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APPROXIMATION OF TIME FRACTIONAL BLACK–SCHOLES

EQUATION VIA RADIAL KERNELS AND TRANSFORMATIONS
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Abstract. In the present work, a numerical scheme is constructed for approximation of time
fractional Black-Scholes model governing European options. The present numerical scheme has
the capability to overcome spurious oscillation in the case of volatility. In the present numerical
method, the Laplace transform, radial kernels and quadrature rule are used. The time variable
is eliminated by the use of Laplace transform which significantly reduced the computational
cost as compared to the time-marching schemes. The spatial operator is discretized using radial
kernels in the local setting which results in sparse differentiation matrices. By Laplace transform
the solution is represented as integral along a smooth contour in the complex plane which is
then evaluated by quadrature. The proposed numerical scheme is used to price several different
European options.
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