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AN ORDERING ON GREEN’S FUNCTION AND A
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NABLA FRACTIONAL BOUNDARY VALUE PROBLEMS
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(Communicated by F. Atici)

Abstract. In this article, we consider a family of two-point Riemann–Liouville type nabla frac-
tional boundary value problems involving a fractional difference boundary condition. We con-
struct the corresponding Green’s function and deduce its ordering property. Then, we obtain a
Lyapunov-type inequality using the properties of the Green’s function, and illustrate a few of its
applications.

1. Introduction

In this article, we construct the Green’s function G(b,β ; t,s) of the following two-
point nabla fractional boundary value problem{(

∇α
a u

)
(t)+h(t) = 0, t ∈ N

b
a+2,

u(a) = 0,
(
∇β

a u
)
(b) = 0.

(1.1)

Here 1 < α < 2, 0 � β � 1, a , b∈ R with b−a∈ N2 , h : N
b
a+2 → R , ∇α

a and ∇β
a are

the Riemann–Liouville type α th and β th -order nabla difference operators, respectively.
Observe that the pair of boundary conditions in (1.1) reduces to conjugate [6, 12, 20],
right-focal [18] and right-focal type [19] boundary conditions as β → 0+ , β → 1− and
β → (α −1) , respectively. In Section 3, we obtain an ordering property on G(b,β ; t,s)
with respect to b and β .

Lately, there has been an increased interest in establishing Lyapunov-type inequal-
ities for discrete fractional boundary value problems. For the first time, Ferreira [10]
deduced a Lyapunov-type inequality for a discrete boundary value problem involving
the Riemann–Liouville type α th -order (1 < α � 2) forward difference operator. Fol-
lowing Ferreira’s work, authors of [8, 11] established Lyapunov-type inequalities for
various classes of delta fractional boundary value problems. In this line, Ikram [16]
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developed Lyapunov-type inequalities for certain nabla fractional boundary value prob-
lems of Caputo type. Recently, the author [18, 19] obtained Lyapunov-type inequalities
for the nabla fractional difference equation(

∇α
a u

)
(t)+q(t)u(t) = 0, t ∈ N

b
a+2,

associated with two-point conjugate (C), left focal (LF), right focal (RF), left-focal type
(LFT) and right-focal type(RFT) boundary conditions:

(C) u(a) = u(b) = 0;

(LF)
(
∇u

)
(a+1) = u(b) = 0;

(RF) u(a) =
(
∇u

)
(b) = 0;

(LFT)
(
∇α−1

a u
)
(a+1) = u(b) = 0;

(RF) u(a) =
(
∇α−1

a u
)
(b) = 0.

Motivated by these developments, in this article, we obtain a Lyapunov-type inequality
for the two-point nabla fractional boundary value problem{(

∇α
a u

)
(t)+q(t)u(t) = 0, t ∈ N

b
a+2,

u(a) = 0,
(
∇β

a u
)
(b) = 0,

(1.2)

where q : N
b
a+2 → R , and demonstrate a few of its applications.

2. Preliminaries

Denote the set of all real numbers by R . Define

Na := {a,a+1,a+2, . . .} and N
b
a := {a,a+1,a+2, . . .,b}

for any a , b∈R such that b−a∈N1 . Assume that empty sums and products are taken
to be 0 and 1, respectively.

DEFINITION 2.1. (See [7]) The backward jump operator ρ : Na → Na is defined
by

ρ(t) = max{a,(t−1)}, t ∈ Na.

DEFINITION 2.2. (See [22, 23]) The Euler gamma function is defined by

Γ(z) :=
∫ ∞

0
tz−1e−tdt, ℜ(z) > 0.

Using the reduction formula

Γ(z+1) = zΓ(z), ℜ(z) > 0,

the Euler gamma function can be extended to the half-plane ℜ(z) � 0 except for z �=
0,−1,−2, . . .
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DEFINITION 2.3. (See [14]) For t ∈R\{. . . ,−2,−1,0} and r ∈R such that (t +
r) ∈ R\ {. . . ,−2,−1,0} , the generalized rising function is defined by

tr =
Γ(t + r)

Γ(t)
.

Also, we use the convention that if t ∈ {. . . ,−2,−1,0} and r ∈ R such that (t + r) ∈
R\ {. . . ,−2,−1,0} , then

tr := 0.

DEFINITION 2.4. (See [7]) Let u : Na →R and N ∈N1 . The first order backward
(nabla) difference of u is defined by(

∇u
)
(t) := u(t)−u(t−1), t ∈ Na+1,

and the Nth -order nabla difference of u is defined recursively by

(
∇Nu

)
(t) :=

(
∇

(
∇N−1u

))
(t), t ∈ Na+N .

DEFINITION 2.5. (See [14]) Let u : Na+1 →R and N ∈N1 . The Nth -order nabla
sum of u based at a is given by

(
∇−N

a u
)
(t) :=

1
(N−1)!

t

∑
s=a+1

(t −ρ(s))N−1u(s), t ∈ Na,

where by convention
(
∇−N

a u
)
(a) = 0. We define

(
∇−0

a u
)
(t) = u(t) for all t ∈ Na+1 .

DEFINITION 2.6. (See [14]) Let u : Na+1 → R and ν > 0. The ν th -order nabla
sum of u based at a is given by

(
∇−ν

a u
)
(t) :=

1
Γ(ν)

t

∑
s=a+1

(t−ρ(s))ν−1u(s), t ∈ Na,

where by convention
(
∇−ν

a u
)
(a) = 0.

DEFINITION 2.7. (See [14]) Let u : Na+1 → R , ν > 0 and choose N ∈ N1 such
that N − 1 < ν � N . The Riemann–Liouville type ν th -order nabla difference of u is
given by (

∇ν
au

)
(t) :=

(
∇N(

∇−(N−ν)
a u

))
(t), t ∈ Na+N .

THEOREM 2.1. (See [2]) Assume u : Na →R , ν > 0 , ν �∈N1 , and choose N ∈N1

such that N−1 < ν < N . Then,

(
∇ν

a u
)
(t) =

1
Γ(−ν)

t

∑
s=a+1

(t−ρ(s))−ν−1u(s), t ∈ Na+1.



112 J. M. JONNALAGADDA

THEOREM 2.2. (See [14]) Let ν , μ > 0 and u : Na → R . Then,(
∇ν

a

(
∇−μ

a u
))

(t) =
(
∇ν−μ

a u
)
(t), t ∈ Na.

THEOREM 2.3. (See [14, 17]) We observe the following properties of gamma and
generalized rising functions.

1. Γ(t) > 0 for all t > 0 .

2. tα(t + α)β = tα+β .

3. If t � r , then tα � rα .

4. If α < t � r , then r−α � t−α .

5. ∇(t + α)β = β (t + α)β−1 .

6. ∇(α − t)β = −β (α −ρ(t))β−1 .

THEOREM 2.4. (See [14]) Let ν ∈ R
+ and μ ∈ R such that μ , μ +ν and μ −ν

are nonnegative integers. Then,

∇−ν
a (t−a)μ =

Γ(μ +1)
Γ(μ + ν +1)

(t −a)μ+ν , t ∈ Na,

∇ν
a (t−a)μ =

Γ(μ +1)
Γ(μ −ν +1)

(t −a)μ−ν , t ∈ Na.

THEOREM 2.5. (See [14]) Assume ν > 0 and N − 1 < ν � N . Then, a general
solution of (

∇ν
au

)
(t) = 0, t ∈ Na+N ,

is given by

u(t) = C1(t−a)ν−1 +C2(t−a)ν−2 + . . .+CN(t−a)ν−N , t ∈ Na,

where C1 , C2 , · · · , CN ∈ R .

3. Properties of Green’s function

First, we deduce the unique solution of (1.1).

THEOREM 3.1. The discrete boundary value problem (1.1) has the unique solu-
tion

u(t) =
b

∑
s=a+2

G(b,β ;t,s)h(s), t ∈ N
b
a, (3.1)
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where the Green’s function G(b,β ;t,s) is given by

G(b,β ; t,s) =

⎧⎪⎨
⎪⎩

1
Γ(α)

(b−s+1)α−β−1

(b−a)α−β−1
(t−a)α−1, t ∈ N

ρ(s)
a ,

1
Γ(α)

[ (b−s+1)α−β−1

(b−a)α−β−1
(t −a)α−1− (t− s+1)α−1

]
, t ∈ N

b
s .

(3.2)

Proof. Applying ∇−α
a on both sides of (1.1) and using Theorem 2.5, we have

u(t) = −(
∇−α

a h
)
(t)+C1(t −a)α−1 +C2(t−a)α−2, t ∈ Na, (3.3)

for some C1 , C2 ∈ R . Using u(a) = 0 in (3.3), we get C2 = 0. Applying ∇β
a on both

sides of (3.3) and using Theorems 2.2 and 2.4, we have

(
∇β

a u
)
(t) = −(

∇β−α
a h

)
(t)+C1

Γ(α)
Γ(α −β )

(t −a)α−β−1, t ∈ Na. (3.4)

Using
(
∇β

a u
)
(b) = 0 in (3.4), we get

C1 =
1

(b−a)α−β−1Γ(α)

b

∑
s=a+1

(b− s+1)α−β−1h(s).

Substituting the values of C1 and C2 in (3.3), we have

u(t) =
(t−a)α−1

(b−a)α−β−1Γ(α)

b

∑
s=a+1

(b− s+1)α−β−1h(s)− 1
Γ(α)

t

∑
s=a+1

(t − s+1)α−1h(s)

=
1

Γ(α)

t

∑
s=a+2

[ (b− s+1)α−β−1

(b−a)α−β−1
(t−a)α−1− (t− s+1)α−1

]
h(s)

+
1

Γ(α)

b

∑
s=t+1

[ (b− s+1)α−β−1

(b−a)α−β−1
(t −a)α−1

]
h(s)

=
b

∑
s=a+2

G(b,β ; t,s)(t,s)h(s).

The proof is complete. �

REMARK 1. Observe that

1. G(b,β ; t,a+1) = 0 for t ∈ N
b
a .

2. G(b,β ;a,s) = 0 for s ∈ N
b
a+2 .

Brackins [6], Gholami et al. [12] and the author [18, 19, 20] have derived the
Green’s functions G(b,0;t,s) , G(b,1;t,s) and G(b,α −1;t,s) of the two-point nabla
fractional boundary value problem associated with conjugate, right-focal and right-
focal type boundary conditions, respectively, and also obtained a few properties.
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THEOREM 3.2. (See [6, 12, 18, 19, 20]) G(b,0;t,s) , G(b,1;t,s) and
G(b,α −1;t,s) are nonnegative for (t,s) ∈ N

b
a×N

b
a+2 .

Next, we obtain a few properties of G(b,β ;t,s) .

LEMMA 3.3. If 0 � β1 < β2 � 1 , then G(b,β1; t,s) < G(b,β2; t,s) for (t,s) ∈
N

b
a+1×N

b
a+2 .

Proof. Using (2) of Theorem 2.3, we rewrite G(b,β1; t,s) in terms of G(b,β2; t,s)
as follows:

G(b,β1; t,s)

=

⎧⎪⎨
⎪⎩

1
Γ(α)

(b−a+α−β1−1)β1−β2

(b−s+α−β1)β1−β2

(b−s+1)α−β2−1

(b−a)α−β2−1
(t−a)α−1, t ∈ N

ρ(s)
a ,

1
Γ(α)

[ (b−a+α−β1−1)β1−β2

(b−s+α−β1)β1−β2

(b−s+1)α−β2−1

(b−a)α−β2−1
(t −a)α−1− (t− s+1)α−1

]
, t ∈ N

b
s .

Since β2−β1 < (b−s+α −β1) < (b−a+α −β1−1) , from (4) of Theorem 2.3,
we have

(b−a+ α −β1−1)β1−β2 < (b− s+ α −β1)β1−β2 , (3.5)

implying that

G(b,β1;t,s) < G(b,β2;t,s), (t,s) ∈ N
b
a+1×N

b
a+2.

The proof is complete. �

THEOREM 3.4. G(b,β ;t,s) � 0 for (t,s) ∈ N
b
a×N

b
a+2 .

Proof. The proof follows from Remark 1, Theorem 3.2 and Lemma 3.3. �

LEMMA 3.5. Assume b1 < b2 and (t,s) ∈ N
b
a+1×N

b
a+2 .

1. If 0 � β < (α −1) , then G(b1,β ;t,s) < G(b2,β ; t,s) .

2. If (α −1) < β � 1 , then G(b1,β ;t,s) > G(b2,β ; t,s) .

3. If β = (α −1) , then G(b,β ;t,s) is independent of b .

Proof. Consider

∇b
[
G(b,β ; t,s)

]
=

(t−a)α−1

Γ(α)
∇b

[ (b− s+1)α−β−1

(b−a)α−β−1

]

=
(b−a)α−β−2(b− s+1)α−β−2(t −a)α−1(s−a−1)(α −β −1)

(b−a)α−β−1(b−a−1)α−β−1Γ(α)

=
(b− s+1)α−β−2(t−a)α−1

(b−a−1)α−βΓ(α)
(s−a−1)(α−β −1).
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Clearly, (s−a−1) > 0, Γ(α) > 0 and it follows from (1) of Theorem 2.3 that

(t −a)α−1 =
Γ(t −a+ α −1)

Γ(t −a)
> 0,

(b− s+1)α−β−2 =
Γ(b− s+ α −β −1)

Γ(b− s+1)
> 0,

and

(b−a−1)α−β =
Γ(b−a+ α−β −1)

Γ(b−a−1)
> 0.

Thus, if 0 � β < (α − 1) , then ∇b
[
G(b,β ;t,s)

]
> 0 implying that (1) follows. If

(α −1) < β � 1, then ∇b
[
G(b,β ;t,s)

]
< 0 implying that (2) follows. If β = (α −1) ,

then ∇b
[
G(b,β ; t,s)

]
= 0 implying that G(b,β ;t,s) is independent of b . The proof is

complete. �

DEFINITION 3.1. Denote by

H(b,β ;s) =
(b− s+1)α−β−1

(b−a)α−β−1
, s ∈ N

b
a+2.

REMARK 2. We have

H(b,β ;s) =
Γ(b− s+ α −β )Γ(b−a)

Γ(b− s+1)Γ(b−a+α−β −1)
, s ∈ N

b
a+2.

(i) It follows from (1) of Theorem 2.3 that H(b,β ;s) > 0 for s ∈ N
b
a+2 .

(ii) Since (b− s+1) < (b−a) , from (3) of Theorem 2.3, we have

(b− s+1)α−1 < (b−a)α−1,

implying that H(b,0;s) < 1.

(iii) Since (2−α) < (b− s+1) < (b−a) , from (4) of Theorem 2.3, we have

(b−a)α−2 < (b− s+1)α−2,

implying that H(b,1;s) > 1.

LEMMA 3.6. If 0 � β1 < β2 � 1 , then H(b,β1;s) < H(b,β2;s) for s ∈ N
b
a+2 .

Proof. Using (2) of Theorem 2.3, we rewrite H(b,β1;s) in terms of H(b,β2;s) as
follows:

H(b,β1;s) =
(b− s+1)α−β1−1

(b−a)α−β1−1
=

(b−a+ α−β1−1)β1−β2

(b− s+ α −β1)β1−β2

(b− s+1)α−β2−1

(b−a)α−β2−1

=
(b−a+ α −β1−1)β1−β2

(b− s+ α−β1)β1−β2
H(b,β2;s).
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It follows from (3.5) that

H(b,β1;s) < H(b,β2;s), s ∈ N
b
a+2.

The proof is complete. �

LEMMA 3.7. Assume s ∈ N
b
a+2 .

1. If 0 � β < (α −1) , then H(b,β ;s) < 1 .

2. If (α −1) < β � 1 , then H(b,β ;s) > 1 .

3. If β = (α −1) , then H(b,β ;s) = 1 .

Proof.

1. Since (b− s+1) < (b−a) , from (3) of Theorem 2.3, we have

(b− s+1)α−β−1 < (b−a)α−β−1,

implying that H(b,β ;s) < 1.

2. Since −(α −β −1) < (b− s+1) < (b−a) , from (4) of Theorem 2.3, we have

(b−a)α−β−1 < (b− s+1)α−β−1,

implying that H(b,β ;s) > 1.

3. The proof of (3) is trivial. �

LEMMA 3.8. Assume b1 < b2 .

1. If 0 � β < (α −1) , then H(b1,β ;s) < H(b2,β ;s) for s ∈ N
b
a+2 .

2. If (α −1) < β � 1 , then H(b1,β ;s) > H(b2,β ;s) for s ∈ N
b
a+2 .

Proof. Consider

∇b
[
H(b,β ;s)

]
= ∇b

[ (b− s+1)α−β−1

(b−a)α−β−1

]

=
(b−a)α−β−2(b− s+1)α−β−2(s−a−1)(α −β −1)

(b−a)α−β−1(b−a−1)α−β−1

=
(b− s+1)α−β−2

(b−a−1)α−β
(s−a−1)(α −β −1).

Clearly, (s−a−1) > 0 and it follows from (1) of Theorem 2.3 that

(b− s+1)α−β−2 =
Γ(b− s+ α −β −1)

Γ(b− s+1)
> 0,
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and

(b−a−1)α−β =
Γ(b−a+ α−β −1)

Γ(b−a−1)
> 0.

Thus, if 0 � β < (α − 1) , then ∇b
[
H(b,β ;s)

]
> 0 implying that (1) follows. If

(α − 1) < β � 1, then ∇b
[
H(b,β ;s)

]
< 0 implying that (2) follows. The proof is

complete. �

THEOREM 3.9. The maximum of the Green’s function G(b,β ; t,s) defined in (3.2)
is given by

max
(t,s)∈N

b
a+1×N

b
a+2

G(b,β ;t,s) =

{
Ω, 0 � β � (α −1),
max{Ω,Λ−1}, (α −1) < β � 1,

where

Ω

=G
(
b,β ;

⌊
(a+b+3)(α−β −1)+bβ

(2α −2−β )

⌋
−1,

⌊
(a+b+3)(α−β −1)+bβ

(2α −2−β )

⌋)
,

and

Λ

=G
(
b,β ;

⌊
(a+b+3)(α−β −1)+bβ +1

(2α −2−β )

⌋
,

⌊
(a+b+3)(α−β −1)+bβ +1

(2α −2−β )

⌋)
.

Proof. Assume (t,s) ∈ N
b
a+1×N

b
a+2 . First, we show that for any fixed s ∈ N

b
a+2 ,

G(b,β ; t,s) is an increasing function of t between a+1 and s−1. Consider the first
order nabla difference of G(b,β ;t,s) with respect to t .

∇t
[
G(b,β ;t,s)

]
=

H(b,β ;s)
Γ(α)

∇t (t−a)α−1 =
H(b,β ;s)(t−a)α−2

Γ(α −1)

=
H(b,β ;s)Γ(t −a+ α −2)

Γ(α −1)Γ(t−a)
. (3.6)

It follows from Remark 2 and (1) of Theorem 2.3 that ∇t
[
G(b,β ; t,s)

]
> 0 implying

that G(b,β ; t,s) is an increasing function of t between a+1 and s−1. Next, we show
that for any fixed s ∈ N

b
a+2 , G(b,β ;t,s) is a decreasing function of t between s and b .

Consider the first order nabla difference of G(b,β ;t,s) with respect to t .

∇t
[
G(b,β ; t,s)

]
=

1
Γ(α)

[
H(b,β ;s)∇t(t−a)α−1−∇t(t − s+1)α−1

]

=
1

Γ(α −1)

[
H(b,β ;s)(t−a)α−2− (t− s+1)α−2

]

=
H(b,β ;s)(t−a)α−2

Γ(α −1)

[
1− H(t,1;s)

H(b,β ;s)

]
. (3.7)
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Clearly, Γ(α −1) > 0 and it follows from (3.6) that

H(b,β ;s)(t −a)α−2

Γ(α −1)
> 0.

We consider two different cases based on α and β .

(i) Suppose 0 � β � (α − 1) . Since t ∈ N
b
s and s ∈ N

b
a+2 , from Remark 2 and

Lemma 3.7, we obtain

H(t,1;s) > 1 and H(b,β ;s) < 1,

implying that ∇t
[
G(b,β ;t,s)

]
< 0.

(ii) Suppose (α − 1) < β � 1. Since t ∈ N
b
s and s ∈ N

b
a+2 , from Lemmas 3.6 and

3.8, we have
H(t,1;s) > H(t,β ;s) > H(b,β ;s),

implying that ∇t
[
G(b,β ;t,s)

]
< 0.

Thus, G(b,β ; t,s) is a decreasing function of t between s and b . Therefore, we have
demonstrated that for any fixed s ∈ N

b
a+2 , G(b,β ;t,s) increases from G(b,β ;a+1,s)

to G(b,β ;s− 1,s) and then decreases from G(b,β ;s,s) to G(b,β ;b,s) . Now, we
examine G(b,β ; t,s) to determine whether the maximum for a fixed t will occur at
(s−1,s) or (s,s) . We have

G(b,β ;s−1,s) =
H(b,β ;s)(s−a−1)α−1

Γ(α)

and

G(b,β ;s,s) =
H(b,β ;s)(s−a)α−1

Γ(α)
−1.

We consider two different cases based on α and β .

(i) Suppose 0 � β � (α −1) . Consider

G(b,β ;s−1,s)−G(b,β ;s,s) =
H(b,β ;s)

Γ(α)
[
(s−a−1)α−1− (s−a)α−1]+1

= −H(b,β ;s)
Γ(α)

∇s
[
(s−a)α−1]+1

= −H(b,β ;s)
Γ(α −1)

(s−a)α−2 +1. (3.8)

Using Lemma 3.7 in (3.8), we obtain

G(b,β ;s−1,s)−G(b,β ;s,s) � − 1
Γ(α −1)

(s−a)α−2 +1.
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Since (2−α) < (s−a) < 1, from (4) of Theorem 2.3, we have

(s−a)α−2 < 1α−2,

implying that G(b,β ;s,s) � G(b,β ;s−1,s) .

Now we wish to maximize G(b,β ;s−1,s) for s ∈N
b
a+2 . Consider the first order

nabla difference of G(b,β ;s−1,s) with respect to s .

∇s
[
G(b,β ;s−1,s)

]
=

1

Γ(α)(b−a)α−β−1
∇s

[
(b− s+1)α−β−1(s−a−1)α−1]

=
(b− s+2)α−β−2(s−a−1)α−2

Γ(α)(b−a)α−β−1[
(α −1)(b− s+ α−β )− (α −β −1)(s−a+ α−3)

]
.

In this expression, Γ(α) > 0,

(b− s+2)α−β−2 =
Γ(b− s+ α −β )

Γ(b− s+2)
> 0,

(s−a−1)α−2 =
Γ(s−a+ α −3)

Γ(s−a−1)
> 0,

and

(b−a)α−β−1 =
Γ(b−a+ α −β −1)

Γ(b−a)
> 0.

The equation (α − 1)(b− s+ α −β )− (α −β − 1)(s− a+ α − 3) = 0 has the
solution

s =
(a+b+3)(α −β −1)+bβ

(2α −2−β )
,

so we consider

s =
⌊

(a+b+3)(α−β −1)+bβ
(2α −2−β )

⌋
.

If

s �
⌊

(a+b+3)(α−β −1)+bβ
(2α −2−β )

⌋
,

the expression (α −1)(b− s+ α −β )− (α −β −1)(s−a+ α −3) is positive,

and thus the expression (b− s+1)α−β−1(s−a−1)α−1 is increasing. If

s �
⌊

(a+b+3)(α−β −1)+bβ
(2α −2−β )

⌋
,

the expression (α −1)(b− s+ α −β )− (α −β −1)(s−a+ α −3) is negative,

and thus the expression (b− s+1)α−β−1(s−a−1)α−1 is decreasing. Hence the

maximum of the expression (b− s+1)α−β−1(s−a−1)α−1 occurs at

s =
⌊

(a+b+3)(α−β −1)+bβ
(2α −2−β )

⌋
.
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Thus, we have

max
(t,s)∈N

b
a+1×N

b
a+2

G(b,β ;t,s) = max
s∈N

b
a+2

G(b,β ;s−1,s) = Ω. (3.9)

(ii) Suppose (α −1) < β � 1. First, we maximize G(b,β ;s,s) for s ∈ N
b
a+2 . Con-

sider the first order nabla difference of G(b,β ;s,s) with respect to s .

∇s
[
G(b,β ;s,s)

]
=

1

Γ(α)(b−a)α−β−1
∇s

[
(b− s+1)α−β−1(s−a)α−1]

=
(b− s+2)α−β−2(s−a)α−2

Γ(α)(b−a)α−β−1[
(α −1)(b− s+ α−β )− (α −β −1)(s−a+ α−2)

]
.

In this expression, Γ(α) > 0,

(b− s+2)α−β−2 =
Γ(b− s+ α −β )

Γ(b− s+2)
> 0,

(s−a)α−2 =
Γ(s−a+ α −2)

Γ(s−a)
> 0,

and

(b−a)α−β−1 =
Γ(b−a+ α −β −1)

Γ(b−a)
> 0.

The equation (α − 1)(b− s+ α −β )− (α −β − 1)(s− a+ α − 2) = 0 has the
solution

s =
(a+b+3)(α−β −1)+bβ +1

(2α −2−β )
,

so we consider

s =
⌊

(a+b+3)(α−β −1)+bβ +1
(2α −2−β )

⌋
.

If

s �
⌊

(a+b+3)(α−β −1)+bβ +1
(2α −2−β )

⌋
,

the expression (α −1)(b− s+ α −β )− (α −β −1)(s−a+ α −2) is positive,

and thus the expression (b− s+1)α−β−1(s−a)α−1 is increasing. If

s �
⌊

(a+b+3)(α−β −1)+bβ +1
(2α −2−β )

⌋
,

the expression (α −1)(b− s+ α −β )− (α −β −1)(s−a+ α −2) is negative,

and thus the expression (b− s + 1)α−β−1(s− a)α−1 is decreasing. Hence the

maximum of the expression (b− s+1)α−β−1(s−a)α−1 occurs at

s =
⌊

(a+b+3)(α−β −1)+bβ +1
(2α −2−β )

⌋
.
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Thus, from (3.9), we have

max
(t,s)∈Nb

a+1×Nb
a+2

G(b,β ;t,s) = max
{

max
s∈Nb

a+2

G(b,β ;s−1,s), max
s∈Nb

a+2

G(b,β ;s,s)
}

= max{Ω,Λ−1}.

The proof is complete. �

THEOREM 3.10. The following inequality holds for G(b,β ; t,s):

max
t∈Nb

a+1

b

∑
s=a+2

G(b,β ;t,s) =
(b−a−1)α

(α −β )Γ(α)
.

Proof. Consider

b

∑
s=a+2

G(b,β ;t,s)

=
t

∑
s=a+2

G(b,β ;t,s)+
b

∑
s=t+1

G(b,β ;t,s)

=
1

Γ(α)

t

∑
s=a+2

[ (b− s+1)α−β−1

(b−a)α−β−1
(t−a)α−1− (t− s+1)α−1

]

+
1

Γ(α)

b

∑
s=t+1

(b− s+1)α−β−1

(b−a)α−β−1
(t −a)α−1

=
Γ(α −β )(t−a)α−1

Γ(α)(b−a)α−β−1

b

∑
s=a+2

(b− s+1)α−β−1

Γ(α −β )
−

t

∑
s=a+2

(t − s+1)α−1

Γ(α)

=
(t−a)α−1

(α −β )Γ(α)(b−a)α−β−1
(b−a−1)α−β − (t −a−1)α

Γ(α +1)

=
(b−a−1)(t−a)α−1

(α −β )Γ(α)
− (t−a−1)α

Γ(α +1)
.

We now find the maximum of this expression with respect to t ∈ N
b
a+1 . Since

(t−a−1)α

Γ(α +1)
=

Γ(t −a+ α −1)
Γ(t −a−1)Γ(α +1)

� 0, t ∈ N
b
a+1,

we have

max
t∈N

b
a+1

b

∑
s=a+2

G(b,β ;t,s) = max
t∈N

b
a+1

(b−a−1)(t−a)α−1

(α −β )Γ(α)
=

(b−a−1)α

(α −β )Γ(α)
.

The proof is complete. �
We are now able to formulate a Lyapunov-type inequality for the discrete boundary

value problem (1.2).
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THEOREM 3.11. If (1.2) has a nontrivial solution, then

b

∑
s=a+2

|q(s)| �
{

1
Ω , 0 � β � (α −1),

1
max{Ω,Λ−1} , (α −1) < β � 1.

Proof. Let B be the Banach space of functions u : N
b
a → R endowed with norm

‖u‖ = max
t∈Nb

a

|u(t)|.

It follows from Theorem 3.1 that a solution to (1.2) satisfies the equation

u(t) =
b

∑
s=a+2

G(b,β ;t,s)q(s)u(s).

Hence,

‖u‖ = max
t∈Nb

a

∣∣∣ b

∑
s=a+2

G(b,β ;t,s)q(s)u(s)
∣∣∣ = max

t∈N
b
a+1

∣∣∣ b

∑
s=a+2

G(b,β ; t,s)q(s)u(s)
∣∣∣

� max
t∈Nb

a+1

[ b

∑
s=a+2

G(b,β ;t,s)|q(s)||u(s)|
]

� ‖u‖
[

max
t∈Nb

a+1

b

∑
s=a+2

G(b,β ; t,s)|q(s)|
]

� ‖u‖
[

max
(t,s)∈N

b
a+1×N

b
a+2

G(b,β ;t,s)
] b

∑
s=a+2

|q(s)|,

or, equivalently,

1 �
[

max
(t,s)∈Nb

a+1×Nb
a+2

G(b,β ;t,s)
] b

∑
s=a+2

|q(s)|.

An application of Theorem 3.9 yields the result. �
Now, we discuss two applications of Theorem 3.11. First, we obtain a criterion for

the nonexistence of nontrivial solutions of (1.2).

THEOREM 3.12. Assume 1 < α < 2 and

b

∑
s=a+2

|q(s)| <
{

Ω, 0 � β � (α −1),
max{Ω,Λ−1}, (α −1) < β � 1.

(3.10)

Then, the discrete fractional boundary value problem (1.2) has no nontrivial solution
on N

b
a .

Next, we estimate a lower bound for eigenvalues of the eigenvalue problem corre-
sponding to (1.2).
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THEOREM 3.13. Assume 1 < α < 2 and u is a nontrivial solution of the eigen-
value problem {(

∇α
a u

)
(t)+ λu(t) = 0, t ∈ N

b
a+2,

u(a) = 0,
(
∇β

a u
)
(b) = 0,

(3.11)

where u(t) �= 0 for each t ∈ N
b−1
a+2 . Then,

|λ | �
{

1
Ω , 0 � β � (α −1),

1
max{Ω,Λ−1} , (α −1) < β � 1.

(3.12)

Conclusion

In this article we established a Lyapunov-type inequality for (1.2) using the prop-
erties of the corresponding Green’s function. This inequality is a generalization of
those Lyapunov-type inequalities obtained in [18, 19]. Two applications are provided
to illustrate the applicability of established results.
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