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Abstract. The authors discovered a new identity concerning differentiable mappings defined on
m-invex set via k-fractional integrals. By using the obtained identity as an auxiliary result, some
new estimates with respect to Hermite-Hadamard type inequalities via k-fractional integrals for
generalized-m - ((h’l7 7hg); (M1,M2)) -convex mappings are presented. It is pointed out that some
new special cases can be deduced from main results. At the end, some applications to special
means for different positive real numbers are provided as well.

1. Introduction

The following notations are used throughout this paper. We use / to denote an interval
on the real line R = (—oo,4-o0). For any subset K C R", K° is the interior of K. The
set of integrable functions on the interval [a,b] is denoted by L[a,b].

The following inequality, named Hermite-Hadamard inequality, is one of the most fa-
mous inequalities in the literature for convex functions.

THEOREM 1. Let f:1 CR — R be a convex function on 1 and a,b € I with
a < b. Then the following inequality holds:

b 1 b b
f(“; )<b_a/u Fae < LOEIE) M

This inequality (1) is also known as trapezium inequality.

The trapezium type inequality has remained an area of great interest due to its wide
applications in the field of mathematical analysis. For other recent results which gener-
alize, improve and extend the inequality (1) through various classes of convex functions
interested readers are referred to [1],[3]-[20],[22],[23],[25]-[28],[30],[311,[34],[37],[38].

Let us recall some special functions and evoke some basic definitions as follows.
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DEFINITION 1. The Euler beta function is defined for a,b > 0 as
1
B(a,b):/ (1= 1), )
0

DEFINITION 2. [22] Let f € L[a,b]. The Riemann-Liouville integrals J% f and
J- f of order o0 >0 with a > 0 are defined by

) = gy [ =0 W, x> a

and

b
J;j‘,f(x):ﬁ/x (t— 0% f(1)dr, b>x,

where T(a) = /0 et du, Here 0, f(x) = 10 f(x) = £(x).

Note that oo = 1, the fractional integral reduces to the classical integral.

DEFINITION 3. For k € Rt and x € C, the k-gamma function is defined by

W (nk)E!
Iy = lim —————. 3
k(x) nglw (.X)mk (3
Its integral representation is given by
00 [k
(o) = / 1% e~k dr. “4)
0
One can note that
Fk(a+k) = (er(a). 5)

For k=1, (4) gives integral representation of gamma function.

DEFINITION 4. [25] Let f € L[a,b]. Then k-fractional integrals of order o,k >0
with a > 0 are defined as

o 1 x o
L0 = gy ), 60 F 0 x>
and
b o
I f(x) = krkl(a) / (t—x)T ' f(r)dt, b>x. (6)

For k =1, k-fractional integrals give Riemann-Liouville integrals.

DEFINITION 5. [36] A set S C R” is said to be invex set with respect to the
mapping 1 : S xS — R, if x+11(y,x) € S forevery x,y € S and ¢ € [0,1].

The invex set S is also termed an 1 -connected set.
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DEFINITION 6. [24] Let &:[0,1] — R be a non-negative function and 4 # 0.
The function f on the invex set K is said to be & -preinvex with respect to 1, if

fle+m () <hL=1)f(x)+h(0)f () (7)
for each x,y € K and ¢ € [0, 1] where f(-) > 0.

Clearly, when putting 4(¢) = in Definition 6, f becomes a preinvex function, see [29].
If the mapping 1 (y,x) =y —x in Definition 6, then the non-negative function f reduces
to h-convex mappings, see [33].

DEFINITION 7. [35] Let S € R” be an invex set with respectto 1 : S x § — R".
A function f: 8§ — [0,4e0) is said to be s-preinvex (or s-Breckner-preinvex) with
respect to 1 and s € (0, 1], if for every x,y € S and 7 € [0, 1],

frtmyx) < (=0 f @)+ f (). (®)

DEFINITION 8. [26] A function f: K — R is said to be s-Godunova-Levin-
-Dragomir-preinvex of second kind, if

farmx) <0 —1)7f) +17°F (), )
for each x,y € K,z € (0,1) and s € (0,1].

DEFINITION 9. [32] A non-negative function f: K C R — R is said to be 7gs-
-convex on K if the inequality

A =x+1y) <t(L=0)[f(x) + (V)] (10)
grips forall x,y € K and ¢ € (0,1).

DEFINITION 10. [21] A function f:I CR — R is said to MT -convex, if it is
non-negative and Vx,y € I and ¢ € (0,1) satisfies the subsequent inequality

NG V1—t
Flexes (1) < 52 ) +

DEFINITION 11. [28] Let K C R be an open m-invex set respecting 1N : K X
K — R and hy,h;:[0,1] — [0,4-0). A function f: K — R is said to be generalized
(m,hy,hy)-preinvex, if

f(mx+1m(y,mx)) <mhy(t) f(x)+ha(2) f(y) (12)

is valid for all x,y € K and ¢ € [0, 1], for some fixed m € (0,1].

). (1)

The concept of 1 -convex functions (at the beginning was named by 6 -convex func-
tions), considered in [13], has been introduced as the following.
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DEFINITION 12. Consider a convex set I C R and a bifunction 1 : f(I) x f(I) —
R. A function f:I — R is called convex with respect to 1 (briefly 1 -convex), if

fAx+(1=2)y) < fO)+An(f(x), £ (), (13)
is valid for all x,y € I and A € [0,1].

Geometrically it says that if a function is 1 -convex on I, then for any x,y € I, its graph
is on or under the path starting from (y, f(y)) and ending at (x, f(v) +n(f(x),

f(»)). If f(x) should be the end point of the path for every x,y € I, then we have
N(x,y) = x —y and the function reduces to a convex one. For more results about 7 -
-convex functions, see [8],[9],[12],[13].

DEFINITION 13. [1] Let 7 C R be an invex set with respectto 1y : I x I — R.
Consider f:1— R and ny: f(I) x f(I) — R. The function f is said to be (11,72)-
-convex if

F+Am(px)) < fx)+Am(f (), f(x)), (14)
is valid for all x,y € I and A € [0,1].

Motivated by the above literatures, the main objective of this paper is to establish in
Sect. 2, some new estimates on Hermite-Hadamard type inequalities via k-fractional
integrals associated with generalized-m- ((h},h1);(n1,1m,))-convex mappings. It is
pointed out that some new special cases will be deduced from main results. In Sect.
3, some applications to special means for different positive real numbers will be obtain.
In Sect. 4, some conclusion and future research are given.

2. Main results
The following definitions will be used in this section.

DEFINITION 14. Let m: [0,1] — (0, 1] be a function. A set K C R” is named as
m-invex with respect to the mapping 1 : K x K — R if m(¢)x+En(y,m(¢)x) € K
holds for each x,y € K and any ¢,& € [0,1].

REMARK 1. In Definition 14, under certain conditions, the mapping 1 (y, m(z)x)
for any 7,& € [0,1] could reduce to 1(y,mx). For example when m(z) = m for all
t € [0, 1], then the m-invex set degenerates an m-invex set on K.

We next introduce the concept of generalized-m- ((h},h2); (11,12))-convex mappings.

DEFINITION 15. Let K C R be an open m-invex set with respect to the mapping
Mm:KxK—R and m: [0,1] — (0,1]. Suppose hy,h; : [0,1] — [0,+e0) and
0 : I — K are continuous. Consider f: K — (0,4c0) and 1, : f(K) x f(K) — R.
The mapping f is said to be generalized-m- ((h},hd); (n1,m2))-convex if

1
f(m()0(x) +Emi(6(y),m(r)6(x))) < [m(E)AT(E)f"(x) +h5(E)Mma (" (v). f7(x))] 7,
15)
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holds for all x,y €I, r#0,¢,& € [0,1] and any fixed p,q > —1.

REMARK 2. In Definition 15, if we choose m=p =g =r=1 and 0(x) = x,
then we get Definition 13.

REMARK 3. In Definition 15, if we choose m=p=qg=r=1,h(t)=1,h(t) =
£ (0(),m()8(x)) = 0(y) ~m()8(x), a7 (), £ (x)) = (" (¥), /" (x)) and O(x) =
x, Vx € I, then we get Definition 12. Also, in Definition 15, if we choose m =p =g =
r=1,h(t)=1, hy(t) =t and 0(x) =x, Vx € I, then we get Definition 13. Under some
suitable choices as we done above, we can get also the Definitions 7 and 8.

REMARK 4. Let us discuss some special cases in Definition 15 as follows.

(i) Taking hy(r) = h(1 —1) and ha(¢) = h(r), then we get generalized-m- ((h”(1 —
1),h9(t)); (N1, M2)) -convex mappings.

(i) Taking h;(¢t) = (1 —1)* and hy(z) =¢* for s € (0, 1], then we get generalized-m-
(((L—=1)*?,1%7);(ny,Mm2)) -Breckner-convex mappings.

(iii) Taking h(r) = (1—1¢)"* and hy(r) =t for s € (0,1], then we get generalized-
m-(((1 —7)7*?7,t=%%);(n1,n2)) -Godunova-Levin-Dragomir-convex mappings.

(iv) Taking h(r) = hp(r) =1(1 —1), then we get generalized-m- ((¢(1 —1))*?, (¢(1 —
1))*); (M, M2)) -convex mappings.

NG

V91—t
(v) Taking h;(¢) = ENE and hy(r) = then we get generalized-m-

= \? Vi 9. (VI .
_<<< 2%) ’(2@) ),(nl,n2)> -convex mappings.

It is worth to mention here that to the best of our knowledge all the special cases dis-
cussed above are new in the literature.

Let see the following example of a generalized-m- (i, h); (n1,12)) -convex mapping
which is not convex.

EXAMPLE 1. Let take m = r = 3, 1 (t) =/, hy(t) =¢* for all I,s € [0,1], any
fixed p,q > 1 and 0 an identity function. Consider the function f: [0, +o0) — [0, 40)

by
x, 0<x<1;
f(x>:{27 x> 1.
Define two bifunctions 7 : [0,+e0) X [0,4e0) — R and 13 : [0,+o0) X [0, +e0) —>
[0,+<°) by

meeo ={ 7, V57
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and

_Jx+y, x<Yy;
n2(x»y)—{2(x+y), x> Y.

Then f is generalized §-((¢'7,#°9);(ny,1,))-convex mapping. But f is not preinvex
with respect to 1 and also it is not convex (consider x =0,y =2 and € (0, 1]).

For establishing our main results we need to prove the following lemma.

LEMMA 1. Let 6 :1 — K be a continuous function and m : [0,1] — (0, 1]. Sup-
pose K =[m(t)0(a),m(t)0(a) +¥(0(b),m(t)0(a))] CR be an open m-invex subset
with respectto ¥ : K x K — R for Y(0(b),m(t)0(a)) > 0 and V¢ € [0,1]. Assume
that f: K — R be a differentiable mapping on K° such that f' € L(K). Then for
o,k >0 and A € [0,1], the following equality for k-fractional integrals holds:

(1=%(1=2)) f(m()6(a))+ (1+ % (1= 1)) f(m(1)6(a) + ¥(6(b),m(1)0(a)))

2
_ Iy (o +k) ok u u
o maa s Fm08(@) + ¥(Ew),me)0@)

ot vt miaay - m(0)0(@)]
Y(6(b),m(t)0(a))

= (16)
2
l o o
< [ (EF+ 502~ (1-8)F) Fn@)6(@) + EV(O().m(1)0())dE.
We denote
T;x’k(‘P,O,m;l,a,b) — T(e(b)7m(t)9(a)) (17)

2

1 4 o

< [ (eF+S0=2) = (1-8)F ) £ m(1)6(a) + E¥(O(b).m(1)6(a)dé.
Proof. Integrating by parts, we get

T4 (W,0,m:1,a,b)

_¥(6().m(1)0(@) l
2

[ &t minota) + £ (o), mo )i
o 1
FE0-2) [ Fm©)0(a) + E¥(0(0)m0)0(a))ag
0

-/ 1(1—&>%f’<m<t>e<a>+éw<e<b>,m<z>e<a>>>dé]

1

W(O(b).m(1)6(a) | EES(m(1)6(a) +E¥(6(b).m(1)6(a)))
2 ¥(0(b),m(1)6(a))

0
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- e [ €5 m0(a)+ £¥(006).mn0 @)
;(l—l)[f( <> ()+€‘I’( <>,m<z>e<a>>>—f<m<t>e<a>>]

_(1=9Ff(m()e 0(a) + £¥(0(b).m(1)0(a))) |
¥(6(b),m(1)6(a))

0
o

1 o
T (0 0),m(6(a)) <Ja-otty <m<f>9<a>+€‘P<9<b>,m<t>6<a>>)d5]
(1= =2) f(m(©)6(a) + (1+F(1—A)) f(m()6(a) +¥(6(b), m(1)0(a)))

2
_ Ty (o +k) ak u u
THOOETTE |16ty £ (M(D)8(@) +(8(5), m(1)6(a)))

&
+Ign(t)6(u)+‘}’(0(b),m(t)0(a)))*f(m(t)e(a))} :

This completes the proof of our lemma. [

REMARK 5. For W(6(b),m(2)0(a)) = 0(b) —m(z)0(a), where m(z) = 1 for all
€10,1] and A = 1, we get the following Hermite-Hadamard integral identity

f(6(a)) +f(6(h) _ Tu(o+k)

2 2(6(b) - 6(a))

:w /(gk_a g)%> '(6(a)+&(0(b) — 0(a)))dE. (18)

7 Loty S 00) + I - £(B(a)

Using Lemma 1, we now state the following theorems for the corresponding version
for power of first derivative.

THEOREM 2. Let hy,hy :[0,1] — [0,4<) and 6 : I — K are continuous func-
tions and m: [0,1] — (0, 1]. Suppose K =[m(t)6(a),m(t)0(a) +¥1(0(b),m(1)6(a))]
C R be an open m-invex subset with respect to W1 : K x K — R for ¥1(0(b),m(t)6(a))
>0,Vt€[0,1] and ¥, : f(K) x f(K) — R. Assume that f: K — (0,+e0) be a dif-
ferentiable mapping on K° such that ' € L(K). If (f'(x))? is positive generalized-m -
(R, 15?); (W1,¥2)) -convex mapping, 0 <r < 1,p1,pp>—1,g>1,p 441 =1,
then the following inequality for o, k >0 and A € [0, 1], holds:

Y1(6(b),m(1)6(a))
2

k
po+k

< R/ (@)l (hi(€)) +¥2 ((f(0))4, (' (@) ) I (ha (&),

T]f"k(‘i’l,e,m;l,a,b)’g X [%(1—1)4—2 (19)

where

m@) = [ mEn ©de, 1) = [ 1 ©ae
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Proof. From Lemma 1, positive generalized-m- ((h}',h5?); (W1, '¥2)) -convexity
of (f’(x))4, Holder inequality, Minkowski inequality, properties of the modulus and
changing the variable u = m(r)0(a) + EW1(0(b), m(r)0(a)), Vt € [0, 1], we have

Tfmk(‘l’he,m;k,a,b)‘
< [¥1(0(b),m(2)6(a))|

2
x (1 A)— )E||f/ (m(2)6(a) +EW1(6(b), m(1)6(a)))|dS
(000, ;n(t)e(a))

. [/01 (&t +%<1 — 1)) £/ (m(1)8(@) + E¥1(6(5), m(1)6(@)dE

+ / (1-)f >+&‘P1(9(b),m(t)9(a>>)d€]

(/01&%&)’1#(/01 (%(1—A>)”dé);+(/Olu—é)%é)’l’]

1

- </o1 (MR ) (@) -+ 52 ()% (£ (6)7. (1 (@) | ’d€>
(

k
po+k

N o

L
q

’ K/ol“‘%@(f (@) ©ag) +( [ ¥ (o @ @ae) ]

1(6(b),m(1)6(a))

o k

po+k
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X R/ (f'(@)alr (hi(8)) + Y2 ((f(£))4, (f(a))9) I" (h2(&))-

So, the proof of this theorem is completed. [J
We point out some special cases of Theorem 2.

COROLLARY 1. In Theorem 2 for p = q = 2, we get

Tfa’k(‘l’he,m;hmb)) < ‘I‘l(e(b)7;”(t)9(a)) % [%(1—%)—%2 ﬁ] (20)

x 2\’/(J"(a))2’1’(hl(€)) +¥2 (), (f'(@)*) " (h2(8)).-
COROLLARY 2. Under the conditions of Remark 5 using Theorem 2, we get

F0(@)+FO®)  Tath )
' 2 " 560 s@)F [ ("(b))“(efb))f(e(a))]‘

<w Xz(/pak—l-k @1)

% Y@ (11 () + Fa (P07 (P (@)D T (a(B)).

COROLLARY 3. In Theorem 2 for hy(t) =h(1—1t),hy(t) =h(t) and m(t) =m €
(0,1] for all t € [0,1], we get the following inequality for generalized-m-((hP'(1 —
1),hP2(1)): (Y1, ¥2)) -convex mappings:

ok Y 1(6(b),mb(a)) o ) k
p . < Z(1 —
T (‘Phe,m,?t,a,b)‘\ - x| Z(1=A)+2 proaerd IS

x X/m(f" (@)1 (h(1 = &)) + Y2 ((f'(6))9, (f'(@)) ) I" (h(§)).

COROLLARY 4. In Corollary 3 for hi(t) = (1 —1)* and hy(t) =t*, we get the
Jollowing inequality for generalized-m-(((1 —1)%P1,*P2); (W1, ¥2)) Breckner convex
mappings:

ak , ¥1(0(b),m0(a)) |« k
iy (Tl,e,m,k,a,b)‘gfx O e

x \/ (@ (=) (e @) (r+rsp2)r.

COROLLARY 5. In Corollary 3 for hi(t) = (1 —1)"5, hp(t) =¢t=* and r > s-
max{pi,p2}, we get the following inequality for generalized-m-(((1 — ) SP1g—SP2);
(¥1,¥2)) -Godunova-Levin-Dragomir-convex mappings:

ok Y 1(6(b),mb(a)) o |k
p . < Z(1 —
Ty (¥1,0,m;4,a,b)| < > X k(l A)+2 pa ik (24)
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« (/mv/(a))w (=) +eawoream (=)

COROLLARY 6. In Theorem 2 for hy(t) = hy(t) =t(1—1) and m(t) =m € (0,1]
Sforall t €10,1], we get the following inequality for generalized-m- ((¢t(1—1))*P1, (t(1—
1))*P2); (W1, %¥2)) -convex mappings:

k
po+k
(25)
@B (1421 2 s () @) B (142214 2),

r

T4, 0,m:0,0,b)| < —\Pl(e(bé’me(a)) x [%(1 —A)+2

Vi
21—t

V1i—t
1 2—\/;;}120) =

5 -max{py, pa}, we get the following inequality for generalized-m-
7\ Pl P2 .
- ((( 2;{) , (ﬁ%) ) ;(‘Ph‘Pz)) -convex mappings:

Y1(6(b),mb(a))
2

x [m(f’(a))’q (3)

P (o) @) (3) B (1= )

COROLLARY 7. In Corollary 3 for hi(t) = and r >

k
po+k

x [%(1—/1)+2 (26)

Tfa’k(‘PhO,m;?L,a,b)‘ <

-

B’ <1_2_ l+2r>

1
q

THEOREM 3. Let hy,hy :[0,1] — [0,4<) and 6 : I — K are continuous func-
tions and m: [0,1] — (0, 1]. Suppose K =[m(t)6(a),m(t)0(a) +¥1(0(b),m(1)6(a))]
C R be an open m-invex subset with respect to W1 : K x K — R for ¥1(0(b),m(t)6(a))
> 0,Vr €[0,1] and ¥, : f(K) X f(K) — R. Assume that f: K — (0,+c0) be a
dlﬁerenttable mapping on K° such that f' € L(K). If (f(x))? is positive generalized-

m-((h{',h5?); (W1,¥2))-convex mapping, 0 <r <1, p1,p» > —1,q > 1, then the fol-
lowing inequality for o, k >0 and A € [0, 1], holds:

174 (%), 0,m:0,a,b)| @7

1

1=
OO mo@) { ( . k“"”>

x R/ (f(@))aFr (i (&) +¥2 ((f (0))4, (f'(a))"0) Fr (h2(E))

(@) (f’(a))’qG’(hl(é))+‘Pz((f’(b))’q»(f’(a))’q)G’(hz(é))}
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where

Fn(E) = [ mh©) (8% + L) ©)ae:

and
a 1 o P2
)= [ m @0 - &I @ 6= [ (-8 @t

Proof. From Lemma 1, positive generalized-m- ((h}',h5?); (¥, ¥2)) -convexity
of (f/(x))4, the well-known power mean inequality, Minkowski inequality, properties
of the modulus and changing the variable u =m(7)6(a) + E¥1(0(b),m(r)0(a)), Vt €
[0,1], we have

Tfa’k(‘l’he,m;/l,mb)’

< I‘Pl(e(b),;n(f)e(a))l

X

(1 A)—
g\Pl(e(b) m(t)G(a))

)E|| £ (m(1)6(a) + E1(60(b), m(1)0(a)))|d
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[m(E) (€)1 (@)+ HE(E)W2 (£ ()7, (' (@)) | *w:)

ko\!d
+<a+k>

1 o i i
x ( | =8 [m(E)n ©)( @)+ 1 E N (7). (@)™ dé) ]

¥1(8(b).m(1)8(a) {

V@ i (E))+ 2 (7 )7 (7 @) ) P (haE)
+<a+k> Y e h1<é>>wz((f/(b))w,(ff(a»w)Gr(hz(é))}.

X

So, the proof of this theorem is completed. [
We point out some special cases of Theorem 3.

COROLLARY 8. In Theorem 3 for q = 1, we get the following inequality:

TP, 0,m30,a,b)| (28)
O ROBEN, T F @)+ Fa (O @)V F (28]

+V (@) G (i (8) +¥2((f (B)), (f (@)") G’(hz(é))}-
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COROLLARY 9. Under the conditions of Remark 5 using Theorem 3, we get
f(0(a)+/(6(b))  Tu(ax+k)
2 2(6(b) — 6(a))

<e<b>;e<a>> (ai k)l‘%

<{ Y@ TF @)+ (F @) (P @) F (@)
+ Y/ @)9G (1 (€) + P2 (7 B)), (F(@) ) G (ha(&)) }-

7 %[5t £ (O®) + 151, F(0(a)] ‘

(29)

COROLLARY 10. In Theorem 3 for hi(t) =h(1—1t), ha(t) =h(t) and m(t) =m €
(0, ] for all t € [0,1], we get the following inequality for generalized-m-((h"'(1 —
1),hP2(1)); (W1, ¥2)) -convex mappings:

T;"k(‘{’l,e,m;l,a,b)‘ 30)

W, (6(b),mb(a)) k 1=
<lfx{< ot k(l /1))

X R/ m(f' (@) Fr (h(1—=&)) + Y2 ((f/(0))7, (f'(a))9) F"(h(&))

1_,
ah) V@G <1—é))+\Pz((ff(b))rq,<f/<a>>w>Gr<h<é>>}.

COROLLARY 11. In Corollary 10 for hy(t) = (1 —t)* and hy(t) =1t°, we get the
Sollowing inequality for generalized-m-(((1 —1)*P1,°P2); (W1, ¥>)) -Breckner-convex
mappings:

T4, 0,m:2,0.b)| G1)

¥, (6(b),m6(a)) koo 1=
S— x{<a+k+f(l_“>

X [m(f/(a))"f ([3 (sﬂJrl Z1)+ k(r—rkoipl)(l _M)r

+w2<<f’<b>>’q,<f’<a>>’q>( L )<1—x>)rr

L2y 41 k(r+sps

n (ﬁ)l_é x [m(f/(a))’q (‘I’Tl +1% ¥ 1>r

0 ()7 @) ) B (224 1.4 41)

)
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COROLLARY 12. In Corollary 10 for hy(t) = (1 —1)™%, ha(t) =t7* and r > s -
max{pi,p2}, we get the following inequality for generalized-m-
-(((L=r)=sP1 1=5P2); (¥, ¥2)) -Godunova-Levin-Dragomir-convex mappings:

T4, 0,m:2,0,b)| (32)

k 1_5 / rq 1 '
+<a—+k> x |m(f'(a)) (m

COROLLARY 13. In Theorem 3 for hy(t) = hy(t) =t(1—1t) and m(t) =m € (0,1]
forall t €10,1], we get the following inequality for generalized-m- ((t(1—1))*P1, (¢(1 —
1))*P2); (W1, ¥2)) -convex mappings:

T4, 0,m:2,0,b)| (33)
¥, (8(b),m6(a) ko
ST { (m*z(l‘”)

o

x [m(f’(a))"f (B(2+Z+1.241)+ Za-p (21,20 41))
+¥ (1 (), (f'(@)")
% 1-1
(&)

(B (m +%+1,p—:+1>+%(1—l)ﬁ (p—r2+1,p—r2+1>>r
x ’(/m(f’(a))fqﬁf(%+%+1,”—;+l)+‘Pz((f’(b))’%(f’(a))’q)ﬁ’(”—ﬁ+%+17”—f+1)}.

r

V19—t t

COROLLARY 14. In Corollary 10 for hy(t) = ———, hy(t) = Vi and r >
27 W1

1

> -max{py,pa}, we get the following inequality for generalized-m-
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i (((ﬁ)l’l ’ <2\/\%>p2> §(‘P17‘P2)) -convex mappings:

‘Tak‘f‘l,em/lab 34
\‘Pl(e l—?L)) 3
le(f’(cw ( )l( (%—‘;— L)+ 2a-np (1-2, 2 40))

o P2 P2
<(B(z+B+r1-2)+2
Ko\ s
+(a—+k) x[m(f’(a))r‘f(E) pr1-2 28 )

(e (5) B (B e g5

}.

REMARK 6. By taking particular values of parameters ok, A, p; and p; in above
Theorems 2 and 3, several k-fractional integral inequalities associated with generalized-
m- ((h}",h5?); (¥1,¥2)) -convex mappings can be obtained. In particular, for k=1, by
our Theorems 2 and 3, we can get some new special Hermite-Hadamard type inequali-
ties via fractional integrals of order o > 0. Also, for o« = k = 1, we can get some new
special Hermite-Hadamard type inequalities via classical integrals.

REMARK 7. Also, applying our Theorems 2 and 3, for f'(x) < L, for all x €I,
we can get some new k-fractional integral inequalities.

3. Applications to special means

DEFINITION 16. [2] A function M : Ri — R, is called a Mean function if it
has the following properties:

1. Homogeneity: M(ax,ay) = aM(x,y), forall a > 0,

2. Symmetry: M(x,y) = M(y,x),

3. Reflexivity: M(x,x) = x,

4. Monotonicity: If x <x' and y <y, then M(x,y) < M(¥,y),

5. Internality: min{x,y} < M(x,y) < max{x,y}.
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Let consider some special means for arbitrary positive real numbers o # 3 as follows:
The arithmetic mean A := A(«, 3); The geometric mean G := G(o, 8); The harmonic
mean H := H(o,3); The power mean P, := P.(ct, 3); The identric mean [ :=1I(ct, f3);
The logarithmic mean L := L(ct,3); The generalized log-mean L, := L,(o,3); The
weighted p-power mean M = M,,. Now, let a and b be positive real numbers such that
a < b. Let consider continuous functions fj,h; : [0,1] — [0,+e0),0 : [ — K and
Y :KxK—R,¥,: f(K)x f(K) — R, where M :=M(0(a),0(b)):[0(a),0(a)+
Y1(6(b),0(a))] x [6(a),0(a)+¥1(6(b),0(a))] — Ry, which is one of the above
mentioned means. Therefore one can obtain various inequalities using the results of
Sect. 2 for these means as follows. Replace W1 (0(y),m(z)0(x)) with ¥{(6(y),0(x))
where m(¢) = 1, for all ¢+ € [0,1] and setting ¥, (0(y),0(x)) = M(6(x),0(y)) for all
x,y €1, in (19) and (27), one can obtain the following interesting inequalities involving
means:

Tfa’k(M(-,-)ﬁ,l;?L,a,b)‘ (35)

k
po+k

©|

<Xy [%(1—/1)+2

x R/(f(@))ar (hy (8)) + 2 ((f/(2)4, (f (@) D) I (ha(E)),

T M), 0, 1500,0)| (36)
M k o =7
<7 (m*z“‘“)

< Y@ (@) + (PO (@) F (@)
) ><W(f’(a))’qG’(hl(é))+‘I’z((f’(b))”f,(f’(a))”f)G’(hz(é))}-

‘ ~

+ oa+k

Letting M := A,G,H,P.,I,L L, M, in (35) and (36), we get the inequalities in-
volving means for a particular choices of (f’(x))? that are generalized- 1 -
-((hY',15?); (W1, ¥2)) -convex mappings.

REMARK 8. Also, applying our Theorems 2 and 3 for appropriate choices of func-
tions h; and hy (see Remark 4) such that (f/(x))? to be generalized-1-
-((hY',15?); (¥1,¥2)) -convex mappings (see examples: f(x) =x%, where ot > 1,Vx>
1
0; flx)= —7 Vx> 0; f(x) =€, VxeR; f(x) =Inx, Vx > 0; etc.), we can deduce

some new inequalities using above special means. The details are left to the interested
reader.
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4. Conclusions

The authors discovered a new identity concerning differentiable mappings defined on
m-invex set via k-fractional integrals. By using the obtained identity as an auxiliary
result, some k-fractional integral inequalities for generalized-m-((h},hd);(n1,1m2))-
convex mappings are presented. Also, some new special cases are given. At the end,
some applications to special means for different positive real numbers are provided
as well. Motivated by this interesting class we can indeed see to be vital for fellow
researchers and scientists working in the same domain. We conclude that our meth-
ods considered here may be a stimulant for further investigations concerning Hermite-
Hadamard, Ostrowski and Simpson type integral inequalities for various kinds of con-
vex and preinvex functions involving local fractional integrals, fractional integral oper-
ators, Caputo k-fractional derivatives, g-calculus, (p,q)-calculus, time scale calculus
and conformable fractional integrals.

Acknowledgement. The authors would like to thank the referee for valuable com-
ments and suggestions.
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