 2, t ∈ (0,1),

Dγ+kx(0) = 0, 0 � k � n−2, Dγx(1) =
m−1

∑
i=1

αi

∫ ηi

ηi−1

Dγx(s)dA(s)

(1)

where 0 < γ < 1, p− γ > n− 1, 0 < q < 1, n,k ∈ N and 0 = η0 < η1 < .. . <
ηm−2 < ηm−1 = 1, αi � 0 for i ∈ {1,2, . . . ,m−1} .

∫ ηi
ηi−1

Dγx(s)dA(s) is the Riemann-
Stieltjes integral with positive measure. A is a function of bounded variation with
∑m−1

i=1 αi
∫ ηi

ηi−1
sp−γ−1dA(s) �= 1. Here, Dp denotes the Riemann-Liouville fractional

derivative of order p and f1, f2 are given continuous functions, A1,A2 are real con-
stants such that A1 or A2 is different from zero.

Recently, boundary value problems for fractional differential equations are of great
importance for the researchers due to their applications such as economics, engineering
and other fields. Also, this topic has been developed very quickly on the existence re-
sults for nonlinear fractional differential equations with local/nonlocal boundary condi-
tions; for example, see [8, 18, 1, 6, 11, 16, 17, 10, 4, 3, 14, 9, 5, 13] and the references

Mathematics subject classification (2010): 34B10, 34B18.
Keywords and phrases: Integral boundary condition, fractional differential equation, fixed point the-

ory.

c© � � , Zagreb
Paper FDC-09-05

65

http://dx.doi.org/10.7153/fdc-2019-09-05


66 T. S. CERDIK, N. A. HAMAL AND F. Y. DEREN

therein. For instance, Agarwal et al. [1] discussed the following integro-differential
equation {−Dαx(t) = A f (t,x(t))+BIβg(t,x(t)), 2 < α � 3, t ∈ [0,1],

Dδ x(0) = 0, Dδ+1x(0) = 0, Dδ x(1)−Dδx(η) = a,

where 0 < δ � 1, α − δ > 3, 0 < β < 1, 0 < η < 1, D(.) denotes the Riemann-
Liouville fractional derivative of order (.) , f ,g are given continuous functions, and
A,B,a are real constants. Here, they studied the existence of solutions for a boundary
value problem of integro-differential equations via Sadovskii’s fixed point theorem for
condensing maps.

The paper is structured as follows. After introducing the basic definitions and lem-
mas which are required to prove our main results, we prove an existence and uniqueness
results by means of the Leray-Schauder’s nonlinear alternative theorem, the Banach’s
fixed point theorem and the Boyd-Wong Contraction Principle.

2. Preliminaries

In this section, we give some basic definitions and lemmas which are useful for
the presentation of our main results.

DEFINITION 1. [15, 12] The Riemann Liouville fractional integral of order p ∈
R

+ for a function h : (0,∞) → R is defined by

I p
0+h(t) =

1
Γ(p)

∫ t

0
(t − s)p−1h(s)ds,

provided that the right hand side is pointwise defined on (0,+∞).

DEFINITION 2. [15, 12] The Riemann-Liouville fractional derivative of order
p > 0 for a function h : (0,∞) → R is defined by

Dp
0+h(t) =

( d
dt

)n
In−p
0+ h(t) =

1
Γ(n− p)

( d
dt

)n ∫ t

0
(t − s)n−p−1h(s)ds,

where n is the smallest integer greater than or equal to p , provided that the right-hand
side is defined pointwise.

LEMMA 1. [12] Let u ∈C(0,1)∩L(0,1) with a fractional derivative of order p
( p > 0 ) that belongs to C(0,1)∩L(0,1) . Then

Ip
0+Dp

0+u(t) = u(t)+ c1t
p−1 + c2t

α−2 + . . .+ cnt
p−n,

for some ci ∈ R , i = 1, . . . ,n, where n is the smallest integer greater than or equal to
p.
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By using the substitution x(t) = Iγy(t) = D−γy(t) , one can transform the fractional
BVP (1) to the following form:

⎧⎪⎨
⎪⎩

−Dp−γy(t) = A1 f1(t, Iγy(t))+A2Iq f2(t, Iγy(t)), t ∈ (0,1),

y(k)(0) = 0, 0 � k � n−2, y(1) =
m−1

∑
i=1

αi

∫ ηi

ηi−1

y(s)dA(s).
(2)

To obtain the solution of the fractional BVP (2), the following lemma is essential.

LEMMA 2. For any h ∈C[0,1] , the unique solution of the linear fractional BVP

⎧⎪⎨
⎪⎩

−Dp−γy(t) = h(t), t ∈ (0,1),

y(k)(0) = 0, 0 � k � n−2, y(1) =
m−1

∑
i=1

αi

∫ ηi

ηi−1

y(s)dA(s)
(3)

is

y(t) =− I p−γh(t)

+
t p−γ−1

1−∑m−1
i=1 αi

∫ ηi
ηi−1

sp−γ−1dA(s)

(
I p−γh(1)−

m−1

∑
i=1

αi

∫ ηi

ηi−1

I p−γh(s)dA(s)
)
.

Proof. By Lemma 1, the solutions of equation (3) are

y(t) = −I p−γh(t)− c1t
p−γ−1− c2t

p−γ−2− . . .− cnt
p−γ−n,

where ci (i = 1,2, . . .n)∈ R are arbitrary constants. By the conditions y(k)(0) = 0, 0 �
k � n−2, we obtain c2 = . . . = cn = 0. Then we conclude that

y(t) = −I p−γh(t)− c1t
p−γ−1. (4)

Now, by the condition y(1) = ∑m−1
i=1 αi

∫ ηi
ηi−1

y(s)dA(s), we can get

c1 =
1

1−∑m−1
i=1 αi

∫ ηi
ηi−1

sp−γ−1dA(s)

[
− I p−γh(1)+

m−1

∑
i=1

αi

∫ ηi

ηi−1

I p−γh(s)dA(s)
]
.

Combining this value with (4), we obtain

y(t) =− I p−γh(t)

+
t p−γ−1

1−∑m−1
i=1 αi

∫ ηi
ηi−1

sp−γ−1dA(s)

(
I p−γh(1)−

m−1

∑
i=1

αi

∫ ηi

ηi−1

I p−γh(s)dA(s)
)
.

The proof is complete. �
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Notice that, the solution of the equation −Dpx(t) = h(t) depends on the boundary
conditions given by (1) can be expressed as

x(t) = Iγy(t)

= Iγ
[
− I p−γh(t)

+
t p−γ−1

1−∑m−1
i=1 αi

∫ ηi
ηi−1

sp−γ−1dA(s)

(
I p−γh(1)−

m−1

∑
i=1

αi

∫ ηi

ηi−1

I p−γh(s)dA(s)
)]

= −I ph(t)+
1

1−∑m−1
i=1 αi

∫ ηi
ηi−1

sp−γ−1dA(s)

(
I p−γh(1)−

m−1

∑
i=1

αi

∫ ηi

ηi−1

I p−γh(s)dA(s)
)

× 1
Γ(γ)

∫ t

0
(t− s)γ−1sp−γ−1ds

= −I ph(t)+
1

1−∑m−1
i=1 αi

∫ ηi
ηi−1

sp−γ−1dA(s)

(
I p−γh(1)−

m−1

∑
i=1

αi

∫ ηi

ηi−1

I p−γh(s)dA(s)
)

×
{ t p−1

Γ(γ)

∫ 1

0
(1−ν)γ−1ν p−γ−1dν

}
= −I ph(t)

+
t p−1Γ(p− γ)

Γ(p)(1−∑m−1
i=1 αi

∫ ηi
ηi−1

sp−γ−1dA(s))

(
I p−γh(1)−

m−1

∑
i=1

αi

∫ ηi

ηi−1

I p−γh(s)dA(s)
)
.

Assume that C = C([0,1],R) denotes the Banach space endowed with the norm
defined by ‖u‖ = supt∈[0,1] |u(t)| .

Next, we introduce an operator T : C → C as

(T x)(t) = −A1

∫ t

0

(t− s)p−1

Γ(p)
f1(s,x(s))ds−A2

∫ t

0

(t − s)p+q−1

Γ(p+q)
f2(s,x(s))ds

+ t p−1θ
[
A1

∫ 1

0

(1− s)p−γ−1

Γ(p− γ)
f1(s,x(s))ds

+A2

∫ 1

0

(1− s)p−γ+q−1

Γ(p− γ +q)
f2(s,x(s))ds

−A1

m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ−1

Γ(p− γ)
f1(η ,x(η))dηdA(s)

−A2

m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ+q−1

Γ(p− γ +q)
f2(η ,x(η))dηdA(s)

]
, (5)

where

θ =
Γ(p− γ)

Γ(p)[1−∑m−1
i=1 αi

∫ ηi
ηi−1

sp−γ−1dA(s)]
.
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It can be said that x is a solution of the fractional BVP (1) if and only if x is a
fixed point of the operator T on C . For easy statement, denote

Λ1 = |A1|
[ 1

Γ(p+1)
+ θ

( 1
Γ(p− γ +1)

+
m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ+1

Γ(p− γ)
dηdA(s)

)]
,

Λ2 = |A2|
[ 1

Γ(p+q+1)
+θ

( 1
Γ(p−γ+q+1)

+
m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ+q+1

Γ(p−γ+q)
dηdA(s)

)]
.

3. Main results

By using the Leray-Schauder’s nonlinear alternative theorem [2], the Banach’s
fixed point theorem and Boyd-Wong Contraction Principle [7], we deal with the exis-
tence of solution for the fractional BVP (1).

THEOREM 1. Suppose that f1, f2 : [0,1]×R → R are continuous functions and
f1(t,0) �≡ 0 or f2(t,0) �≡ 0 on t ∈ [0,1] . Assume that:

(A1) There exist functions w,w1 ∈ L1([0,1],R+) and nondecreasing functions ψ ,ψ1 :
R

+ → R
+ such that

| f1(t,x)| � w(t)ψ(‖x‖), | f2(t,x)| � w1(t)ψ1(‖x‖),
for all (t,x) ∈ [0,1]×R .

(A2) There exists a constant ι > 0 such that

ι
ψ(ι)||p||Λ1 + ψ1(ι)||p1||Λ1

> 1.

Then, the fractional BVP (1) has at least one solution on [0,1] .

Proof. By taking into account the operator T : C → C with

(T x)(t) = −A1

∫ t

0

(t− s)p−1

Γ(p)
f1(s,x(s))ds−A2

∫ t

0

(t − s)p+q−1

Γ(p+q)
f2(s,x(s))ds

+ t p−1θ
[
A1

∫ 1

0

(1− s)p−γ−1

Γ(p− γ)
f1(s,x(s))ds

+A2

∫ 1

0

(1− s)p−γ+q−1

Γ(p− γ +q)
f2(s,x(s))ds

−A1

m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ−1

Γ(p− γ)
f1(η ,x(η))dηdA(s)

−A2

m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ+q−1

Γ(p− γ +q)
f2(η ,x(η))dηdA(s)

]
,
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we take the equation x = λT x for λ ∈ (0,1) and let x be a solution. After that, the
following is obtained.

‖x‖ = ‖λ (T x)‖
� |A1|ψ(||x||)||w||

[ 1
Γ(p+1)

+ θ
( 1

Γ(p− γ +1)

+
m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ+1

Γ(p− γ)
dηdA(s)

)]

+ |A2|ψ1(||x||)||w1||
[ 1

Γ(p+q+1)
+ θ

( 1
Γ(p− γ +q+1)

+
m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ+q+1

Γ(p− γ +q)
dηdA(s)

)]
� ψ(||x||)||w||Λ1 + ψ1(||x||)||w1||Λ2,

and consequently

‖x‖
ψ(||x||)||w||Λ1 + ψ1(||x||)||w1||Λ2

� 1.

From (A2), there exists ι such that ‖x‖ �= ι . Let us set

K = {x ∈C([0,1],R) : ‖x‖ < ι}.

Obviously, the operator T : K → C([0,1],R) is completely continuous. From the
choice of K , there is no x ∈ ∂K such that x = λT (x) for some λ ∈ (0,1) . As a
result, by the Leray-Schauder’s nonlinear alternative theorem, T has a fixed point x ∈
K̄ which is a solution of the fractional BVP (1). The proof is completed. �

THEOREM 2. Assume that f1, f2 : [0,1]×R → R are continuous functions and
f1(t,0) �≡ 0 or f2(t,0) �≡ 0 on t ∈ [0,1] satisfying the condition

(A3) | f1(t,x)− f1(t,y)| � L1|x− y| , | f2(t,x)− f2(t,y)| � L2|x− y| , for t ∈ [0,1] ,
L1,L2 > 0 , x,y ∈ R .

Then the fractional BVP (1) has a unique solution if L < 1
Λ1+Λ2

, where L = max{L1,L2} .

Proof. Let supt∈[0,1] | f1(t,0)| = M1 and supt∈[0,1] | f2(t,0)| = M2 . Assume that

M = max{M1,M2} , Choosing r >
(Λ1 + Λ2)M

1−L(Λ1 + Λ2)
, we indicate that T Kr ⊂Kr , where

Kr = {x ∈ C : ‖x‖ � r} . For x ∈ Kr , from (A3) | f1(s,x(s))| � | f1(s,x(s))− f1(s,0)|+
| f1(s,0)| � L1r+M1 , | f2(s,x(s))| � | f2(s,x(s))− f2(s,0)|+ | f2(s,0)| � L2r+M2 . By
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(A3) , for x ∈ Kr , we obtain that

‖(T x)‖
� (Lr+M) sup

t∈[0,1]

{
|A1|

[ 1
Γ(p+1)

+θ
( 1

Γ(p−γ+1)
+

m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ+1

Γ(p−γ)
dηdA(s)

)]

+|A2|
[ 1

Γ(p+q+1)
+θ

( 1
Γ(p−γ+q+1)

+
m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ+q+1

Γ(p−γ+q)
dηdA(s)

)]}
� (Lr+M)(Λ1 + Λ2) < r.

If x,y ∈ C , and t ∈ [0,1] , then

‖T x−T y‖

� sup
t∈[0,1]

{
|A1|

∫ t

0

(t− s)p−1

Γ(p)
| f1(s,x(s))− f1(s,y(s))|ds

+ |A2|
∫ t

0

(t − s)p+q−1

Γ(p+q)
| f2(s,x(s))− f2(s,y(s))|ds

+ θ t p−1
[
|A1|

∫ 1

0

(1− s)p−γ−1

Γ(p− γ)
| f1(s,x(s))− f2(s,y(s))|ds

+ |A2|
∫ 1

0

(1− s)p−γ+q−1

Γ(p− γ +q)
| f2(s,x(s))− f2(s,y(s))|ds

+ |A1|
m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ−1

Γ(p− γ)
| f1(η ,x(η))− f1(η ,y(η))|dηdA(s)

+ |A2|
m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ+q−1

Γ(p− γ +q)
| f2(η ,x(η))− f2(η ,y(η))|dηdA(s)

]}

� L
{
|A1|

[ 1
Γ(p+1)

+ θ
( 1

Γ(p− γ +1)
+

m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ+1

Γ(p− γ)
dηdA(s)

)]

+ |A2|
[ 1

Γ(p+q+1)
+ θ

( 1
Γ(p− γ +q+1)

+
m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ+q+1

Γ(p− γ +q)
dηdA(s)

)]}
‖x− y‖

= L(Λ1 + Λ2)‖x− y‖.

As L < 1/Λ1 + Λ2 , T is a contraction. Hence, by the Banach’s fixed point theorem,
the fractional BVP (1) has a unique solution. The proof is completed. �
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EXAMPLE 1. Consider the following fractional boundary value problem⎧⎨
⎩

−D3/2x(t) = f1(t,x(t))+ I1/3 f2(t,x(t)), 1 < p � 2, t ∈ (0,1),

D1/4x(0) = 0, D1/4x(1) = 1
2

∫ 1
4

0 D1/4x(s)ds+ 1
2

∫ 1
1
3
D1/4x(s)ds.

(6)

Here n = 2, p = 3/2, γ = 1/4, q = 1/3, a1 = 1/2, a2 = 0, a3 = 1/2, η0 = 0, η1 =

1/4, η2 = 1/3, η3 = 1, and A(s) = s , f1(t,x) =
1

t2 +10
cosx , f2(t,x) =

1
t2 +12

sinx .

As | f1(t,x)− f1(t,y)| � 1
10

|x− y|, and | f2(t,x)− f2(t,y)| � 1
12

|x− y|. Then, (A3) is

satisfied with L = max{L1,L2} =
1
10

. Further, Λ1 = 2.122, Λ2 = 1.659 and

L(Λ1 + Λ2) 	 0.3781 < 1.

Therefore, by the conclusion of Theorem 2, the fractional BVP (6) has a unique solu-
tion.

Now we present another variant of existence-uniqueness result. This result is based
on Boyd-Wong Contraction Principle.

DEFINITION 3. Assume that E is a Banach space and T : E→ E is a mapping. If
there exists a continuous nondecreasing function ψ : R+ → R+ such that ψ(0) = 0 and
ψ(ε) < ε for all ε > 0 with the property:

||Tx−Ty||� ψ(||x− y||), ∀x,y ∈ F.

then, we say that T is a nonlinear contraction.

THEOREM 3. (Boyd-Wong Contraction Principle) [7] Suppose that B is a Ba-
nach space and T : B→ B is a nonlinear contraction. Then T has a unique fixed point
in B.

THEOREM 4. Assume that f1, f2 : [0,1]×R → R are continuous functions and
H1, H2 > 0 satisfying the condition

(A4) | f1(t,x)− f1(t,y)| � |x− y|
H1 + |x− y| , | f2(t,x)− f2(t,y)| � |x− y|

H2 + |x− y| , for t ∈
[0,1] , x,y ∈ R .

Then the fractional BVP (1) has a unique solution on [0,1] .

Proof. We define an operator T : C → C as in (5) and a continuous nondecreas-
ing function ψ : R

+ → R
+ by

ψ(ε) =
Hε

H + ε
,∀ε � 0,
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where Λ1 +Λ2 � H � min{H1, H2} . We notice that the function ψ satisfies ψ(0) = 0
and ψ(ε) < ε for all ε > 0. For any x,y ∈ C , and for each t ∈ [0,1] , we obtain

‖T x−T y‖

� sup
t∈[0,1]

{
|A1|

∫ t

0

(t− s)p−1

Γ(p)
| f1(s,x(s))− f1(s,y(s))|ds

+ |A2|
∫ t

0

(t − s)p+q−1

Γ(p+q)
| f2(s,x(s))− f2(s,y(s))|ds

+ θ t p−1
[
|A1|

∫ 1

0

(1− s)p−γ−1

Γ(p− γ)
| f1(s,x(s))− f2(s,y(s))|ds

+ |A2|
∫ 1

0

(1− s)p−γ+q−1

Γ(p− γ +q)
| f2(s,x(s))− f2(s,y(s))|ds

+ |A1|
m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ−1

Γ(p− γ)
| f1(η ,x(η))− f1(η ,y(η))|dηdA(s)

+ |A2|
m−1

∑
i=1

αi

∫ ηi

ηi−1

∫ s

0

(s−η)p−γ+q−1

Γ(p− γ +q)
| f2(η ,x(η))− f2(η ,y(η))|dηdA(s)

]}

� |x− y|
H1 + |x− y|Λ1 +

|x− y|
H2 + |x− y|Λ2

� ψ(||x− y||).
Then, we get ||Tx−Ty||� ψ(||x− y||). Hence, T is a nonlinear contraction. Thus, by
Theorem 3 the operator T has a unique fixed point which is the unique solution of the
fractional BVP (1). The proof is completed. �

EXAMPLE 2. Consider the following fractional boundary value problem⎧⎨
⎩

−D5/2x(t) = f1(t,x(t))+ I1/2 f2(t,x(t)), 2 < p � 3, t ∈ (0,1),

D1/4x(0) = D5/4x(0) = 0, D1/4x(1) = 1
2

∫ 1
8

0 D1/4x(s)ds+ 1
2

∫ 1
4
1
8

D1/4x(s)ds.
(7)

Here n = 3, p = 5/2, γ = 1/4, q = 1/2, a1 = 1/2, a2 = 1/2, a3 = 0, η0 = 0,

η1 = 1/8, η2 = 1/4, η3 = 1 and A(s) = s , f1(t,x) =
sint
t +1

· |x|
1+ |x| , f2(t,x) =

1
t2 +1

·
|x|

2+ |x| . We choose H1 = 1, H2 = 2, H = 0.9 and we obtain Λ1 = 0.6717, Λ2 = 0.167

and Λ1 + Λ2 = 0.8387 � H = 0.9 � min{H1, H2} = 1. Clearly

| f1(t,x)− f1(t,y)| � |x− y|
1+ |x− y|, | f2(t,x)− f2(t,y)| � |x− y|

2+ |x− y|,

for t ∈ [0,1] , x,y ∈ R.
Hence, by Theorem 4, the fractional BVP (7) has a unique solution.
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