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WITH α ∈ (0,1) AND APPLICATIONS
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Abstract. In this paper we study an analytic resolvent family for abstract fractional integro-
differential system using the perturbation theory of sectorial operators. We apply this resolvent
family on the existence of mild solutions for abstract semilinear Cauchy problem

Dα
t u(t) = Au(t)+

∫ t

0
B(t− s)u(s)ds+ f (t,u(t)), t ∈ (0,τ),

u(0) = u0 ∈ X ,

where Dα
t u represents the Caputo derivative of u for α ∈ (0,1), A,(B(t))t�0 are closed linear

operators defined on a common domain which is dense in a Banach space X and f satisfies
appropriated conditions. In the end, we applain the ours abstract results in the existence of mild
solution of two partial integro-differential systems.

1. Introduction

In this paper we study the existence of a resolvent family for the abstract fractional
integro-differential system

Dα
t u(t) = Au(t)+

∫ t

0
B(t − s)u(s)ds, t � 0, (1)

u(0) = u0, (2)

where A,(B(t))t�0 are closed linear operators defined on a common domain which is
dense in a Banach space (X ,‖ · ‖), and Dα

t h(t) represents the Caputo derivative of h
for α ∈ (0,1) defined by

Dα
t h(t) :=

∫ t

0
g1−α(t− s)h′(s)ds,

where g1−α is the Gelfand-Shilov function gβ (t) := tβ−1

Γ(β ) ,t > 0, with β = 1−α.

In the past decades, considerable attention has been attracted to the theory of re-
solvent operator for integro-differential equations. We refer to the book by Gripenberg
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et. al. [16] for the case where the underlying space X has finite dimension. For ab-
stract integro-differential equations on infinite dimensional spaces, we cite the book by
J. Prüss [27] and the papers of Da Prato et al. [8, 7], Grimmer et al. [13, 14, 15],
Lunardi [23, 24], Sforza [29] and Dos Santos et al. [9, 10, 11].

With a resolvent family of fractional integro-differential equations it is possible
study an existence of solutions for semilinear fractional integro-differential Cauchy
problem

Dα
t u(t) = Au(t)+

∫ t

0
B(t− s)u(s)ds+ f (t,u(t)), t ∈ (0,τ), (3)

u(0) = u0 ∈ X , (4)

where f satisfies the appropriate conditions. Regarding the fractional differential equa-
tions in spaces of infinite dimension, this problem has been extensive studied, we can
mention the pioner thesis of Bajlekova [5] and the works of [17, 18, 19, 21, 30, 31]
and references therein. For abstract fractional integro-differential equations in infinite
dimension, we suggest the articles Agarwal et al. [1] in the case of α ∈ (1,2) , the book
of Kostić [20], Ponce [26] and Herzallah et al. [12] when B(t) = a(t)A, t � 0. To the
best of the authors’ knowledge, the existence of an analytic resolvent operator by per-
tubation theory for the abstract integro-differential fractional equation (1)-(2) and the
existence of mild solutions of (3)-(4), with α ∈ (0,1) , is a subject that has not been
treated in the literature. This is the principal motivation of this paper.

This work has four sections. In Section 2, by pertubations of the sectorial operators
and assuming some conditions on family operator (B(t))t�0 , we prove the existence
and qualitative properties of a resolvent operator and the auxiliary resolvent operators
for the fractional integro-differential system (1)-(2). In Section 3, the existence of mild
solution for the nonhomogeneous equation associated to (3)-(4) is discussed. In the
last Section some applications in a partial integro-differential equation of Jeffrey’s type,
which arise in the theory of heat equation with memory and a partial integro-differential
fractional coupled system, are considered.

By Dα
t h(t) we denoted the Caputo derivative of h for α > 0, defined by

Dα
t h(t) :=

∫ t

0
gn−α(t− s)

dn

dsn h(s)ds,

where n is the smallest integer greater than or equal to α and gβ (t) := tβ−1

Γ(β ) ,t > 0,β �
0. These functions satisfy the semigroup property

gα ∗ gβ = gα+β .

If we denote

Jα
t f (t) = (gα ∗ f )(t) =

∫ t

0
gα(t − s) f (s)ds, (5)

we have

Dα
t Jα

t f (t) = f (t), (6)

Jα
t Dα

t f (t) = f (t)−
n−1

∑
k=0

f (k)(0)
tk

k!
. (7)
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Applying the properties of the Laplace transform and taking into account that ĝα(Λ) =
Λ−α , we obtain

D̂α
t f (Λ) = Λα f (Λ)−

n−1

∑
k=0

f (k)(0)Λα−1−k, (8)

(see [5, 28] for details.)
Throughout this paper, let (Z,‖ · ‖Z) and (W,‖ · ‖W ) be Banach spaces. We denote

by L (Z,W ) the space of bounded linear operators from Z into W endowed with norm
of operators, and we write simply L (Z) when Z = W . By R(Q) we denote the range
of a map Q and for a closed linear operator P : D(P) ⊆ Z →W , the notation [D(P)]
represents the domain of P endowed with the graph norm, ‖z‖1 = ‖z‖Z +‖Pz‖W , z ∈
D(P) . The notation, B(x,R) and B[x,R] represent the open ball and the closed ball,
respectively, with center at x and radius R > 0 in X . Let I ⊂ R, by C(I,X) we denote
the space of continuous functions defined on I into X , and C1(I,X) stands for the
space of continuous functions from I to X having continuous derivative. We define the
space Cα(I,X), by

Cα(I,X) := {x ∈C(I,X) : Dα
t x ∈C(I,X)}.

We denote by Lp(I,X) the set of all measurable functions u(·) on I into X such that

‖ u(t) ‖p is integrable, and its norm is given by ‖ u ‖Lp(I,X)= (
∫
I ‖ u(t) ‖p)

1
p ; sim-

ilarly, by Lp
loc(R+,X) we denote the space of the functions belonging Lp(I,X) , for

any compact set I ⊂ R+. When X = Rn , for some n , we denote for simplicity by
C(I),C1(I),Cα (I),Lp(I) and Lp

loc(R+) , respectively. The notation ρ(P) stands for the
resolvent set of P and R(Λ,P) = (ΛI −P)−1 is the resolvent operator of P . Further-
more, for appropriate functions K : [0,∞) → Z and S : [0,∞) →L (Z,W ) , the notation
K̂ denotes the Laplace transform of K , and S ∗K the convolution between S and K ,
which is defined by S ∗K(t) =

∫ t
0 S(t− s)K(s)ds .

2. Fractional resolvent operator

To begin, we introduce the following concept of resolvent operator for the abstract
fractional integro-differential problem (1)-(2).

DEFINITION 1. A one parameter family of bounded linear operators (Rα(t))t�0

on X is called a α -resolvent operator of (1)-(2) if the following conditions are verified.

(a) The function Rα(·) : [0,∞)→L (X) is strongly continuous and Rα(0)x = x for
all x ∈ X and α ∈ (0,1).

(b) For x ∈ D(A) , Rα(·)x ∈C([0,∞), [D(A)])
⋂

Cα((0,∞),X) , and

Dα
t Rα(t)x = ARα(t)x+

∫ t

0
B(t− s)Rα(s)xds (9)

= Rα(t)Ax+
∫ t

0
Rα(t− s)B(s)xds, (10)
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for every t � 0.

In this work we always assume that the following conditions are verified.

(H1) The operator A : D(A)⊆ X → X is a closed linear operator with [D(A)] dense in
X , for some φ ∈ (π

2 ,π) there is positive constants C0 =C0(φ) such that Λ∈ρ(A)
for each

Σ0,φ = {Λ ∈ C :| arg(Λ) |< φ} ⊂ ρ(A),

and ‖ R(Λ,A) ‖� C0

| Λ | for all Λ ∈ Σ0,φ .

(H2) For all t � 0, B(t) : D(B(t))⊆X →X is a closed linear operator, D(A)⊆D(B(t))
and B(·)x is strongly measurable on (0,∞) for each x ∈ D(A) . There exists
b(·) ∈ L1

loc(R
+) such that b̂(Λ) exists for Re(Λ) > 0 and ‖ B(t)x ‖� b(t) ‖ x ‖1

for all t > 0 and x ∈ D(A) . Moreover, the operator valued function B̂ : Σ0,π/2 →
L ([D(A)],X) has an analytical extension (still denoted by B̂) to Σ0,φ such that
‖B̂(Λ)x‖ � ‖B̂(Λ)‖‖x‖1 for all x ∈ D(A) , and ‖B̂(Λ)‖ = O( 1

|Λ| ), as |Λ| → ∞.

(H3) There exists a subspace D ⊆ D(A) dense in [D(A)] and positive constants Ci ,
i = 1,2, such that A(D)⊆D(A) , B̂(Λ)(D)⊆D(A) , ‖AB̂(Λ)x‖�C1‖x‖ for every
x ∈ D and all Λ ∈ Σ0,φ .

REMARK 1. We note that conditions of type (H2) and (H3) have been previous-
ly considered in the literature; see [9, 10, 11, 14] for details.

In the sequel, for r > 0 and θ ∈ (π
2 ,φ) ,

Σr,θ = {Λ ∈ C :| Λ |� r, and | arg(Λ) |< θ}.

In addition, ρ(Fα) and ρ(Gα) are the sets

ρ(Fα) = {Λ ∈ C : Fα(Λ) := (Λα I−A− B̂(Λ))−1 ∈ L (X)} and

ρ(Gα) = {Λ ∈ C : Gα(Λ) := Λα−1(Λα I−A− B̂(Λ))−1 ∈ L (X)}.
We next study some preliminary properties needed to establish existence of a α -

resolvent operator for the problem (1)-(2). The proof of the next Lemma is immediate,
but we put it to better understanding.

LEMMA 1. Suppose that condition (H1) holds, then Λα ∈ ρ(A) for each Λ ∈
Σ0,φ and there exists M0 = M0(φ) such that

‖ R(Λα ,A) ‖� M0

| Λ |α , (11)

for all Λ ∈ Σ0,φ .
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Proof. Let z = Λα , we have Λα = eα log(Λ) = |Λ|αeiα arg(Λ). We infer |z| = |Λ|α
and

| arg(z) |=| α arg(Λ) |�| arg(Λ) |< φ .

This implies z = Λα ∈ ρ(A) and (11) is verified. �
Following the same arguments used in the proof of Lemma 2.2 in [1], we have the

next result. We will include a proof to that the work stay more complete.

LEMMA 2. There exists r1 > 0 such that Σr1,φ ⊆ ρ(Fα) and the function Fα :
Σr1,φ → L (X) is analytic. Moreover,

Fα(Λ) = R(Λα ,A)[I− B̂(Λ)R(Λα ,A)]−1, (12)

and there exists constants Mi, for i = 1,2,3, such that

‖ Fα(Λ) ‖ � M1

| Λ |α , (13)

‖ AFα(Λ)x ‖ � M2

| Λ |α ‖ x ‖1, x ∈ D(A), (14)

‖ AFα(Λ) ‖ � M3, (15)

for every Λ ∈ Σr1,φ .

Proof. We have

‖ B̂(Λ)R(Λα ,A) ‖ � ‖ B̂(Λ) ‖‖ R(Λα ,A) ‖1

� ‖ B̂(Λ) ‖ (‖ R(Λα ,A) ‖ + ‖ ΛαR(Λα ,A) ‖ +1)

�
(

M0 ‖ B̂(Λ) ‖
| Λ |α +M0 ‖ B̂(Λ) ‖ + ‖ B̂(Λ) ‖

)
.

From (H2) fixed ε < 1, there exists a positive number r1 > 1 such that ‖ B̂(Λ)R(Λα ,A) ‖�
ε for Λ ∈ Σr1,φ , consequently, the operator I− B̂(Λ)R(Λα ,A) has a continuous inverse
with

‖ (I− B̂(Λ)R(Λα ,A))−1 ‖� 1
1− ε

.

Moreover, for x ∈ X , we have

(Λα I− B̂(Λ)−A)R(Λα ,A)(I− B̂(Λ)R(Λα ,A))−1x = x,

and for x ∈ D(A)

R(Λα ,A)(I− B̂(Λ)R(Λα ,A))−1(Λα I− B̂(Λ)−A)x = x,

which shows (12), that Σr1,φ ⊆ ρ(Fα) and estimate (13) is valid. Now, from (12) we
obtain R(Fα(Λ)) ⊆ D(A) , and

AFα(Λ) = (ΛαR(Λα ,A)− I)(I− B̂(Λ)R(Λα ,A))−1.
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Consequently, the functions AG : Σr1,φ → L (X) is analytic, and

‖ AFα(Λ) ‖ � 1
1− ε

‖ ΛαR(Λα ,A)− I ‖

� 1
1− ε

(
M0 | Λ |α
| Λ |α +1

)
� M0 +1

1− ε
.

In addition, for x ∈ D(A) , we can write

‖ AFα(Λ)x ‖ � ‖AR(Λα ,A)(I− B̂(Λ)R(Λα ,A))−1x−AR(Λα ,A)x‖
+‖R(Λα ,A)Ax‖

= ‖AR(Λα ,A)(I− B̂(Λ)R(Λα ,A))−1(I− (I− B̂(Λ)R(Λα ,A)))x‖
+‖R(Λα ,A)Ax‖

� ‖AFα(Λ)B̂(Λ)R(Λα ,A)x‖+‖R(Λα,A)Ax‖
� M0 +1

1− ε
‖ B̂(Λ) ‖ ‖R(Λα ,A)x‖1 +‖R(Λα ,A)Ax‖

� M0 +1
1− ε

‖ B̂(Λ) ‖ (‖R(Λα ,A)x‖+2‖R(Λα,A)Ax‖)

� M2

| Λ |α ‖ x ‖1,

for |Λ| sufficiently large. This proves (14) and completes the proof. �
Using the previous result we have the next Lemma.

LEMMA 3. There exists r1 > 0 such that Σr1,ϑ ⊆ ρ(Gα) and the function Gα :
Σr1,φ → L (X) is analytic. Moreover,

Gα(Λ) = Λα−1Fα(Λ) = Λα−1R(Λα ,A)[I− B̂(Λ)R(Λα ,A)]−1, (16)

and there exists constants Mi for i = 4,5,6 such that

‖ Gα(Λ) ‖ � M4

| Λ | , (17)

‖ AGα(Λ)x ‖ � M5

| Λ | ‖ x ‖1, x ∈ D(A), (18)

‖ AGα(Λ) ‖ � M6

| Λ |1−α , (19)

for every Λ ∈ Σr1,ϑ .

Proof. Since Gα(Λ) = Λα−1Fα(Λ) it is easy to see that (16) is satisfied with
Σr1,ϑ ⊆ ρ(Gα) and estimate (17) is valid. Now, from (16) we obtain R(Gα(Λ)) ⊆
D(A) , and

AGα(Λ) = Λα−1(ΛαR(Λα ,A)− I)(I− B̂(Λ)R(Λα ,A))−1.
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Consequently, the functions AGα : Σr1,ϑ → L (X) is analytic, and

‖ AGα(Λ) ‖ = ‖ Λα−1AFα(Λ) ‖� M3

| Λ |1−α .

For x ∈ D(A) , we can write

‖ AGα(Λ)x ‖ = ‖ Λα−1AGα(Λ)x ‖� | Λ |α−1 M2

| Λ |α ‖ x ‖1�
M2

| Λ | ‖ x ‖1,

this implies (18). �
In the rest of this paper we assume the conditions (Hi), i = 1,2,3, holds, r,θ are

numbers such that r > r1 and θ ∈ (π/2,φ) . Moreover, we denote by C a generic
constant that represent any of the constants involved in the statements of Lemma 3
as well as any other constant that arises in the estimate that follows. By Γr,θ ,Γi

r,θ ,
i = 1,2,3, we define the paths

Γ1
r,θ = {teiθ : t � r}, Γ2

r,θ = {reiξ : −θ � ξ � θ} and Γ3
r,θ = {te−iθ : t � r},

and Γr,θ =
⋃3

i=1 Γi
r,θ oriented counterclockwise.

We start with generalization of the analityc resolvent operator associated a integro-
differential equations [14] for the fractional integro-differential problem (1)-(2) with
α ∈ (0,1) .

DEFINITION 2. We define the operator family (Rα(t))t�0 by

Rα(t) =
1

2π i

∫
Γr,θ

eΛtGα(Λ)dΛ, t � 0, (20)

and the auxiliary resolvent operator family (Sα(t))t�0 by

Sα(t) =
t1−α

2π i

∫
Γr,θ

eΛtFα(Λ)dΛ,t � 0. (21)

REMARK 2. When B(t) = 0, for all t � 0, the operators family (Rα(t))t�0 and
(Sα(t))t�0 coincide with operators family (Eα(tαA))t�0 and (Eα ,α(tαA))t�0 respec-
tively, for more details by (Eα(tαA))t�0 and (Eα ,α(tαA))t�0 see [2, 5, 6] and the ref-
erences therein.

We next will establish some properties of (Rα(t))t�0 and (Sα (t))t�0 family.

THEOREM 1. The operator function Rα(·) is:

(i) exponentially bounded in L (X);

(ii) exponentially bounded in L ([D(A)]);
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(iii) strongly continuous on [0,∞) and uniformly continuous on (0,∞);

(iv) strongly continuous on [0,∞) in L ([D(A)]).

Proof. Proof of (i) . If t > 1, from (20) and estimate (17) we get

‖ Rα(t) ‖ = ‖ 1
2π i

∫
Γr,θ

eΛtGα(Λ)dΛ ‖

� C
π

∫ ∞

r
etscosθ ds

s
+

C
2π

∫ θ

−θ
etrcosξ dξ

�
(

C
πr|cosθ | +

Cθ
π

)
ert .

If t ∈ (0,1), using that Gα(·) is analytic on Σr,θ , we get

‖ Rα(t) ‖ = ‖ 1
2π i

∫
Γ r

t ,θ

eΛtGα(Λ)dΛ ‖

� C
π

∫ ∞

r
t

etscosθ ds
s

+
C
2π

∫ θ

−θ
ercosξ dξ

�
(

C
π

∫ ∞

r
eucosθ du

u
+

C
2π

∫ θ

−θ
ercosξ dξ

)
�
(

C
πr|cosθ | +

Cθ
π

)
er.

This shows (i) .
Proof of (ii). From (18) that the integral in

R(t) =
1

2π i

∫
Γr,θ

eΛtAGα(Λ)dΛ, t > 0,

is absolutely convergent in L ([D(A)],X) and defines a linear operator

R(t) ∈ L ([D(A)],X).

Using that A is closed, we can affirm that R(t) = ARα(t) .
From Lemma 3, Gα : Σr,ϑ → L ([D(A)]) is analytic and ‖ Gα(Λ) ‖1�C|Λ|−1 . If

t > 1 and x ∈ D(A) , we get

‖ ARα(t)x ‖ = ‖ 1
2π i

∫
Γr,θ

eΛtAGα(Λ)xdΛ ‖

�
(

C
π

∫ ∞

r
etscosθ ds

s
+

C
2π

∫ θ

−θ
etrcosξ dξ

)
‖ x ‖1

�
(

C
πr|cosθ | +

Cθ
π

)
ert ‖ x ‖1 .
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For t ∈ (0,1) and x ∈ D(A) we get

‖ ARα(t)x ‖ = ‖ 1
2π i

∫
Γ r

t ,θ

eΛtAGα(Λ)xdΛ ‖

� C
π

∫ ∞

r
t

etscosθ ds
s

‖ x ‖1

+
C
2π

∫ θ

−θ
ercosξ dξ ‖ x ‖1

�
(

C
πr|cosθ | +

Cθ
π

)
er ‖ x ‖1 .

From before we obtain R(·) is exponentially bounded in L ([D(A)]) .
Proof of (iii.) It is clear from (20) that Rα(·)x is uniformly and strongly continu-

ous at t > 0 for every x ∈ X . We next establish the strongly continuity at t = 0. Using
that

1
2π i

∫
Γr,θ

Λ−1eΛt dΛ = lim
N→∞

1
2π i

∫
{Γr,θ : r�s�N}∪CN,θ

Λ−1eΛt dΛ = 1,

where CN,θ represent the curve Neiξ for θ � ξ � 2π −θ . For x ∈D(A) and 0 < t � 1
we get

Rα(t)x− x =
1

2π i

∫
Γr,θ

(
eΛtGα(Λ)x−Λ−1eΛt x

)
dΛ

=
1

2π i

∫
Γr,θ

eΛtΛ−1Fα(Λ)(A+ B̂(Λ))xdΛ.

Furthermore, it follows from (13), and assumption (H2) that

‖ eΛtΛ−1Fα(Λ)(A+ B̂(Λ))x ‖� erC

(
1

| Λ |α+1

)
= H(Λ),

where H(·) is integrable for Λ ∈ Γr,θ . From the Lebesgue dominated convergence
theorem we infer that

lim
t→0+

(Rα(t)x− x) =
1

2π i

∫
Γr,θ

Λ−1Fα(Λ)(A+ B̂(Λ))xdΛ. (22)

Let now CL,θ be the curve Leiξ for −θ � ξ � θ . Turning to apply the Cauchy’s
Theorem combining with the estimate

‖
∫
CL,θ

Λ−1Fα(Λ)(A+ B̂(Λ))xdΛ ‖� Cθ
Lα

we obtain

1
2π i

∫
Γr,θ

Λ−1Fα(Λ)(A+ B̂(Λ))xdΛ

= lim
L→∞

1
2π i

∫
{Γr,θ : r�s�L}∪CL,θ

Λ−1Fα(Λ)(A+ B̂(Λ))xdΛ = 0,
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we can affirm that limt→0+ ‖ Rα(t)x− x ‖= 0 for all x ∈ D(A) , which completes the
proof of the strongly continuity on L (X) since D(A) is dense in X and Rα(·) is
bounded on [0,1] by (i) .

Proof of (iv). For x ∈ D , proceeding as in the proof of (iii), we have

ARα(t)x−Ax =
1

2π i

∫
Γr,θ

eΛtΛ−1AFα(Λ)(A+ B̂(Λ))xdΛ.

Using now that (A+ B̂(Λ))x ∈ D(A) , the inequality (14) and the assumption (H3) and
proceeding as in the proof of (iii) we can conclude that ARα(t)x−Ax → 0 as t → 0.
The above remarks shows that ‖Rα(t)x− x‖1 → 0 as t → 0 for all x ∈ D(A) , since D
is dense in [D(A)] and Rα(·) is exponentially bounded in L ([D(A)]) . �

THEOREM 2. The operator funtion t → tα−1Sα(t) is exponentially bounded in
L (X) and uniformly (strong) continuous on (0,∞).

Proof. For t � 1, from (13) we have

‖ tα−1Sα(t) ‖ = ‖ 1
2π i

∫
Γr,θ

eΛtFα(Λ)dΛ ‖

�
(

C
π

∫ ∞

r
est cosθ ds

sα +
C
2π

∫ θ

−θ
etrcosξ r1−αdξ

)
�
(

C
πrα |cosθ | +

Cθ r1−α

π

)
ert .

Since Fα(·) is analytic on Σr,θ , for t ∈ (0,1) we get

‖ tα−1Sα(t) ‖
= ‖ 1

2π i

∫
Γ r

t ,θ

eΛtFα(Λ)dΛ ‖

� C
π

∫ ∞

r
t

etscosθ ds
sα +

C
2π

∫ θ

−θ
ercosξ dξ

�
(

C
πrα |cosθ | +

Cθ
π

r1−α
)

er.

This completes the proof of exponential boundedness.
For the uniform continuity, let t > 0 and x ∈ X , we have for R > r and s > 0,

‖ 1
2π i

∫
Γr,θ∩{Λ∈C:|Λ|�R}

eΛtFα(Λ)dΛ ‖� C
π

∫ ∞

R
esσ cosθ dσ

σα � CesRcos(θ)

πsRα | cos(θ ) | .

Therefore, for all ε > 0, we can choose Rt > r such that for all s ∈ [ t
2 , 3t

2 ] we have

‖ 1
2π i

∫
Γr,θ∩{Λ:|Λ|�Rt}

eΛtFα(Λ)dΛ ‖� ε
2
. (23)



FRACTIONAL RESOLVENT OPERATOR WITH α ∈ (0,1) AND APPLICATIONS 197

On the other hand, eΛsFα(Λ)→ eΛtFα(Λ) as s→ t, uniformly on Γr,θ ∩{Λ∈C :| Λ |�
Rt}, this implies, for all ε > 0, there exists δ > 0 such that

‖
∫

Γr,θ∩{Λ∈C:|Λ|�R}
eΛsFα(Λ)dΛ−

∫
Γr,θ∩{Λ∈C:|Λ|�R}

eΛtFα(Λ)dΛ ‖< ε
2
. (24)

By (23) and (24) we obtain for all ε > 0, there exists δ > 0 such that if | t− s |< δ we
have

‖ tα−1Sα(t)− sα−1Sα(s) ‖< ε.

This completes the prove. �
Using the Proposition 1.3.4 in [4] we give the next result.

COROLLARY 1. Let f ∈ L1
loc(R+,X), then the convolution t1−αSα(t) ∗ f (t) =∫ t

0(t − s)α−1Sα(t − s) f (s)ds exists (as a Bochner integral) and defines a continuous
function from R+ into X .

LEMMA 4. For every Λ ∈ C with Re(Λ) > max{0,r} , R̂α(Λ) = Gα(Λ) and
̂(tα−1Sα)(Λ) = Fα(Λ).

Proof. Using that Gα(·) is analytic on Σr,θ , and that the integrals involved in the
calculus are absolutely convergent, we have

R̂α(Λ) =
∫ ∞

0
e−ΛtRα(t)dt =

∫ ∞

0

1
2π i

∫
Γr,θ

e−(Λ−γ)tGα(γ)dγdt

=
1

2π i

∫
Γr,θ

(Λ− γ)−1Gα(γ)dγ.

By

‖
∫
CL,θ

(Λ− γ)−1Gα(γ)dγ ‖ �
∫ θ

−θ

C
| Λ− γ || γ |Ldξ �

∫ θ

−θ

C
(L− | Λ |)LLdξ

=
2θC

(L− | Λ |) ,

we have
∫
CL,θ

(Λ− γ)−1Gα(γ)dγ converges to 0 as L → ∞ . Therefore

R̂α(Λ) =
1

2π i

∫
Γr,θ

(Λ− γ)−1Gα(γ)dγ

= lim
L→∞

(
1

2π i

∫
{Γr,θ : r�s�L}∪CL,θ

(Λ− γ)−1Gα(γ)dγ
)

= Gα(Λ).

From Fα(·) is analytic on Σr,θ using the same argument as before we have

̂tα−1Sα(Λ) =
∫ ∞

0
e−Λtt1−αSα(t)dt =

∫ ∞

0

1
2π i

∫
Γr,θ

e−(Λ−γ)tFα(γ)dγdt

=
1

2π i

∫
Γr,θ

(Λ− γ)−1Fα(γ)dγ.
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Since

‖
∫
CL,θ

(Λ− γ)−1Fα(γ)dγ ‖ �
∫ θ

−θ

C
| Λ− γ || γ |α Ldξ �

∫ θ

−θ

C
(L− | Λ |)Lα Ldξ

=
2θCL

(L− | Λ |)Lα ,

we have
∫
CL,θ

(Λ− γ)−1Fα(γ)dγ converges to 0 as L → ∞ . We infer

̂tα−1Sα(Λ) =
1

2π i

∫
Γr,θ

(Λ− γ)−1Fα(γ)dγ

= lim
L→∞

(
1

2π i

∫
{Γr,θ : r�s�L}∪CL,θ

(Λ− γ)−1Fα(γ)dγ
)

= Fα(Λ).

�

THEOREM 3. The function Rα(·) is a α -resolvent operator for the system (1)-
(2).

Proof. Let x ∈ D(A) . From Lemma 4, for Re(Λ) > max{0,r} ,

R̂α(Λ)[Λ1−α(Λα I−A− B̂(Λ))]x = x,

which implies

ΛR̂α(Λ)x− x = Λ1−αR̂α(Λ)Ax+ Λ1−αR̂α(Λ)B̂(Λ)x,

we get
ΛαR̂α(Λ)x−Λα−1x = R̂α(Λ)Ax+ R̂α(Λ)B̂(Λ)x,

and applying (8) and [4, Proposition 1.6.4] we obtain

D̂α
t Rα(Λ)x = R̂α(Λ)Ax+ ̂(Rα ∗B)(Λ)x.

By the uniqueness of the Laplace transform we get

Dα
t Rα(t)x = Rα(t)Ax+

∫ t

0
Rα(t − s)B(s)xds.

Arguing as above but using the equality [Λ1−α(Λα I−A− B̂(Λ))]R̂α(Λ)x = x, we
obtain that (9) holds. The proof is now completed. �

We shall prove a result the existence of an analytic extension of resolvent operator.

THEOREM 4. The function Rα : (0,∞) → L (X) has an analytic extension to
Σδ ,0 , δ = min{φ − π

2 ,π −φ} and

R ′
α(z) =

1
2π i

∫
Γr,θ

ΛeΛzGα(Λ)dΛ, z ∈ Σδ ,0. (25)
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Proof. For Λ ∈ Γr,θ and z ∈ Σδ ,0 , we can write Λz = s | z | ei(arg(z)+ξ ) where
π
2 < arg(z)+ ξ < π ,−θ � ξ � θ and s � r. If | z |> 1, from (20) and (13) we get

‖ Rα(z) ‖ = ‖ 1
2π i

∫
Γr,θ

eΛzGα(Λ)dΛ ‖

� 1
2π i

∫
Γr,θ

eRe(Λz) C
| Λ | | dΛ |

� C
π

∫ ∞

r
es|z|cos(arg(z)+θ) ds

s
+

C
2π

∫ θ

−θ
er|z|cos(arg(z)+ξ )dξ

�
(

C
πr|cos(arg(z)+ θ )| +

Cθ
π

)
er|z|.

On the other hand, using that Gα(·) is analytic on Σr,θ , for 0 <| z |< 1 we obtain

‖ Rα(z) ‖ = ‖ 1
2π i

∫
Γ r
|z| ,θ

eΛzGα(Λ)dΛ ‖

� C
π

∫ ∞

r
|z|

es|z|cos(arg(z)+θ) ds
s

+
C
2π

∫ θ

−θ
ercos(arg(z)+ξ )dξ

�
(

C
π

∫ ∞

r
eucos(arg(z)+θ) du

u
+

C
2π

∫ θ

−θ
ercos(arg(z)+ξ )dξ

)
�
(

C
πr|cos(arg(z)+ θ )| +

Cθ
π

)
er.

This property allows us to define the extension Rα(z) by this integral.
Similarly, the integral on the right hand side of (25) is also absolutely convergent

in L (X) and strongly continuous on X for |argz| < δ , we observe for Λ ∈ Γr,θ

‖ eΛ(z+h)− eΛz

h
Gα(Λ)−ΛeΛzGα(Λ) ‖ � | eΛ(z+h)− eΛz

h
−ΛeΛz | C

r
→ 0, | h |→ 0,

and

‖ eΛ(z+h)− eΛz

h
Gα(Λ)−ΛeΛzGα(Λ) ‖ � eRe(Λz) C

| Λ | = K(Λ),

where K(·) is integrable for Λ ∈ Γr,θ . From the Lebesgue dominated convergence
theorem which implies that R ′

α(z) verifies (25). �
In the next result we show that existence of resolvent operator implies in the exis-

tence of solutions for problem (1)-(2).

THEOREM 5. Let x0 ∈ [D(A)] and define u(t) = Rα(t)x0. Then

u ∈C([0,∞), [D(A)])∩Cα((0,∞),X),

and is a solutions of (1)-(2).
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Proof. By Theorem 1 (iii) and Theorem 4 it is easy to see that u(t) = Rα(t)x0 is
a function in C([0,∞), [D(A)])∩Cα ((0,∞),X). By Theorem 3 we have u(t) = Rα(t)x0

satisfies the problem (1)-(2). �

3. Non-homogeneous system

In this section we the study the existence of mild solution for the semilinear
integro-differential fractional problem

Dα
t u(t) = Au(t)+

∫ t

0
B(t − s)u(s)ds+ f (t,u(t)), t ∈ (0,a), (26)

u(0) = u0, (27)

where α ∈ (0,1) and f is a apropriate function. In the sequel, Rα(·) and Sα(·) is
the α -resovent operators and auxiliary resolvent operator studied in previous section
defined by (20) and (21) respectively.

Now we wil construct a notion of mild solution of the problem (26)-(27). Let
u : [0,∞)→ X is a continuous functions satisfying (26)-(27). Then applying Jα

t at both
sides of the equation (3) we have

u(t) = u(0)+ Jα
t Au(t)+ Jα

t (B(t)∗ u(t))+ Jα
t f (t,u(t)) (28)

= u(0)+gα ∗Au(t)+gα ∗ (B(t)∗ u(t))+gα ∗ f (t,u(t)).

Now assuming that this function is of exponential type and is locally integrable,
we apply that Laplace transform os both sides we obtain

û(Λ) =
u0

Λ
+

Aû(Λ)
Λα +

B̂(Λ)û(Λ)
Λα +

f̂ (u)(Λ)
Λα ,

where f̂ (u)(Λ) is a Laplace transform of f (t,u(t)). We infer

û(Λ) = Λα−1(Λα I−A− B̂(Λ))−1u0 +(ΛαI−A− B̂(Λ))−1 f̂ (u)(Λ)

= Gα(Λ)u0 +Fα(Λ) f̂ (u)(Λ)

= R̂α(t)u0 + ̂tα−1Sα(t) f̂ (u)(Λ)

= R̂α(t)u0 + ̂tα−1Sα(t)∗ f (t,u(t)).

Finally applying the inverse of Laplace transform we end with the formula

u(t) = Rα(t)u0 +
∫ t

0
(t− s)α−1Sα(t − s) f (s,u(s))ds,

this equation inspires the next definitions.

DEFINITION 3. Let τ > 0, a function u : (0,τ) → X is called mild solution of
(26)-(27) in (0,τ) if u ∈C((0,τ),X) and

u(t) = Rα(t)u0 +
∫ t

0
(t − s)α−1Sα(t− s) f (s,u(s))ds, (29)
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holds for all t ∈ (0,τ).

The next result is about the existence of the mild solution for the problem (26)-
(27).

THEOREM 6. Lef f : (0,∞)×X → X be a continuous function and locally Lip-
schitz in the second variable and uniformly with respect the first variable, that is, for
each x ∈ X , there exists an open ball B(x,R) and constant L = L(B(x,R)) � 0 such
that

‖ f (t,y)− f (t,v) ‖� L ‖ y− v ‖,
for all y,v ∈ B(x,R) and t ∈ (0,∞). Then, there exists τ0 > 0 such that (3)-(4) has a
unique mild solutions in (0,τ0).

Proof. Given u0 ∈ X , let B(u0,r) and L = L(B(u0,r)) be the Lipschitz constant
of f . Given b ∈ (0,r) fixed, by Theorem 1 and Theorem 2 we can choose τ0 > 0 such
that

‖ Rα(t)u0−u0 ‖� b
2

and
N
α

(Lb+M)τα
0 � b

2
, for all t ∈ (0,τ0),

where M = supt∈(0,τ0) ‖ f (s,u0) ‖ and N = supt∈(0,τ0) ‖ Sα(t) ‖ .

We define

S(τ0) = {u ∈C((0,τ0),X) : u(0) = u0 and ‖ u(t)−u0 ‖� b for all t ∈ (0,τ0)}

with the norm ‖ u ‖S(τ0)= supt∈(0,τ0) ‖ u(t) ‖ and the operator T on S(τ0) by

T (u(t)) = Rα(t)u0 +
∫ t

0
(t − s)α−1Sα(t− s) f (s,u(s))ds.

If u ∈ S(τ0), we have T (u(0)) = u0 and T (u(t)) ∈ C((0,τ0),X). On the other
hand, we have that

‖ T (u(t))−u0 ‖
� ‖ Rα(t)u0−u0 ‖

+
∫ t

0
(t − s)α−1 ‖ Sα(t− s) ‖ (‖ f (s,u(s))− f (s,u0) ‖ + ‖ f (s,u0) ‖)ds

� ‖ Rα(t)u0−u0 ‖ +
∫ t

0
(t− s)α−1NL ‖ u(s)−u0 ‖ ds+

∫ t

0
(t− s)α−1NMds

� ‖ Rα(t)u0−u0 ‖ +NLb
tα

α
+NM

tα

α

� ‖ Rα(t)u0−u0 ‖ +
N
α

(Lb+M)τα
0 � b

2
+

b
2

= b,
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for all t ∈ [0,τ0], this show that TS(τ0) ⊂ S(τ0). If u,v ∈ S(τ0) we obtain

‖ T (u(t))−T(v(t)) ‖ �
∫ t

0
(t− s)α−1 ‖ Sα(t − s) ‖‖ f (s,u(s))− f (s,v(s)) ‖ ds

�
∫ t

0
(t− s)α−1NL ‖ u(s)− v(s) ‖ ds

� NLτα
0

α
sup

s∈(0,τ0)
‖ u(s)− v(s) ‖ .

This implies,

‖ T (u)−T (v) ‖S(τ0) � NLτα
0

α
‖ u− v ‖S(τ0) .

From
NLτα

0
α � 1

2 by the Banach contraction principle we have that T has a unique fixed
point in S(τ0). This prove that (26)-(27) has a unique mild solutions in (0,τ0). �

4. Applications

In this section we apply the abstract theory developed in the previous sections to
two examples. We apply our α -resolvent theory in the existence of solutions of partial
integro-differential fractional which arise in the theory of heat equation with memory.
In what follows, we consider the initial boundary value problem

∂ α

∂ tα u(x,t) =
k1

γ
∂ 2u(x,t)

∂x2 +
k2

γτ

∫ t

0
e−

t−s
τ

∂ 2u(x,s)
∂x2 ds, t > 0, (30)

u(x,0) = u0(x), x ∈ (0,a), (31)

u(0,t) = u(a,t) = 0. (32)

In this system, α ∈ (0,1) , k1,k2,τ,γ and γτ are positive numbers and ∂ α

∂ tα = Dα
t .

When α = 1 the system (30)-(32) is call Jeffrey’s equation, see [3] for more details. To
represent this system in the abstract form (1)-(2), we choose the space X = L2([0,a]) .
In the sequel, A : D(A) ⊆ X → X is the operator given by Ax = k1

γ x′′ with domain

D(A) = {x ∈ X : k1
γ x′′ ∈ X , x(0) = x(a) = 0} . It is well known that Δx = x′′ is the

infinitesimal generator of an analytic semigroup (T (t))t�0 on X . Hence, A is sectorial
of type and (H1) is satisfied. We also consider the operator B(t) : D(A)⊆X →X , t � 0,
B(t)x = k2

γ e−
t
τ Δx for x ∈ D(A). Moreover, it is easy to see that conditions (H2) and

(H3) in Section 2 are satisfied with b(t) = k2
γ e−

t
τ and D =C∞

0 ([0,a]) , where C∞
0 ([0,a])

is the space of infinitely differentiable functions that vanish at ξ = 0 and ξ = a . Under
the above conditions we can represent the system (30)-(32) in the abstract form (3)-(4).
The next results is a consequence of Theorem 5.

PROPOSITION 1. Assume that the above conditions are fulfilled. Then, there ex-
ists a mild solution of the system (30)-(32).
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To finish this paper, we study the existence of an α -resolvent operator and unique
mild solution for the partial coupled integro-differential fractional system

∂ αu(t,x)
∂ tα =

∂ 2u(t,x)
∂x2 +

∫ t

0
a(t− s)

∂ 2v(s,x)
∂x2 ds+ f (t,u(t,x)),

(t,x) ∈ (0,∞)× (0,L), (33)

∂ αv(t,x)
∂ tα =

∂ 2v(t,x)
∂x2 +

∫ t

0
b(t− s)

∂ 2u(s,x)
∂x2 ds+g(t,v(t,x)),

(t,x) ∈ (0,∞)× (0,L), (34)

u(0,x) = u0(x), v(0,x) = v0(x), x ∈ (0,L), (35)

u(t,0) = u(t,L) = 0 and v(t,0) = v(t,L) = 0, t ∈ (0,∞), (36)

where α ∈ (0,1) and ∂ α

∂ tα = Dα
t . Here we consider that fuctions a and b in L1

loc(R
+)

and f ,g : R+ ×R → R.

Let X =
(

u
v

)
, from (33)-(36) we obtain that

∂ α

∂ tα

(
u(t,x)
v(t,x)

)
=

(
∂ 2u(t,x)

∂x2 +
∫ t
0 a(t− s) ∂ 2v(s,x)

∂x2 ds
∂ 2v(t,x)

∂x2 +
∫ t
0 b(t− s) ∂u(s,x)

∂x ds

)
+
(

f (t,u(t,x))
g(t,v(t,x))

)

=

(
∂ 2

∂x2 0

0 ∂ 2

∂x2

)(
u(t,x)
v(t,x)

)
+
∫ t

0

(
0 a(t− s) ∂ 2

∂x2

b(t− s) ∂ 2

∂x2 0

)(
u(s,x)
v(s,x)

)
ds (37)

+
(

f (t,u(t,x))
g(t,v(t,x))

)
.

Therefore, we can represent the system (33)-(36) in the abstract form

∂ α

∂ tα X (t) = A X (t)+
∫ t

0
B(t − s)X (s)ds+F (t,X ), t � 0, (38)

X (0) = X0 ∈ X , (39)

where

X (0) =
(

u0

v0

)
, A =

(
∂ 2

∂x2 0

0 ∂ 2

∂x2

)
, B(t) =

(
0 a(t) ∂ 2

∂x2

b(t) ∂ 2

∂x2 0

)
and

F (t,X ) =
(

f (t,u(t,x))
g(t,v(t,x))

)
.

In this problem the space X is defined by X = L2(0,L)×L2(0,L) under the norm

‖
(

u
v

)
‖=
(∫ L

0
| u |2 + | v |2 dx

) 1
2

,
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it is easy to see that X is a Hilbert space. We define the D(A ) by

D(A ) =
{(

u
v

)
∈ X : u,v ∈ H1

0 (0,L)∩H2(0,L)
}

.

In the sequel we show the existence of α -resolvent operator associated to the
system (33)-(36).

LEMMA 5. The operator A is a sectorial operator.

Proof. First we prove that A is a generator of C0 -semigroup. Let

(ΛI−A )
(

u
v

)
=
(

Λu−uxx

Λv− vxx

)
.

Is it easy to see that D(A ) is dense on X . We obtain for Λ > 0

‖ (ΛI−A )
(

u
v

)
‖2 =

∫ L

0
| Λu−uxx |2 + | Λv− vxx |2 dx

� Λ2
∫ L

0
| u |2 + | v |2 dx = Λ2 ‖

(
u
v

)
‖2 .

Therefore

‖ (ΛI−A )
(

u
v

)
‖ � Λ ‖

(
u
v

)
‖,

the previous fact shows that A is a dissipative operator.
Now let us prove that 0 ∈ ρ(A ). If Λ = 0, the problem

−A

(
u
v

)
=
(

f
g

)
is equivalent to the systems

−uxx = f , (40)

−vxx = g. (41)

From the standard theory in the linear elliptic equations we obtain a unique solution of

(40) and (41) such that u,v ∈ H2(0,L)∩H1
0 (0,L) , therefore X =

(
u
v

)
∈ D(A ) and

0∈ ρ(A ), from [22, Theorem 1.2.3] we obtain that A is a generator of C0 -semigroup
of contractions on X.

Now we show that A is a generator of analytical semigroup. By the previous
facts 0∈ ρ(A ) , it is easy to see that this implies that iR = {iβ : β ∈R} ⊂ ρ(A ). Now
we proof that ‖ η(iηI −A )−1 ‖< C, for all η ∈ R. We observe that the equations
iηU −A U = F is equivalent to problem

iηu−uxx = f ∈ L2(0,L), (42)

iηv− vxx = g ∈ L2(0,L). (43)
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Multiplying the equation (42) by ηu and integrating we obtain

iη2
∫ L

0
uudx−η

∫ L

0
uxxudx = η

∫ L

0
f udx. (44)

Multiplying the equation (43) by iηv and integrating we obtain

iη2
∫ L

0
vvdx−η

∫ L

0
vxxvdx = η

∫ L

0
gvdx. (45)

From (44) and (45) we have

iη2
∫ L

0
| u |2 + | v |2 dx+ η

∫ L

0
| ux |2 + | vx |2 dx = η

∫ L

0
u f + vgdx, (46)

taking the imaginary part we obtain

η2
∫ L

0
| u |2 + | v |2 dx

= η
∫ L

0
Im(u f + vg)dx

� η
∫ L

0
| u f + vg | dx

� η
(∫ L

0
| u f | dx+

∫ L

0
| vg | dx

)
� η

[(∫ L

0
| u |2 dx

) 1
2
(∫ L

0
| f |2 dx

) 1
2

+
(∫ L

0
| v |2 dx

) 1
2
(∫ L

0
| g |2 dx

) 1
2
]

� 2η

[(∫ L

0
| u |2 + | v |2 dx

) 1
2
(∫ L

0
| f |2 + | g |2 dx

) 1
2
]

.

By the foregoing we obtain

‖ 2ηU ‖�‖ F ‖,

this is equivalent to show that ‖ η(iηI−A )−1 ‖<C, for all η ∈R. From [22, Theorem
1.3.3] we have that A is a generator of analytic semigroup and from [25, Theorem
2.5.2] we obtain that A is a sectorial operator. This prove is complete. �

LEMMA 6. Assume that a(·) and b(·) are Laplace transformable absolutely con-
vergent for Re(Λ) > 0 whith analytical extension to Σ0,ϑ ,ϑ ∈ (π

2 ,π) and | â(Λ) | + |
b̂(Λ) |= O( 1

|Λ| ) as |Λ| → ∞. Then, the operator family (B(t))t�0 satisfies the assump-

tions (H2) and (H3).
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Proof. From the definitions of B(t) we have for U ∈ D(A )

‖ B(t)U ‖2 = ‖
(

0 a(t) ∂ 2

∂x2

b(t) ∂ 2

∂x2 0

)(
u
v

)
‖2

� (a(t)+b(t))2
(∫ L

0
| vxx |2 dx+

∫ L

0
| uxx |2 dx

)
� (a(t)+b(t))2

(∫ L

0
| uxx |2 + | vxx |2 dx+

∫ L

0
| u |2 + | v |2 dx

)
� (a(t)+b(t))2(‖ A U ‖ + ‖U ‖)2.

Therefore

‖ B(t)U ‖� k(t)(‖ A U ‖ + ‖U ‖), (47)

where k(t) = a(t)+ b(t). From (47) we obtain the Laplace transform of (B(t))t�0 is
absolutely convergent for Re(Λ) > 0, admits an analytical extension to Σ0,ϑ and

‖B̂(Λ)‖L ([D(A ),X ]) = O

(
1

| Λ |
)

, as |Λ| → ∞.

It is easy to see that (H3) is verified considering D = C∞(0,L)×C∞(0,L). The proof
is finished. �

Take f (t,u) = η(t)sin(u) and g(t,v) = γ(t)cos(v), where η and γ are bounded,
continuous and positive functions on [0,∞). Then we have

‖ F (t,X1)−F (t,X2) ‖2

= ‖
(

f (t,u1)
g(t,v1)

)
−
(

f (t,u2)
g(t,v2)

)
‖2

= ‖
(

f (t,u1)− f (t,u2)
g(t,v1)−g(t,v2)

)
‖2

=
∫ L

0
| f (t,u1)− f (t,u2) |2 + | g(t,v1)−g(t,v2) |2 dx

=
∫ L

0
(η(t) | sin(u1)− sin(u2) |)2 +(γ(t) | cos(v1)− cos(v2) |)2dx

� (η(t)+ γ(t))2
∫ L

0
| u1−u2 |2 + | v1 − v2 |2 dx

� (η(t)+ γ(t))2 ‖ X1 −X2 ‖2 .

This implies there exists L = sup
t∈[0,∞)

(η(t)+ γ(t)) > 0 such that

‖ F (t,X1)−F (t,X2) ‖� L ‖ X1 −X2 ‖ .

By the Theorem 3 and Theorem 6 we obtain the next result.
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PROPOSITION 2. Assume that the above conditions are fulfilled. Then there ex-
ist an analytical α -resolvent operator family and a mild solution defined on (0,τ0)
associated to system (33)-(36).

Acknowledgements. The author would like to thank the reviewer for their thought-
ful comments and efforts towards improving the manuscript.
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