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POSITIVE SOLUTIONS OF M–POINT FRACTIONAL
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Abstract. In this paper, six functionals fixed point theorem is used to investigate the existence of
positive solutions for fractional-order nonlinear boundary value problems on the half line. As an
application, an example is given to illustrate the main result.

1. Introduction

The first application of fractional calculus was due to Abel in his solution to the
Tautochrone problem[11]. It also appears in many engineering and scientific disciplines
as the mathematical models of systems and processes in the fields of aerodynamics,
polymer rheology, physics, chemistry, etc. Recently, many authors have been dealing
with the existence of solutions of nonlinear boundary value problems for fractional
differential equations thanks to techniques of nonlinear analysis, for example, see [2],
[5], [6], [7], [9], [10], [16], [19], [20] and [21]. For general results and backround on
the fractional calculus, we refer the reader to [1], [4] and [14].

It should be noted that most of the papers and books on fractional calculus are
devoted the solvability of fractional differential equations on finite interval. Due to
the fact that an infinite interval is noncompact, the discussion about boundary value
problem on the half line is more complicated. Very recently, there are some results
in the literature for fractional boundary value problem on an infinite interval, see [17],
[18] and [22]. In particular, for Riemann-Liouville fractional integral boundary value
problem on infinite interval, few works were done, see [3] and [8].

In [18], Ge and Zhao considered the following fractional integral boundary value
problem on an infinite interval:

⎧⎪⎨
⎪⎩

Dα
0+u(t)+a(t) f (t,u(t)) = 0, t ∈ (0,∞), α ∈ (1,2),

u(0) = 0,

lim
t→∞

Dα−1
0+ u(t) = βu(ξ ),
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where 0 < ξ < ∞ , Dα
0+ is the standard Riemann-Liouville fractional derivative. They

obtained the existence of the unique positive solution by using the Leray-Schauder
Nonlinear Alternative theorem.

In [17], Liang and Zhang considered the following m-point fractional boundary
value problem on an infinite interval:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Dα

0+u(t)+a(t) f (u(t)) = 0, 0 < t < ∞,

u(0) = u′(0) = 0,

Dα−1
0+ u(∞) =

m−2

∑
i=1

βiu(ξi),

where 2 < α < 3, Dα
0+ is the standard Riemann-Liouville fractional derivative, 0 <

ξ1 < ξ2 < ... < ξm−2 < ∞, i = 1, ...,m− 2 satisfies 0 <
m−2

∑
i=1

βiξi
α−1 < Γ(α) . They

obtained the existence of three positive solutions by using the Legget-Williams fixed
point theorem.

In [8], Zhang et al. studied the existence of nonnegative solutions for the following
boundary value problem for fractional differential equations with nonlocal boundary
conditions on unbounded domains:⎧⎪⎨

⎪⎩
Dα

0+u(t)+ f (t,u(t)) = 0, 1 < α � 2, t ∈ [0,∞),
Dα−2

0 u(0) = 0,

lim
t→∞

Dα−1
0+ u(t) = β Iα−1

0+ u(η),

where Dα
0+ is the standard Riemann-Liouville fractional derivative of order α , f ∈

C([0,∞)×R,R+) and 0 < β ,η > ∞ . The Leray - Schauder nonlinear alternative is
used.

In [22], Gholami considered the following fractional integral boundary value prob-
lem on an infinite interval:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Dα

0+u(t)+a(t) f (t,u(t),u′(t)) = 0; t ∈ (0,∞), α ∈ (2,3),
u(0) = u′(0) = 0,

lim
t→∞

Dα−1
0+ u(t) =

m−2

∑
i=1

βiD
α−1
0+ u(t) |t=ξi

,

where Dα
0+ is the standard Riemann-Liouville fractional derivative, 0 < ξ1 < ξ2 < ... <

ξm−2 < ∞, i = 1, ...,m− 2, βi ∈ R. The author obtained the existence of a bounded
solution by using the Leray-Schauder Nonlinear Alternative theorem.

In [3], Wang considered the following fractional integral boundary value problem
on semi-infinite interval:⎧⎪⎨

⎪⎩
Dαu(t)+ f (t,u(t)) = 0, 0 < t < ∞,

u(0) = u′(0) = 0,

Dα−1u(∞) = ξ Iβ u(η), β > 0.
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The author obtained the existence of the unique solution by using the monotone iterative
technique.

Motivated by the aboveworks, we consider the followingm-point Riemann-Liouville
fractional integral boundary value problem (BVP).

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dν
0+ϑ(t)+a(t) f (t,ϑ(t)) = 0, t ∈ [0,∞),

ϑ(0) = ϑ ′(0) = 0,

Dν−1
0+ ϑ(∞) =

m−2

∑
i=1

ηiI
κ
0+ϑ(ξi),

(1)

where 2 < ν � 3, κ > 0, Dν
0+ is the standard Riemann-Liouville fractional derivative,

0 < ξ1 < ξ2 < ... < ξm−2 < ∞, i = 1, ...,m− 2, ηi > 0. Throughout this paper we
assume that following conditions hold:

(H1) 0 <
m−2

∑
i=1

ηiξ ν+κ−1
i < Γ(ν + κ),

(H2) f : [0,∞)×R → [0,∞) continuous and 0 <
∫ ∞

0
a(s)ds < ∞,

(H3) F(t,ϑ) = f (t,(1 + tν−1)ϑ), f ∈ C([0,∞)×R, [0,∞)) , f (0,ϑ) �≡ 0 on any
subinterval of (0,∞) and when ϑ is bounded f (t,(1+ tν−1)ϑ) is bounded on
[0,∞) .

By using the Six Functionals fixed point theorem in [12], we get the existence of at
least three positive solutions for the BVP (1). To the best our knowledge, the existence
of solutions for m-point Riemann-Liouville fractional integral boundary value problem
on infinite interval is not investigated till now. Hence, this results can be considered as
a contribution to this field.

This paper is organized as follows. In section 2, we provide some definitions and
preliminary lemmas which are key tools for our main result. In section 3, we give and
prove our main result. In section 4, we give an example to illustrate how the main result
can be used in practice. Finally, conclusion part is established in section 5.

2. Preliminaries

In this section, to state the main result of this paper, we need the following lemmas
and definitions.

DEFINITION 1. The Riemann-Liouville fractional integral of order ν > 0 of an
integrable function f : (0,∞) → R is given by

Iν
0+ f (t) =

1
Γ(ν)

∫ t

0
(t− s)ν−1 f (s)ds.
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DEFINITION 2. The Riemann-Liouville fractional derivative of order ν > 0 of a
continuous function f : (0,∞) → R is given by

Dν
0+ f (t) =

1
Γ(n−ν)

(
d
dt

)n ∫ t

0

f (s)
(t − s)ν−n+1 ds,

where n−1 � ν < n .

LEMMA 1. [1] Let ν > 0 and ϑ ∈C(0,1)∩L(0,1) . Then the fractional differen-
tial equation

Dν
0+ϑ(t) = 0

has ϑ(t) = c1tν−1 +c2tν−2 +c3tν−3 + ...+cntν−n , ci ∈ R, i = 1,2, ...,n, n = [ν]+1
as an unique solution.

LEMMA 2. [1] Assume that ϑ ∈ C(0,1)∩L(0,1) with a fractional derivative of
order ν > 0 that belongs to C(0,1)∩L(0,1) . Then

Iν
0+Dν

0+ϑ(t) = ϑ(t)+ c1t
ν−1 + c2t

ν−2 + c3t
ν−3 + ...+ cnt

ν−n,

for some ci ∈ R, i = 1,2, ...,n, n = [ν]+1.

LEMMA 3. Assume that the conditions (H1)− (H3) are satisfied. If h ∈C[0,∞) ,
fractional boundary value problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Dν

0+ϑ(t)+h(t) = 0, t ∈ [0,∞) , 2 < ν � 3,

ϑ(0) = ϑ ′(0) = 0,

Dν−1
0+ ϑ(∞) =

m−2

∑
i=1

ηiI
κ
0+ϑ(ξi),

(2)

has an integral expression

ϑ(t) =
∫ ∞

0
G(t,s)h(s)ds, t ∈ [0,∞), (3)

where

G(t,s) = G1(t,s)+G2(t,s), (4)

here

G1(t,s) =
1

Γ(ν)

{
tν−1− (t− s)ν−1, 0 � s � t < ∞,

tν−1, 0 � t � s < ∞.
(5)

and

G2(t,s)

=

m−2

∑
i=1

ηit
ν−1

Γ(ν)

[
Γ(ν +κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i

]
{

ξ ν+κ−1
i − (ξi − s)ν+κ−1, 0 � s � ξi < ∞,

ξ ν+κ−1
i , 0 � ξi � s < ∞.

(6)



POSITIVE SOLUTIONS OF M-POINT FRACTIONAL BVP ON THE HALF LINE 213

Proof. According to Lemma 2, we can obtain that ϑ(t) = −Iν
0+h(t)+ c1tν−1 +

c2tν−2 + c3tν−3. By the boundary conditions of problem (1), we have

c1 =

Γ(ν + κ)
∫ ∞

0
h(s)ds−

m−2

∑
i=1

ηi

∫ ξi

0
(ξi − s)ν+κ−1h(s)ds

Γ(ν)
[

Γ(ν + κ)−
m−2

∑
i=1

ηiξ ν+κ−1
i

] ,c2 = 0,c3 = 0.

Therefore, we obtain

ϑ(t) = − 1
Γ(ν)

∫ t

0
(t − s)ν−1h(s)ds+

Γ(ν + κ)tν−1

Γ(ν)
[

Γ(ν + κ)−
m−2

∑
i=1

ηiξ ν+κ−1
i

] ∫ ∞

0
h(s)ds

−

m−2

∑
i=1

ηit
ν−1

Γ(ν)
[

Γ(ν + κ)−
m−2

∑
i=1

ηiξ ν+κ−1
i

] ∫ ξi

0
(ξi − s)ν+κ−1h(s)ds

=
∫ ∞

0
G(t,s)h(s)ds, t ∈ [0,∞).

LEMMA 4. [17] The function G1(t,s) defined by (5) satisfies

i) G1(t,s) is continuous and G1(t,s) � 0 for (t,s) ∈ [0,∞)× [0,∞) ,

ii) G1(t,s) is strictly increasing in the first variable,

iii) G1(t,s) is concave in the first variable for 0 < s < t < ∞ .

Proof. This proof given clearly as Lemma 3.2 in [17].

LEMMA 5. [17] If k > 1 , then G1(t,s) defined by (5) has the following property

min
1
k �t�k

G1(t,s)
1+ tν−1 � 1

4k2(1+ kν−1)
max

t∈[0,∞)

G1(t,s)
1+ tν−1 .

LEMMA 6. From the definition of G1(t,s) , we have

G1(t,s)
1+ tν−1 � 1

Γ(ν)
,

G(t,s)
1+ tν−1 � L f or (t,s) ∈ [0,∞)× [0,∞),

where L =
Γ(ν + κ)

Γ(ν)

[
Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i

] .
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Proof. The functions G(t,s) , G1(t,s) and G2(t,s) are as defined in equations (4),
(5) and (6) respectively. Let s � t . Using Lemma 4, we have
G1(t,s)
1+ tν−1 =

tν−1− (t− s)ν−1

Γ(ν)(1+ tν−1)
� tν−1

Γ(ν)(1+ tν−1)
� 1

Γ(ν)
.

Let t � s . From Lemma 4, we have

G1(t,s)
1+ tν−1 =

tν−1

Γ(ν)(1+ tν−1)
� 1

Γ(ν)
.

In both cases, we obtain
G1(t,s)
1+ tν−1 � 1

Γ(ν)
.

Similarly, we can obtain an inequality for function G2(t,s) . If 0 � s � ξi , then

G2(t,s)
1+ tν−1 =

m−1

∑
i=1

ηit
ν−1 (

ξ ν+κ−1
i − (ξi− s)ν+κ−1)

(1+ tν−1)Γ(ν)

[
Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i

]

�

m−2

∑
i=1

ηit
ν−1ξ ν+κ−1

i

(1+ tν−1)Γ(ν)

[
Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i

]

�

m−2

∑
i=1

ηiξ ν+κ−1
i

Γ(ν)

[
Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i

] .

On the other hand, if 0 � ξi � s , then

G2(t,s)
1+ tν−1 =

m−1

∑
i=1

ηit
ν−1ξ ν+κ−1

i

(1+ tν−1)Γ(ν)

[
Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i

]

�

m−2

∑
i=1

ηiξ ν+κ−1
i

Γ(ν)

[
Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i

] .
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The following inequality is obtained from both cases:

G2(t,s)
1+ tν−1 �

m−2

∑
i=1

ηiξ ν+κ−1
i

Γ(ν)

[
Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i

] .

Consequently, from (4), we get

G(t,s)
1+ tν−1 � Γ(ν + κ)

Γ(ν)

[
Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i

] .

LEMMA 7. If k > 1 , then G2(t,s) defined by (6) has the following property

min
1
k �t�k

G2(t,s)
1+ tν−1 � 1

kν−1(1+ kν−1)
max

t∈[0,∞)

G2(t,s)
1+ tν−1 .

Proof. Let 0 � s � ξi , we have,

min
1
k �t�k

G2(t,s)
1+ tν−1 = min

1
k �t�k

m−2

∑
i=1

ηit
ν−1 (

ξ ν+κ−1
i − (ξi− s)ν+κ−1)

(1+ tν−1)Γ(ν)

[
Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i

]

�

m−2

∑
i=1

ηi

(
1
k

)ν−1 (
ξ ν+κ−1

i − (ξi− s)ν+κ−1)

(1+ kν−1)Γ(ν)

[
Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i

]

=
1

kν−1(1+ kν−1)
max

t∈[0,∞)

m−2

∑
i=1

ηit
ν−1 (

ξ ν+κ−1
i − (ξi− s)ν+κ−1)

(1+ tν−1)Γ(ν)

[
Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i

] .

Let 0 � ξi � s , then the following inequality is obtained:

min
1
k �t�k

G2(t,s)
1+ tν−1 � 1

kν−1(1+ kν−1)
max

t∈[0,∞)

G2(t,s)
1+ tν−1 .
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LEMMA 8. For a fixed k > 1 ,

min
1
k �t�k

G(t,s)
1+ tν−1 � λ (k) max

t∈[0,∞)

G(t,s)
1+ tν−1

where

λ (k) = min

{
1

4k2(1+ kν−1)
,

1
kν−1(1+ kν−1)

}
.

Proof. This Lemma is obvious from Lemma 6 and Lemma 7.

Set

E =
{

ϑ ∈ C [0,∞) : max
t�0

|ϑ(t)|
1+ tν−1 < ∞

}
.

Clearly, E is Banach space with the norm

‖ϑ‖ = max
0�t<∞

|ϑ(t)|
1+ tν−1 < ∞.

LEMMA 9. Assume that (H1)-(H3) hold. Let ϑ ∈ E and k > 1 . Then, ϑ(t) � 0

and min
1
k �t�k

|ϑ(t)|
1+ tα−1 � λ (k)‖ϑ‖ .

Proof. From Lemma 4, positivity of G2(t,s) and conditions (H1)-(H3) , we can
obtain ϑ(t) � 0. For a fixed k > 1, from Lemma 8

min
1
k �t�k

ϑ(t)
1+ tν−1 = min

1
k �t�k

1
1+ tν−1

∫ ∞

0
G(t,s)a(s) f (s,ϑ(s))ds

�
∫ ∞

0
min

1
k �t�k

G(t,s)
1+ tν−1a(s) f (s,ϑ(s))ds

� λ (k)
∫ ∞

0
max
t�0

G(t,s)
1+ tν−1 a(s) f (s,ϑ(s))ds

� λ (k)max
t�0

∫ ∞

0

G(t,s)
1+ tν−1 a(s) f (s,ϑ(s))ds

� λ (k)‖ϑ‖
By using Lemma 9, we can define the cone P ⊂ E by

P =

{
ϑ ∈ E : ϑ(t) � 0, min

1
k �t�k

|ϑ(t)|
1+ tν−1 � λ (k)‖ϑ‖

}
.

Denote the operator T : P → E by

Tϑ(t) =
∫ ∞

0
G(t,s)a(s) f (s,ϑ(s))ds.
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LEMMA 10. Assume that (H1)-(H3) hold. Then T : P → P is completely
continuous.

Proof. Firstly, it is easy to check that T : P → P is well-defined. Now, we will
show that T is a completely continuous operator in three steps.

Step 1. T : P → P is a continuous operator.
Let ϑn ∈P , there exists a sequence ϑn → ϑ , n→ ∞ in P . Since the convergent

sequences are bounded, there is a real number r0 such that max
n∈N\{0}

‖ϑn‖ < r0 . Denote

the set

Br0 = max{ f (t,(1+ tν −1)ϑ), (t,ϑ) ∈ [0,∞)× [0,r0]} .

For all (t,s) ∈ [0,∞) , by the Lebesgue Dominated Convergence theorem and Lemma
6, we obtain∣∣∣∣Tϑn(t)−Tϑ(t)

1+ tν−1

∣∣∣∣ =
∣∣∣∣
∫ ∞

0

G(t,s)
1+ tν−1 a(s)[ f (s,ϑn(s))− f (s,ϑ(s))]ds

∣∣∣∣
�

∫ ∞

0

G(t,s)
1+ tν−1 a(s) | f (s,ϑn(s))− f (s,ϑ(s))|ds

� L
∫ ∞

0
a(s) | f (s,ϑn(s))− f (s,ϑ(s))|ds → 0,(n → ∞).

This yields that

‖Tϑn(t)−Tϑ0(t)‖→ 0.

Hence, T : P → P is sequentially continuous. If T is sequentially continuous, then
T is continuous.

Step 2. T : P → P is relatively compact operator.
Let Ω be any bounded subset of P . Then there exists r > 0 is such that ‖ϑ‖ � r

for all ϑ ∈ Ω . Therefore, from (H2) and Lemma 6, for all ϑ ∈ Ω ,

Tϑ(t)
1+ tν−1 � L

∫ ∞

0
a(s) f (s,ϑ(s))ds

= L
∫ ∞

0
a(s) f

(
s,(1+ sν−1)

ϑ(s)
1+ sν−1

)
ds

� LBr

∫ ∞

0
a(s)ds

< ∞.

This implies that ‖Tϑ(t)‖< ∞ . So TΩ is uniformly bounded. Next, we show that TΩ
is equicontinuous on [0,∞) . For any a > 0 and t1,t2 ∈ [0,a], without loss of generality,
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we may assume that t2 > t1 . For all ϑ ∈ Ω , we obtain∣∣∣∣∣(Tϑ)(t1)
1+ tν−1

1

− (Tϑ)(t2)
1+ tν−1

2

∣∣∣∣∣ �
∫ ∞

0

∣∣∣∣∣ G(t1,s)
1+ tν−1

1

− G(t2,s)
1+ tν−1

2

∣∣∣∣∣a(s) f (s,ϑ(s))ds

�
∫ ∞

0

∣∣∣∣∣G1(t1,s)
1+ tν−1

1

− G1(t2,s)
1+ tν−1

2

∣∣∣∣∣a(s) f (s,ϑ(s))ds

+
∫ ∞

0

∣∣∣∣∣G2(t1,s)
1+ tν−1

1

− G2(t2,s)
1+ tν−1

2

∣∣∣∣∣a(s) f (s,ϑ(s))ds

�
∫ ∞

0

∣∣∣∣∣G1(t1,s)
1+ tν−1

1

− G1(t2,s)
1+ tν−1

2

∣∣∣∣∣a(s) f (s,ϑ(s))ds

+

m−2

∑
i=1

ηiξ ν+κ−1
i

∣∣∣∣∣ tν−1
1

1+ tν−1
1

− tν−1
2

1+ tν−1
2

∣∣∣∣∣
Γ(ν)[Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i ]

∫ ∞

0
a(s) f (s,ϑ(s))ds

�
∫ ∞

0

∣∣∣∣∣G1(t1,s)
1+ tν−1

1

− G1(t2,s)
1+ tν−1

1

∣∣∣∣∣a(s) f (s,ϑ(s))ds

+
∫ ∞

0

∣∣∣∣∣G1(t2,s)
1+ tν−1

1

− G1(t2,s)
1+ tν−1

2

∣∣∣∣∣a(s) f (s,ϑ(s))ds

+

m−2

∑
i=1

ηiξ ν+κ−1
i

∣∣∣∣∣ tν−1
1

1+ tν−1
1

− tν−1
2

1+ tν−1
2

∣∣∣∣∣
Γ(ν)[Γ(ν + κ)−

m−2

∑
i=1

ηiξ ν+κ−1
i ]

∫ ∞

0
a(s) f (s,ϑ(s))ds.

On the other hand, we get

∫ ∞

0

∣∣∣∣∣G1(t1,s)
1+ tν−1

1

− G1(t2,s)
1+ tν−1

1

∣∣∣∣∣a(s) f (s,ϑ(s))ds

=
∫ t1

0

∣∣∣∣∣G1(t1,s)
1+ tν−1

1

− G1(t2,s)
1+ tν−1

1

∣∣∣∣∣a(s) f (s,ϑ(s))ds

+
∫ t2

t1

∣∣∣∣∣G1(t1,s)
1+ tν−1

1

− G1(t2,s)
1+ tν−1

1

∣∣∣∣∣a(s) f (s,ϑ(s))ds

+
∫ ∞

t2

∣∣∣∣∣G1(t1,s)
1+ tν−1

1

− G1(t2,s)
1+ tν−1

1

∣∣∣∣∣a(s) f (s,ϑ(s))ds

� Br

∫ t1

0

(tν−1
2 − tν−1

1 )+ ((t2− s)ν−1− (t1− s)ν−1)
1+ tν−1

1

a(s)ds



POSITIVE SOLUTIONS OF M-POINT FRACTIONAL BVP ON THE HALF LINE 219

+Br

∫ t2

t1

(tν−1
2 − tν−1

1 )+ ((t2− s)ν−1)
1+ tν−1

1

a(s)ds

+Br

∫ ∞

t2

(tν−1
2 − tν−1

1 )
1+ tν−1

1

a(s)ds → 0 as t1 → t2.

In a similar way, one can see that

∫ ∞

0

∣∣∣∣∣G1(t2,s)
1+ tν−1

1

− G1(t2,s)
1+ tν−1

2

∣∣∣∣∣a(s) f (s,ϑ(s))ds → 0 as t1 → t2.

Thus, we have ∣∣∣∣∣ Tϑ(t1)
1+ tν−1

1

− Tϑ(t2)
1+ tν−1

2

∣∣∣∣∣ → 0 as t1 → t2.

So, TΩ is equicontinuous on [0,∞).
Step 3: T : P → P is equiconvergent at ∞.
For any ϑ ∈ Ω , we get∫ ∞

0
a(s) f (s,ϑ(s))ds � Br

∫ ∞

0
a(s)ds < ∞.

From Lemma 6,we obtain

lim
t→∞

∣∣∣∣ Tϑ(t)
1+ tν−1

∣∣∣∣ = lim
t→∞

∣∣∣∣
∫ ∞

0

G(t,s)
1+ tν−1a(s) f (s,ϑ(s))ds

∣∣∣∣
� L lim

t→∞

∣∣∣∣
∫ ∞

0
a(s) f (s,ϑ(s))ds

∣∣∣∣
< ∞.

Hence, TΩ is equiconvergent at ∞ . Hence, from steps 1-3, T : P →P is a completely
continuous operator.

3. Main Result

In this section, we discuss the existence of three positive solutions for the BVP (1)
by using the Six functionals fixed point theorem in [12].

Let α be nonnegative continuous concave functional on P and β be nonnegative
continuous convex functional on P then for positive numbers r and R , we define the
sets:

Q(β ,R) = {ϑ ∈ P : β (ϑ) � R}
and

and Q(α,β ,r,R) = {ϑ ∈ P : r � α(ϑ) andβ (ϑ) � R} .
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THEOREM 1. (Six Functionals Fixed Point Theorem)[12] Suppose P is a cone in
a real Banach space E. α , ψ and ζ are nonnegative continuous concave functionals
on P , β , θ and η are nonnegative continuous convex functionals on P , and there
exist nonnegative numbers l , l′ , r , r′ , R and R′ such that

A : Q(β ,R) → P

is a completely continuous operator and

(a) Q(β ,R) is a bounded set,

(b) Q(η , l) and Q(α,β ,r,R) are disjoint subsets of Q(β ,R) ,

(c) {u ∈ P : θ (u) < r′,r < α(u),R′ < ψ(u) and β (u) < R} �= 0 ,

(d) {u ∈ P : l′ < ζ (u) and η(u) < l} �= 0 , and

(e) {u ∈ P : l < η(u) and α(u) < r} �= 0 .

Let the following properties be satisfied

(i) α(Au) > r , for all u ∈ P with α(u) = r,β (u) � R and r′ < θ (Au) ,

(ii) α(Au) > r , for all u ∈ P with α(u) = r,β (u) � R and θ (u) � r′ ,

(iii) β (Au) < R, for all u ∈ P with r � α(u),β (u) = R and ψ(Au) < R′ ,

(iv) β (Au) < R, for all u ∈ P with r � α(u),β (u) = R and R′ � ψ(u) ,

(v) η(Au) < l , for all u ∈ P with η(u) = l and ζ (Au) < l′ , and

(vi) η(Au) < l , for all u ∈ P with η(u) = l and l′ � ζ (u) .

Then A has at least three fixed points u1 , u2 and u3 in Q(β ,R) such that

η(u1) � l,r � α(u2) with β (u2) � R and l < η(u3) with α(u3) < r.

Define the concave functionals α,ψ ve ζ by

α(ϑ) := min
1
k �t�k

ϑ(t)
1+ tν−1 , ψ(ϑ) = ζ (ϑ) :=

2τk(1+ kν−1)
k2 −1

∫ k

1
k

ϑ(t)
1+ tν−1 dt

and the convex functionals θ ,β ve η

θ (ϑ) := max
t∈[0,∞)

ϑ(t)
1+ tν−1 , β (ϑ) = η(ϑ) :=

∫ ∞

0

ϑ(t)
1+ tν−1 dt ,

where τ =
∫ ∞

0

1
1+ tν−1 dt =

πcosec( π
ν−1)

ν −1
> 1.

Let k > 1, for the convenience, we take the notations N =

∫ k

1
k

a(s)ds

(1+ kν−1)Γ(ν)kν−1

and M = L
∫ ∞

0
a(s)ds , where L is defined by Lemma 6.
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THEOREM 2. Assume that (H1)− (H3) hold. If there exist constants r,r′,R and

R′ with r <
N
M

R and τ(1+ kν−1)r < R′ < r′ <
R
τ

, and suppose that F(t,ϑ) satisfies

the following conditions:

(H4) F(t,ϑ(t)) >
r
N

for all (t,ϑ(t)) ∈
[
1
k
,k

]
× [r,r′] ,

(H5) F(t,ϑ(t)) <
R
M

for all (t,ϑ(t)) ∈ [0,∞)× [r,∞) .

Then the boundary value problem (1) has at least three positive solutions ϑ1,ϑ2 and
ϑ3 ∈ Q(β ,R).

Proof. Let r′ =
(1+ kν−1)r

λ (k)
, R′ =

R
k+1

, l =
r(k2 −1)λ (k)

k2 and l′ =
l

k+1
.

By Lemma 10, we have that

T : Q(β ,R) → P

is a completely continuous operator. Applying a standard calculus argument, we have
that the set Q(β ,R) is bounded, since if ϑ ∈ Q(β ,R) , then λ (k)‖ϑ‖ � α(ϑ) , and

hence ‖ϑ‖ � kR
(k2 −1)λ (k)

.

Also, it can easily be shown that

1
2

[
r′ +

R
(k+1)τ

]
∈ {

ϑ ∈ P : θ (ϑ) < r′,r < α(ϑ),R′ < ψ(ϑ) and β (ϑ) < R
}

,

l
τk

∈ {
ϑ ∈ P : l′ < ζ (ϑ) and η(ϑ) < l

}
,

and
r
τ
∈ {ϑ ∈ P : l < η(ϑ) and α(ϑ) < r} .

and hence the sets are nonempty. Furthermore, if ϑ ∈ Q(η , l) , then λ (k)‖ϑ‖ � α(ϑ) ,

and hence ‖ϑ‖ � kl
(k2 −1)λ (k)

, and so, we get

α(ϑ) = min
1
k �t�k

ϑ(t)
1+ tν−1 � max

t�0

ϑ(t)
1+ tν−1 = ‖ϑ‖

� kl
(k2 −1)λ (k)

� kr(k2 −1)λ (k)
k2(k2 −1)λ (k)

� r
k

< r.

This implies that ϑ /∈ Q(α,β ,r,R) . Hence, the set conditions of (a), (b), (c), (d) and
(e) of Theorem 1 are obtained. Now, we satisfy the functional conditions.



222 D. OZ AND I. KARACA

Claim 1. α(Tϑ) > r , for all ϑ ∈ Q(α,β ,r,R) with α(ϑ) = r , β (ϑ) � R and
r′ < θ (Tϑ) .

Let ϑ ∈ Q(α,β ,r,R) with α(ϑ) = r and r′ < θ (Tϑ) . Then by Lemma 9, we
have

α(Tϑ) = min
1
k �t�k

Tϑ(t)
1+ tν−1 � λ (k)‖Tϑ‖ > λ (k)r′

=
λ (k)(1+ kν−1)r

λ (k)
= (1+ kν−1)r > r.

Claim 2. α(Tϑ) > r , for all ϑ ∈ Q(α,β ,r,R) with α(ϑ) = r , β (ϑ) � R and
θ (ϑ) � r′ .

Let ϑ ∈ Q(α,β ,r,R) with α(ϑ) = r and θ (ϑ) � r′ . By using ϑ ∈ Q(α,β ,r,R)

and θ (ϑ)� r′ , we obtain r � ϑ(s)
1+ sν−1 � r′ for s∈

[
1
k
,k

]
. Using (H4), F

(
s,

ϑ(s)
1+ sν−1

)

>
r
N

,

(
s,

ϑ(s)
1+ sν−1

)
∈

[
1
k
,k

]
× [r,r′] . We get

α(Tϑ(t)) = min
1
k �t�k

Tϑ(t)
1+ tν−1

= min
1
k �t�k

1
1+ tν−1

∫ ∞

0
G(t,s)a(s) f (s,ϑ(s))ds

�
∫ ∞

0
min

1
k �t�k

G(t,s)
1+ tν−1 a(s) f (s,ϑ(s))ds

�
∫ k

1
k

G1( 1
k ,s)

1+ kν−1 a(s) f (s,ϑ(s))ds

� 1
1+ kν−1

∫ k

1
k

G1(
1
k
,s)a(s)F

(
s,

ϑ(s)
1+ sν−1

)
ds

>
r
N

1
(1+ kν−1)Γ(ν)kν−1

∫ k

1
k

a(s)ds

= r

Claim 3. β (Tϑ) < R , for all ϑ ∈ Q(α,β ,r,R with r � α(ϑ) , β (ϑ) = R and
ψ(Tϑ) < R′ .

Let ϑ ∈ Q(α,β ,r,R),β (ϑ) = R and ψ(Tϑ) < R′ . If ϑ ∈ Q(α,β ,r,R) , then

r � ϑ(s)
1+ sν−1 for s ∈ [0,∞) . Using (H5), F

(
s,

ϑ(s)
1+ sν−1

)
<

R
M

,

(
s,

ϑ(s)
1+ sν−1

)
∈
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[0,∞)× [r,∞) . We obtain

β (Tϑ(t)) =
∫ ∞

0

Tϑ(t)
1+ tα−1ds

=
∫ ∞

0

G(t,s)
1+ tα−1a(s) f (s,ϑ(s))ds

� L
∫ ∞

0
a(s) f (s,ϑ(s))ds

� L
∫ ∞

0
a(s)F

(
s,

ϑ(s)
1+ sν−1

)
ds

<
R
M

L
∫ ∞

0
a(s)ds

= R

Note, the same argument as in claim 3 can be used to verify that η(Tϑ) < l , for all
∀ϑ ∈ Q(η , l) , with η(ϑ) = l and ζ (Tϑ) < l′ by simply replacing R with l, R′ with l′
in the arguments.

Claim 4. β (Tϑ) < R , ∀ϑ ∈ Q(α,β ,r,R) with r � α(ϑ) , β (ϑ) = R and R′ �
ψ(ϑ) .

Let ϑ ∈ Q(α,β ,r,R) with β (ϑ) = R and R′ � ψ(ϑ) . If ϑ ∈ Q(α,β ,r,R) , then

r � ϑ(s)
1+ sν−1 for s ∈ [0,∞) . Using (H5), F

(
s,

ϑ(s)
1+ sν−1

)
<

R
M

,

(
s,

ϑ(s)
1+ sν−1

)
∈

[0,∞)× [r,∞) . We have

β (Tϑ(t)) =
∫ ∞

0

Tϑ(t)
1+ tα−1ds

=
∫ ∞

0

G(t,s)
1+ tα−1a(s) f (s,ϑ(s))ds

� L
∫ ∞

0
a(s) f (s,ϑ(s))ds

� L
∫ ∞

0
a(s)F

(
s,

ϑ(s)
1+ sν−1

)
ds

<
R
M

L
∫ ∞

0
a(s)ds

= R

Note, the same argument as in Claim 4 can be used to verify that η(Tϑ) < l , for all
∀ϑ ∈ Q(η , l) , with η(ϑ) = l and l′ � ζ (ϑ) by simply replacing R with l, R′ with l′
in the arguments. From the conditions (i) - (vi) and Theorem 1, T has at least three
positive solutions ϑ1,ϑ2 and ϑ3 belonging to Q(β ,R) of BVP (1) such that

η(ϑ1) � l,r � α(ϑ2) with β (ϑ2) � R and l < η(ϑ3) with α(ϑ3) < r.
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4. An Example

EXAMPLE 1. Consider the following boundary value problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D
5
2
0+ϑ(t)+16−tln16f (t,ϑ(t)) = 0, t ∈ [0,∞) ,

ϑ(0) = ϑ ′(0) = 0,

D
3
2
0+ϑ(∞) =

2

∑
i=1

ηiI
1
2
0+ϑ(ξi),

(7)

where

F(t,ϑ(t)) =

⎧⎨
⎩192+

1329
5183

(ϑ −1)+
t
10

, (t,ϑ) ∈
[
1
4
,4

]
× [1,5184] ,

6180, (t,ϑ) ∈ [0,∞)× [1,∞) .

By simple calculations, we have

L = 0,8753486872, N = 0,0052237687,M = 2,4269818981,

τ =
∫ ∞

0

1

1+ t
3
2

dt =
4π

3
√

3
.

If we choose r = 1 and R = 15000, then we get

1 = r <
N
M

R = 32,2855845

and

1 = r < R′ = 3000 < r′ = 5148 <
R
τ

= 6202,4500738.

It can be easily seen that the conditions (H1)− (H3) satisfied. Now we show that
conditions (H4) and (H5) are satisfied.

F(s,ϑ(s)) � 192,025 >
1

0,0052237687
= 191,43267197=

r
N

,

(s,ϑ) ∈
[
1
4
,4

]
× [1,5184] ,

F(s,ϑ(s)) = 6180 <
15000

2,4269818981
= 6180,5158134 =

R
M

,

(s,ϑ) ∈ [0,∞]× [1,∞] .

So, all conditions of Theorem 2 hold. Thus by Theorem 2, the BVP (7) has at least
three positive solutions ϑ1,ϑ2 and ϑ3 belonging to Q(β ,15000) such that∫ ∞

0

ϑ1(t)

1+ t
3
2

dt � l, r � min
1
4 �t�4

ϑ2(t)

1+ t
3
2

with
∫ ∞

0

ϑ2(t)

1+ t
3
2

dt � R

and

l <
∫ ∞

0

ϑ3(t)

1+ t
3
2

dt with min
1
4 �t�4

ϑ3(t)

1+ t
3
2

< r.



POSITIVE SOLUTIONS OF M-POINT FRACTIONAL BVP ON THE HALF LINE 225

5. Conclusion

In this paper, by applying the six functionals fixed point theorem [12], which is
a generalization of the five functionals fixed point theorem [13] and Leggett-Williams
fixed point theorem [15], we investigate the existence of at least three positive solu-
tions for the m-point fractional boundary value problem on the half line. And then an
appropriate example that support the theoretical results is provided.
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