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ON SOME FRACTIONAL INTEGRO–DIFFERENTIAL INCLUSIONS

WITH NONLOCAL MULTI–POINT BOUNDARY CONDITIONS

AURELIAN CERNEA

(Communicated by S. Umarov)

Abstract. Existence of solutions for two classes of fractional integro-differential inclusions with
nonlocal multi-point boundary conditions is investigated in the case when the values of the set-
valued map are not convex.

1. Introduction

In the last years one may see a strong development of the theory of differential
equations of fractional order ([4, 9, 12, 13, 14] etc.) and of the theory of fractional dif-
ferential inclusions (e.g., [15]). The main reason is that fractional differential equations
are very useful tools in order to model many physical phenomena.

In some recent papers [1, 3] etc. the attention was focused on special classes of
boundary value problems associated to fractional differential equations; namely, non-
local multi-point boundary conditions. This is the explanation for the study in the
present paper of some fractional integro-differential inclusions with nonlocal multi-
point boundary conditions.

We consider first the problem

Dqx(t) ∈ F(t,x(t), Iγx(t)) a.e. ([1,T ]), (1.1)

x(1) = 0, Drx(T ) =
n

∑
i=1

λiD
rx(μi), (1.2)

where Dq is the Hadamard fractional derivative of order q , q ∈ (1,2] , r ∈ (0,1) , Iγ

is the Hadamard integral of order γ , γ > 0, μi ∈ (1,T ) , λi ∈ R , i = 1,n , n � 2 and
F : [1,T ]×R×R→ P(R) is a set-valued map.

If F is single-valued and does not depend on the last variable, fractional differen-
tial inclusion (1.1) reduces to the fractional differential equation

Dqx(t) = f (t,x(t)), (1.3)

where f : [1,T ]×R→ R .
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Existence results for problem (1.3)-(1.2) are obtained in [3] and are based on a
nonlinear alternative of Leray-Schauder type and some suitable theorems of fixed point
theory.

Our goal is to extend the study in [3] to the more general problem (1.1)-(1.2)
and to show that Filippov’s ideas ([10]) can be suitably adapted in order to obtain the
existence of solutions for this problem. Recall that for a differential inclusion defined by
a lipschitzian set-valued map with nonconvex values, Filippov’s theorem ([10]) consists
in proving the existence of a solution starting from a given ”quasi” solution. At the
same time, the result provides an estimate between the ”quasi” solution and the solution
obtained.

Secondly, we obtain similar results for problem

Dq
cx(t) ∈ F(t,x(t),V (x)(t)) a.e. ([0,T ]) (1.4)

x(0) = δx(σ), aDp
c x(ξ1)+bDp

c x(ξ2) =
m−2

∑
i=1

αix(βi), (1.5)

where q ∈ (1,2] , p ∈ (0,1) , δ ,a,b.αi ∈ R , σ ,ξ1,ξ2,βi ∈ (0,T ) , i = 1,m−2, Dq
c

is the Caputo fractional derivative of order q , F : [0,1]×R×R → P(R) is a set-
valued map, V : C([0,1],R) → C([0,1],R) is a nonlinear Volterra operator V (x)(t) =∫ t
0 k(t,s,x(s))ds with k(., ., .) : [0,1]×R×R→ R a given function.

In the case when F does not depend on the last variable and is single-valued,
fractional differential inclusion (1.4) reduces to the fractional differential equation

Dq
cx(t) = f (t,x(t)), (1.6)

where f : [0,T ]×R→ R is a given mapping.
In [1] fixed point techniques are employed to obtain the existence of solutions for

problem (1.6)-(1.5).
We note that existence results of the type provided in the present paper exists in

the literature ([6, 7, 8] etc.), but their exposure in the framework of problems (1.1)-(1.2)
and (1.4)-(1.5) is new.

The novelty of the present paper concerns several aspects. On one hand, the study
in [1, 3] is extended to the set-valued framework. This allows to deduce certain exis-
tence results concerning fractional differential equations in [1, 3] as consequences of
more general results. On the other hand, we consider problems whose right-hand side
contains an integral term and we implement to these integro-differential inclusions Fil-
lipov techniques. For such kind of problems the usual fixed point techniques (e.g., [15])
are difficult to be adapted.

The paper is organized as follows: in Section 2 we recall some preliminary results
that we need in the sequel and in Section 3 we prove our results.

2. Preliminaries

Let (X ,d) be a metric space. Recall that the Pompeiu-Hausdorff distance of the
closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B),d∗(B,A)}, d∗(A,B) = sup{d(a,B);a ∈ A},
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where d(x,B) = infy∈B d(x,y) .
Let I = [1,T ] , we denote by C(I,R) the Banach space of all continuous functions

from I to R with the norm ||x(.)||C = supt∈I |x(t)| and L1(I,R) is the Banach space of
integrable functions u(.) : I → R endowed with the norm ||u(.)||1 =

∫ e
1 |u(t)|dt .

The Hadamard fractional integral of order q > 0 of a Lebesgue integrable function
f : [1,∞) → R is defined by

Iq f (t) =
1

Γ(q)

∫ t

1

(
ln

t
s

)q−1 f (s)
s

ds

provided the integral exists and Γ is the (Euler’s) Gamma function defined by Γ(q) =∫ ∞
0 tq−1e−tdt .

The Hadamard fractional derivative of order q > 0 of a function f : [1,∞) → R
is defined by

Dq f (t) =
1

Γ(n−q)

(
t
d
dt

)n ∫ t

1

(
ln

t
s

)n−q−1 f (s)
s

ds,

where n = [q]+1, [q] is the integer part of q .
Details and properties of Hadamard fractional derivative may be found in [11, 12].
The fractional integral of order q > 0 of a Lebesgue integrable function f :

(0,∞) → R is defined by

Iq f (t) =
∫ t

0

(t − s)q−1

Γ(q)
f (s)ds,

provided the right-hand side is pointwise defined on (0,∞) .
The Caputo fractional derivative of order q > 0 of a function f : [0,∞) → R is

defined by

Dq
c f (t) =

1
Γ(n−q)

∫ t

0
(t− s)−q+n−1 f (n)(s)ds,

where n = [q]+1. It is assumed implicitly that f is n times differentiable whose n -th
derivative is absolutely continuous.

The next technical result is proved in [3]. Set Λ := (lnT )q−r−1−∑n
i=1 λi(lnμi)q−r−1.

LEMMA 1. ([3]) Assume that Λ �= 0 . For a given f (.) ∈ C(I,R) , the unique
solution x(.) of problem Dqx(t) = f (t) a.e. ([1,T ]) with boundary conditions (1.2) is
given by

x(t) =
(ln t)q−1

Γ(q)Λ
(

n

∑
i=1

λi

∫ μi

1
(ln

μi

s
)q−r−1 h(s)

s
ds−

∫ T

1
(ln

T
s
)q−r−1 h(s)

s
ds)

+
1

Γ(q)

∫ t

1
(ln

t
s
)q−1 h(s)

s
ds.

(2.1)
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REMARK 1. If we denote

G1(t,s) =
(ln t)q−1

Γ(q)Λ
(

n

∑
i=1

λi(ln
μi

s
)q−r−1 1

s
χ[1,μi](s)− (ln

T
s
)q−r−1 1

s
)

+
1

Γ(q)
(ln

t
s
)q−1 1

s
χ[1,t](s),

where χS(·) is the characteristic function of the set S , then the solution x(·) in Lemma
1 may be written as x(t) =

∫ T
1 G1(t,s) f (s)ds .

Using the fact that, for fixed t , the function g(s) = (ln t
s )

α 1
s with α > 0 is de-

creasing we deduce that, if q− r−1 > 0, for any t,s ∈ I ,

|G1(t,s)| � (lnT )q−1

Γ(q)|Λ| (
n

∑
i=1

|λi|(lnμi)q−r−1 +(lnT )q−r−1)+
1

Γ(q)
(lnT )q−1 =: M1.

DEFINITION 1. A function x(.) ∈ C(I,R) with its Hadamard derivative of order
q existing on [1,T ] is called a solution of problem (1.1)-(1.2) if there exists a function
f (.) ∈ L1(I,R) that satisfies

f (t) ∈ F(t,x(t), Iγx(t)) a.e. (I)

and x(.) is given by (2.1).

Next I = [0,T ] . The proof of the following lemma may be found in [1]. Define

A := (1− δ )(
aξ 1−p

1 +bξ 1−p
2

Γ(2− p)
−

m−2

∑
i=1

αiβi)− δσ
m−2

∑
i=1

αi.

LEMMA 2. ([1]) Assume that A �= 0 . For a given f (.) ∈ C(I,R) , the unique so-
lution x(.) of problem Dq

cx(t) = f (t) a.e. ([0,T ]) with boundary conditions (1.5) is
given by

x(t) =
∫ t

0

(t − s)q−1

Γ(q)
f (s)ds+

δ
1− δ

∫ σ

0

(σ − s)q−1

Γ(q)
f (s)ds+[

δσ
A(1− δ )

+
t
A

][(1− δ )

· (
m−2

∑
i=1

αi

∫ βi

0

(βi − s)q−1

Γ(q)
f (s)ds−a

∫ ξ1

0

(ξ1− s)q−p−1

Γ(q− p)
f (s)ds

−b
∫ ξ2

0

(ξ2− s)q−p−1

Γ(q− p)
f (s)ds)+ δ

m−2

∑
i=1

αi

∫ σ

0

(σ − s)q−1

Γ(q)
f (s)ds.]

(2.2)
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If we denote

G2(t,s) =
(t− s)q−1

Γ(q)
χ[0,t](s)+

δ
1− δ

(σ − s)q−1

Γ(q)
χ[0,σ ](s)+ [

δσ
A(1− δ )

+
t
A

][(1− δ )

· (
m−2

∑
i=1

αi
(βi− s)q−1

Γ(q)
χ[0,βi](s)−a

(ξ1− s)q−p−1

Γ(q− p)
χ[0,ξ1](s)

−b
(ξ2− s)q−p−1

Γ(q− p)
χ[0,ξ2](s))+ δ

m−2

∑
i=1

αi
(σ − s)q−1

Γ(q)
χ[0,σ ](s)],

then solution x(·) in Lemma 2 may be written as x(t) =
∫ T
0 G2(t,s) f (s)ds .

Moreover, if q− p−1 > 0 for any t,s ∈ I we have

|G2(t,s)| �Tq−1

Γ(q)
+

|δ |
|1− δ |

σq−1

Γ(q)
+

|δ |T +T |1− δ |
|A|) (

m−2

∑
i=1

|αi|β
q−1
i

Γ(q)
+ |a| ξ q−p−1

1

Γ(q− p)

+ |b| ξ q−p−1
2

Γ(q− p)
+ |δ |

m−2

∑
i=1

|αi|σ
q−1

Γ(q)
) =: M2.

DEFINITION 2. A function x(.) ∈ C(I,R) with its Caputo derivative of order q
existing on [0,T ] is called a solution of problem (1.4)-(1.5) if there exists a function
f (.) ∈ L1(I,R) that satisfies

f (t) ∈ F(t,x(t),V (x)(t)) a.e. (I)

and x(.) is given by (2.2).

Finally, we recall a selection result ([2]) which is a version of the celebrated Ku-
ratowski and Ryll-Nardzewski selection theorem.

LEMMA 3. ([2]) Consider X a separable Banach space, B is the closed unit ball
in X , G : I →P(X) is a set-valued map with nonempty closed values and c : I → X ,r :
I → R+ are measurable functions. If

G(t)∩ (c(t)+ r(t)B) �= /0 a.e.(I),

then the set-valued map t → G(t)∩ (c(t)+ r(t)B) has a measurable selection.

3. The main results

In order to prove our results we need the following hypotheses.

HYPOTHESIS H1. i) F(., ., .) : I×R×R→ P(R) has nonempty closed values and is
L (I)⊗B(R×R) measurable.

ii) There exists l(.) ∈ L1(I,(0,∞)) such that, for almost all t ∈ I , F(t, ., .) is l(t)-
Lipschitz in the sense that

dH(F(t,x1,y1),F(t,x2,y2)) � l(t)(|x1 − x2|+ |y1− y2|) ∀ x1,x2,y1,y2 ∈ R.
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We use next the following notations

L(t) := l(t)(1+
1

Γ(γ)

∫ t

1

(
ln

t
s

)γ−1 1
s
ds) = l(t)(1+

(ln t)γ

Γ(γ +1)
), (3.1)

L0 =
∫ T

1
L(t)dt. (3.2)

THEOREM 1. Assume that Hypothesis H1 is satisfied, q− r− 1 > 0 , Λ �= 0 and
M1L0 < 1 . Consider y(.)∈C(I,R) with its Hadamard derivative of order q existing on
[1,T ] such that y(1) = 0 , Dry(T ) = ∑n

i=1 λiDry(μi) and there exists p(.) ∈ L1(I,R+)
verifying d(Dqy(t),F(t,y(t), Iγy(t))) � p(t) a.e. (I) .

Then there exists x(.) a solution of problem (1.1)-(1.2) satisfying for all t ∈ I

|x(t)− y(t)|� M1

1−M1L0

∫ T

1
p(t)dt. (3.3)

Proof. The multifunction t → F(t,y(t), Iγy(t)) has closed values, is measurable
and from hypothesis of theorem one has

F(t,y(t), Iγy(t))∩{Dqy(t)+ p(t)[−1,1]} �= /0 a.e. (I).

We apply Lemma 3 to find a measurable function f1(t)∈ F(t,y(t), Iγy(t)) a.e. (I)
such that

| f1(t)−Dqy(t)| � p(t) a.e. (I) (3.4)

Define x1(t) =
∫ T
1 G1(t,s) f1(s)ds and one has |x1(t)− y(t)|� M1

∫ T
1 p(t)dt.

We point out that it is enough to construct the sequences xn(.) ∈C(I,R) , fn(.) ∈
L1(I,R) , n � 1, with the following properties

xn(t) =
∫ T

1
G1(t,s) fn(s)ds, t ∈ I, (3.5)

fn(t) ∈ F(t,xn−1(t), Iγxn−1(t)) a.e.(I), (3.6)

| fn+1(t)− fn(t)| � L(t)(|xn(t)− xn−1(t)|+ 1
Γ(γ)

∫ t

1

(
ln

t
s

)γ−1 1
s
|xn(s)− xn−1(s)|ds)

(3.7)

for almost all t ∈ I .
Assume that this construction is done; then from (3.4)-(3.7) we have for almost all

t ∈ I

|xn+1(t)− xn(t)| � M1(M1L0)n
∫ T

1
p(t)dt ∀n ∈ N.
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Indeed, assume that the last inequality is true for n−1 and we prove it for n . One
has

|xn+1(t)− xn(t)| �
∫ T

1
|G1(t,t1)|.| fn+1(t1)− fn(t1)|dt1

�M1

∫ T

1
l(t1)[|xn(t1)− xn−1(t1)|+ 1

Γ(γ)

∫ t1

1

(
ln

t1
s

)γ−1 1
s
|xn(s)− xn−1(s)|ds]

�M1

∫ T

1
l(t1)(1+

1
Γ(γ)

∫ t1

1

(
ln

t1
s

)γ−1 1
s
ds)dt1.M

n
1Ln−1

0

∫ T

1
p(t)dt

=M1(M1L0)n
∫ T

1
p(t)dt.

Thus, {xn(.)} is Cauchy in the Banach space C(I,R) , therefore, converging uniformly
to some x(.) ∈C(I,R) . Hence, by (3.7), for almost all t ∈ I , the sequence { fn(t)} is
Cauchy in R . Denote f (.) the pointwise limit of fn(.) .

At the same time, one has

|xn(t)− y(t)|� |x1(t)− y(t)|+
n−1

∑
i=1

|xi+1(t)− xi(t)|

�M1

∫ T

1
p(t)dt +

n−1

∑
i=1

(M1

∫ T

1
p(t)dt)(M1L0)i =

M1
∫ T
1 p(t)dt

1−M1L0
. (3.8)

Moreover, from (3.4), (3.7) and (3.8) we obtain for almost all t ∈ I

| fn(t)−Dqy(t)| �
n−1

∑
i=1

| fi+1(t)− fi(t)|+ | f1(t)−Dqy(t)| � L(t)
M1

∫ T
1 p(t)dt

1−M1L0
+ p(t).

In particular, the sequence fn(.) is integrably bounded and thus f (.) ∈ L1(I,R) .
From Lebesgue’s dominated convergence theorem and passing the limit in (3.5),

(3.6) we obtain that x(.) is a solution of (1.1). Finally, passing to the limit in (3.8) we
obtained the desired estimate on x(.) .

In order to finish the proof it remains to realize the construction of the sequences
xn(.), fn(.) with the properties in (3.5)-(3.7). This will be done by induction.

Since the first step is already realized, assume that for some N � 1 we already
constructed xn(.)∈C(I,R) and fn(.)∈ L1(I,R) , n = 1,2, ...N satisfying (3.5), (3.7) for
n = 1,2, ...N and (3.6) for n = 1,2, ...N−1. The set-valued map t →F(t,xN(t), IγxN(t))

is measurable; as well as the map t → L(t)(|xN(t)−xN−1(t)|+ 1
Γ(γ)

∫ t
1

(
ln t

s

)γ−1
1
s |xN(s)

− xN−1(s)|ds) is measurable. Since F(t, ., .) is Lipschitz we have that for almost all
t ∈ I

F(t,xN(t), IγxN(t))∩{ fN(t)+L(t)(|xN(t)− xN−1(t)|+ 1
Γ(γ)

∫ t
1

(
ln t

s

)γ−1
1
s |xN(s)

−xN−1(s)|ds)[−1,1]} �= /0.
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Lemma 3 allows to find a measurable selection fN+1(.) of F(.,xN(.), Iγ xN(.)) such that
for almost all t ∈ I

| fN+1(t)− fN(t)| � L(t)(|xN(t)− xN−1(t)|+ 1
Γ(γ)

∫ t

1

(
ln

t
s

)γ−1 1
s
|xN(s)− xN−1(s)|ds).

We define xN+1(.) as in (3.5) with n = N + 1. Thus fN+1(.) satisfies (3.6) and
(3.7) and the proof is complete. �

The assumptions in Theorem 1 are satisfied, in particular, for y(.) = 0 and there-
fore with p(.) = l(.) . We obtain the following consequence of Theorem 1.

COROLLARY 1. Assume that Hypothesis H1 is satisfied, d(0,F(t,0,0)� L(t) a.e.
(I) , q− r−1 > 0 , Λ �= 0 and M1L0 < 1 . Then there exists x(.) a solution of problem
(1.1)-(1.2) satisfying for all t ∈ I

|x(t)| � M1

1−M1L0

∫ T

1
l(t)dt.

If F does not depend on the last variable, Hypothesis H1 becomes

HYPOTHESIS H2. i) F(., .) : I ×R → P(R) has nonempty closed values and is
L (I)⊗B(R) measurable.

ii) There exists l(.) ∈ L1(I,(0,∞)) such that, for almost all t ∈ I , F(t, .) is L(t)-
Lipschitz in the sense that

dH(F(t,x1),F(t,x2)) � l(t)|x1 − x2| ∀ x1,x2 ∈ R.

Denote M0 =
∫ T
1 l(t)dt and consider the fractional differential inclusion

Dqx(t) ∈ F(t,x(t)) a.e. ([1,T ]), (3.9)

COROLLARY 2. Assume that Hypothesis H2 is satisfied, d(0,F(t,0) � L(t) a.e.
(I) , q− r−1 > 0 , Λ �= 0 and M1M0 < 1 . Then there exists x(.) a solution of problem
(3.9)-(1.2) satisfying for all t ∈ I

|x(t)| � M1M0

1−M1M0
.

REMARK 2. If in (3.9) F is single-valued, then a similar result to the one in Corol-
lary 2 may be found in [3]; namely, Theorem 3.3.

We are concern next with problem (1.4)-(1.5). In what follows I = [0,T ] and we
make the following notations

N(t) := l(t)(1+
∫ t

0
l(u)du), t ∈ I, N0 =

∫ T

0
N(t)dt.



SOME FRACTIONAL INTEGRO-DIFFERENTIAL INCLUSIONS 147

THEOREM 2. Assume that Hypothesis H1 is satisfied, q− p−1 > 0 , A �= 0 and
M2N0 < 1 . Consider y(.) ∈ C(I,R) with its Caputo derivative of order q existing on
[0,T ] such that y(0) = δy(σ) , aDp

c y(ξ1)+bDp
c y(ξ2) = ∑m−2

i=1 αiy(βi) and there exists
q(.) ∈ L1(I,R+) verifying d(Dq

cy(t),F(t,y(t),V (y)(t))) � q(t) a.e. (I) .
Then there exists x(.) a solution of problem (1.4)-(1.5) satisfying for all t ∈ I

|x(t)− y(t)|� M2

1−M2N0

∫ T

0
q(t)dt.

Proof. The proof is similar to the proof of Theorem 1. �
If in Theorem 2, y(.) = 0 and q(.) = l(.) we get the following consequence of

Theorem 2.

COROLLARY 3. Assume that Hypothesis H1 is satisfied, d(0,F(t,0,0)� L(t) a.e.
(I) , q− p−1 > 0 , A �= 0 and M2N0 < 1 . Then there exists x(.) a solution of problem
(1.4)-(1.5) satisfying for all t ∈ I

|x(t)| � M2

1−M2N0

∫ T

0
l(t)dt.

Next F does not depend on the last variable. Set K0 =
∫ T
0 l(t)dt and consider the

fractional differential inclusion

Dq
cx(t) ∈ F(t,x(t)) a.e. ([0,T ]), (3.10)

COROLLARY 4. Assume that Hypothesis H2 is satisfied, d(0,F(t,0) � L(t) a.e.
(I) , q− p−1 > 0 , A �= 0 and M2K0 < 1 . Then there exists x(.) a solution of problem
(3.10)-(1.2) satisfying for all t ∈ I

|x(t)| � M2K0

1−M2K0
.

REMARK 3. If in (3.10), F is single-valued, then a similar result to the one in
Corollary 4 is Theorem 1 in [1].
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