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POSITIVE SOLUTIONS OF M-POINT FRACTIONAL
BOUNDARY VALUE PROBLEM ON THE HALF LINE

DoONDU Oz* AND ILKAY KARACA

(Communicated by M. Al-Refai)

Abstract. In this paper, six functionals fixed point theorem is used to investigate the existence of
positive solutions for fractional-order nonlinear boundary value problems on the half line. As an
application, an example is given to illustrate the main result.

1. Introduction

The first application of fractional calculus was due to Abel in his solution to the
Tautochrone problem[11]. It also appears in many engineering and scientific disciplines
as the mathematical models of systems and processes in the fields of aerodynamics,
polymer rheology, physics, chemistry, etc. Recently, many authors have been dealing
with the existence of solutions of nonlinear boundary value problems for fractional
differential equations thanks to techniques of nonlinear analysis, for example, see [2],
[51, [6], [7], [9], [10], [16], [19], [20] and [21]. For general results and backround on
the fractional calculus, we refer the reader to [1], [4] and [14].

It should be noted that most of the papers and books on fractional calculus are
devoted the solvability of fractional differential equations on finite interval. Due to
the fact that an infinite interval is noncompact, the discussion about boundary value
problem on the half line is more complicated. Very recently, there are some results
in the literature for fractional boundary value problem on an infinite interval, see [17],
[18] and [22]. In particular, for Riemann-Liouville fractional integral boundary value
problem on infinite interval, few works were done, see [3] and [8].

In [18], Ge and Zhao considered the following fractional integral boundary value
problem on an infinite interval:

D u(t) +a(t)f(t,u(t) =0, t € (0,0), o€ (1,2),
u(0) =0,
lim D u(r) = Bu(&),
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where 0 < & < oo, Dy, is the standard Riemann-Liouville fractional derivative. They
obtained the existence of the unique positive solution by using the Leray-Schauder
Nonlinear Alternative theorem.

In [17], Liang and Zhang considered the following m-point fractional boundary
value problem on an infinite interval:

Cu(t) +a(t) f(u(r) =0, 0 <1 <o,
u(O)—u(O) :7027
DOC lu ﬁﬂ/l
i=1

where 2 < o0 < 3, DS‘+ is the standard Riemann-Liouville fractional derivative, 0 <

Ei<b <. <&, 0<oo, i=1,.,m—2 satisfies 0 < Zﬁ,§,a1<l"( o). They

obtained the existence of three positive solutions by using the Legget-Williams fixed
point theorem.

In [8], Zhang et al. studied the existence of nonnegative solutions for the following
boundary value problem for fractional differential equations with nonlocal boundary
conditions on unbounded domains:

Dg u(t)+ f(t,u(t)) =0, 1 <a <2, t€[0,0),
D ~2u(0) =0,
lim DG u(r) = P13~ u(n),

where DY, is the standard Riemann-Liouville fractional derivative of order o, f €
C([0,00) x R,RT) and 0 < B,n > . The Leray - Schauder nonlinear alternative is
used.

In [22], Gholami considered the following fractional integral boundary value prob-
lem on an infinite interval:

D u(t)+a(t)f(t,u(t),u'(t)) =0; € (0,), ae(2,3),
u(0) =1u'(0) =0, .

lim Dg ™ Yu(r) Zﬁl o Yu(r) |- &

[—o0

where D, is the standard Riemann-Liouville fractional derivative, 0 < Ei<bh<..<
Ena <o, i=1,...m—2, B; € R. The author obtained the existence of a bounded
solution by using the Leray-Schauder Nonlinear Alternative theorem.

In [3], Wang considered the following fractional integral boundary value problem
on semi-infinite interval:

D%u(t)+ f(t,u(t)) =0, 0 <t < oo,

u(0) =u'(0) =0,
D lu(eo) = E1Pu(n), B>0.
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The author obtained the existence of the unique solution by using the monotone iterative
technique.

Motivated by the above works, we consider the following m-point Riemann-Liouville
fractional integral boundary value problem (BVP).

Dy 9(t) +a(t)f(1,0(1)) = 0, 1 €[0,00),

190:190:0,
©=0 ¢ 0

Dy 9 (oo nil}
=

where 2<v <3, k>0, Dy, isthe standard Riemann-Liouville fractional derivative,
0<& <é<.<é,p<oo, i=1,....m—2, n;>0. Throughout this paper we
assume that following conditions hold:

m—2

(H1) 0< Y m&Y 1 <T(v+k),
i=1

(H2) f:]0,00) x R — [0,c°) continuous and 0 < / a(s)ds < oo,
0

(H3) F(t,9) = f(t,(1+1""1H0), fe€C([0,0) xR,[0,%0)), f(0,) #Z 0 on any
subinterval of (0,%0) and when © is bounded f(z,(14¢"~!)®) is bounded on
[0,c0).

By using the Six Functionals fixed point theorem in [12], we get the existence of at
least three positive solutions for the BVP (1). To the best our knowledge, the existence
of solutions for m-point Riemann-Liouville fractional integral boundary value problem
on infinite interval is not investigated till now. Hence, this results can be considered as
a contribution to this field.

This paper is organized as follows. In section 2, we provide some definitions and
preliminary lemmas which are key tools for our main result. In section 3, we give and
prove our main result. In section 4, we give an example to illustrate how the main result
can be used in practice. Finally, conclusion part is established in section 5.

2. Preliminaries

In this section, to state the main result of this paper, we need the following lemmas
and definitions.

DEFINITION 1. The Riemann-Liouville fractional integral of order v > 0 of an
integrable function f : (0,e0) — R is given by

Bof) = gy [ =9 (0
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DEFINITION 2. The Riemann-Liouville fractional derivative of order v > 0 of a
continuous function f : (0,e0) — R is given by

where n—1<v<n.

LEMMA 1. [1]Let v >0 and © € C(0,1)NL(0,1). Then the fractional differen-
tial equation
has ©(t) =cit" ' catV 2 +e3t S F bV, G ER, i=1,2,....n, n=[v]+1
as an unique solution.

LEMMA 2. [1] Assume that ¥ € C(0,1)NL(0,1) with a fractional derivative of
order v > 0 that belongs to C(0,1)NL(0,1). Then

LDy () =0(t) +cit” etV P test eV,
forsome ¢; eR, i=1,2,...,n, n=1[v]+1.
LEMMA 3. Assume that the conditions (H1) — (H3) are satisfied. If h € C[0,0),

fractional boundary value problem

Dy O(t) +h(t) =0, t€[0,0), 2<Vv <3,
¥(0) =9'(0) =0,
m—2

' ()
Dyt o (o) = Y mily 0 (8),
i=1
has an integral expression
8() = [ Gleh()ds, 1€[0.%), @)
0
where
G(tas):GI(taS)+G2(taS)v (4)
here
1 el —(—s)V!, 0<s<t<o
G =— ’ 5
1(t,S) r(v) {tv_17 0<[<S<°O. ( )
and
GZ(t7s)
m—2 .
SV
- Zi nit éivﬂLicfl_(éi_s)vﬂcfl7 0<s<E < oo, .
= 2 gye-1, 0<E <5< oo ©
() [Ty 4+K) - 3 nig! !
i=1
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Proof. According to Lemma 2, we can obtain that (1) = —I}. (1) +c1t¥~ ' +
c2tY72 + ¢3tV73. By the boundary conditions of problem (1), we have

v+1</h ds—En,/ i— )V U n(s)ds

‘= 7622076320-
F(v)[ V4 K)— En,é"*’( 1]

Therefore, we obtain

1 _ C(v+K)t¥1
O(t) = ——— [ (t—29)""h(s)ds+ h(s
) /0 F(V)[ V+K) mzzrlzéwk l] /
m—2
Z it £
- (&= 5)" "% h(s)ds

0

F(v)[ V+K)— Zn,é”" 1}
_/ G(t,s)h(s)ds, t € [0,00).

LEMMA 4. [17] The function G\(t,s) defined by (5) satisfies
i) Gi(t,s) is continuous and G\ (t,s) = 0 for (t,s) € [0,00) X [0,00),
ii) Gy(t,s) is strictly increasing in the first variable,

iii) Gi(t,s) is concave in the first variable for 0 < s <t < oo,

Proof. This proof given clearly as Lemma 3.2 in [17].

LEMMA 5. [17]11If k > 1, then G1(t,s) defined by (5) has the following property

min Gl(l S) S 1 Gl(l S)

Larar L0V~ 42 (14 kv l)re[O )1—|—t" r

LEMMA 6. From the definition of G1(t,s), we have

Gi(t,s) P 1 G(1,s)
L+tv-1 S T(v)" 14ev-1 7

<L for (t,s) €]0,00) X [0,00),

I'(v+ K)

I'(v) | T(v+x)— Z nig !

where L =



214 D. Oz AND I. KARACA

Proof. The functions G(t,s), Gi(t,s) and G,(t,s) are as defined in equations (4),
(5) and (6) respectively. Let s <f. Using Lemma 4, we have
Gi(t,s) V1 —(1—s)""! V1 !
L+ T(v)(1 v T T(v)(14v-1) T T(v)’

Let ¢ <s.From Lemma 4, we have

Gi(t,s) V1 !
L+ T(v)(14+v-1) T T(v)”

In both cases, we obtain

Gl(t,s) < 1
1+v-1 T T(v)

Similarly, we can obtain an inequality for function G;(z,s). If 0 < s < &;, then

m—1
; nitv—l (éiv+;<—1 _ (éi—S)W_K_l)

(;2(1,8) _
L=t
(14+1v-HI(v) |T(v+k) 2 &Y
m—2
2 nit\/71§iv+'(71
< i=
(1+v-"HI(v) |T(v+x) z m&EY e 1]
m—2
Z g/t
<

I(v) T

V—|—K Enlig'wrrc l‘|

On the other hand, if 0 < &; <'s, then

m—1
n ,tv—l v+r—1
Ga(t,s) Zm

T+ 1
(14+v-HI(v) |T

V—|—K Enlig'wrrc l‘|

Wiz nl_é_erKfl

<
r'(v) |

V+K znlévﬂ( 1‘|
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The following inequality is obtained from both cases:

m—2
EVHK—1
GZ(twy) 2 nl&l

T
rv) T

m—2
V+K anév-‘rk 1]

Consequently, from (4), we get
G(t,s) . I'(v+x)

[ +gv-1 7 m—2
V+K an€V+K 1

r(v)|r

LEMMA 7. If k > 1, then Gy(t,s) defined by (6) has the following property

min Gz(l‘ S) S 1 max Gz(l‘ S)
Tgap L1V~ U7 kv=1(14+kv"1) re000) 1 +2V-1

Proof. Let 0 < s <&, we have,

m—2
—1 v+r—1 v+k—1
nit’ " (& —(&i—s)
Ga(t,s) . Zi (& l )
min ———>% = min
Lk L1V Lr<k

S (L HI(v) T

V—|—K Enlig'wrrc l]

r:lz;m (%) - (&= (G-

V—|—K ansg’vﬂ( 1‘|

(1+k-DT(v) |T

m—2

215

2 nit‘/7l (&,‘v+K71 _ (éz _S)V+K'71)

1 -1

TR o)
(1 +tV‘1)F(v)

Let 0 < & <'s, then the following inequality is obtained:

Gs(t,s) 1 Gs(t,s)

min > max
Ig ,<k1—|—t" T Tk 1) o) L4271

V+K anév-‘rk 1]
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LEMMA 8. Fora fixed k > 1,

G(1,s) - G(1,s)

min max
e N )tE[O,w) L4Vt

where

. 1 1
Al = mm{4k2(l TR R+ }

Proof. This Lemma is obvious from Lemma 6 and Lemma 7.

Set

_ . [0
E_{ﬁ‘e%[o, ).rtn;g( 1+t"‘1< .

Clearly, E is Banach space with the norm

o 20
191 = gmax Tt <

LEMMA 9. Assume that (H1)-(H3) hold. Let © € E and k > 1. Then, ¥(t) >0
V(¢
and min 201 S 3 m181.

1=
%Stékl A

Proof. From Lemma 4, positivity of G,(z,s) and conditions (H1)-(H3), we can
obtain ¥(¢) > 0. For a fixed k > 1, from Lemma 8

min 9() mink ﬁ /O°° G(t,s)a(s)f(s, O (s))ds

v—1 =
Lo L+t L

< G(t,s)
z /O %12112]( 1 _|_tv71a(s)f(57 ﬁ(s))ds

> 200 [ mas-C (o) (5,95

G(t
(t9)
14v-1

> (k) max /0 ) (5)f (s, D(s))ds

>0

= A(k) [0

By using Lemma 9, we can define the cone & C E by

—7 =
%gtgkl-‘rtv 1

@z{ﬁeE:ﬂ(t)>O, min 00 >7L(k)||19}.

Denote the operator T : & — E by

TO(1) = /O G, 5)als) f (s, B (s))ds.
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LEMMA 10. Assume that (H1)-(H3) hold. Then T : & — & is completely
continuous.

Proof. Firstly, it is easy to check that T : & — &2 is well-defined. Now, we will
show that 7" is a completely continuous operator in three steps.

Step 1. T : & — & is a continuous operator.
Let ¢, € &2, there exists a sequence ¥, — ¥, n — oo in &2 Since the convergent
sequences are bounded, there is a real number ry such that m%? } |19.]| < ro. Denote
neN\{0

the set
By, =max{f(t,(1+1" —1)0), (,9) €[0,%) % [0,r0]}.

For all (¢,s) € [0,%0), by the Lebesgue Dominated Convergence theorem and Lemma
6, we obtain

‘% /Om 1G+(ttvs>1 ($)[f (5, 0u(s)) — f(s5,0(s5))]ds
= G(t,s)
< [ a5 (5. () — 5, D5) | s
L/ $) £ (s, 0u(s5)) — f(5,9(5))|ds — 0, (n — ).
This yields that

|78 (t) = T (1)[| — 0.

Hence, T : & — &7 is sequentially continuous. If 7 is sequentially continuous, then
T is continuous.

Step2. T: ¥ — & isrelatively compact operator.

Let Q be any bounded subset of &2. Then there exists r > 0 is such that |9 < r
for all ¥ € Q. Therefore, from (H2) and Lemma 6, for all ¥ € Q,

1—|—t" 1\L/ (s))ds
B(s)
_ 1
L/ ( (145"~ )l—I—sV—l)dS
gLB,/ a(s)ds
0
<

This implies that ||T9(¢)|| < eo. So TQ is uniformly bounded. Next, we show that TQ
is equicontinuous on [0,e0). For any a > 0 and #,,#, € [0,a], without loss of generality,
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we may assume that #, > ¢;. For all ¢ € Q, we obtain

(T9)(1) (T9)(n) =| G(t,s)  Gln,s)
l+lv ! l—l—t;_l </() 1+tV 1 l+l;_l a(s)f(svﬂ(s))ds
<|Gi(t,s)  Gilna,s)
</o Ly gyt |45 D)ds
“|Ga(t1,5)  Ga(ta,s)
+/0 e a(s)f (s, 9(s))ds
<1Gi(t1,5) Gl(fz,s)
g/0 1+ZV T l—l—t"*l a(s)f(saﬂ(s))ds
m—2 vkl tlv 1 t; 1
Zinléi L+~ I L+~ e
+ al(s)f(s,0(s))ds
C(v)[T(v+x)— znlévw 1 0
< |Gy(ty, Gi(t,s
< [ | T - T a0
= |Gilt,s)  Gilh,s)
+/0 1+t\/ l 1+tv 1 (S)f(svﬂ(s))ds
m—2 vkl ZI/ 1 t; 1
Zinléi L+1)~ L 1+) 7 e
m—2 0 a(s)f(s»ﬂ(s))d&
r(v)[[(v+ k) — anévﬂc 1
On the other hand, we get
~| Gy (n1. Giln
/0 llftlv i lftzv D a(s) (5, 0(s))ds
|G , G ,
=/0 lf;v ) 1l+(tfv D a(s) (5, B(s))ds
21Gi(t1,s)  Gila,s)
+/t1 e | LORCL DI
<G G
+ ﬁf;& 5 - B a5, 006 s
Vl oav—1 vl
<, [P T A BZIT T2 gy

1+ZVI
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tz v— v 1 + ((12 s)v—l)
+ B, / a(s)ds
1+ﬂ ! *)

vl

I l+tv1

+B, (s)ds —0 as 1) — 1.

In a similar way, one can see that

r

Thus, we have

Gi(r,s)  Gilt,s)
L+~ L 1+27!

Tﬂ(ll) Tﬂ(lz)
LT 1+ T

—0 as t; — 1.

So, TQ is equicontinuous on [0, o).
Step3: T: % — £ is equiconvergent at oo
For any ¥ € Q, we get

/Owa(s)f(s,ﬁ(s))ds < Br/owa(s)ds < oo,

From Lemma 6,we obtain

| To@) | = G(t,s)
fim | Tt =l Ty e 5. 96)ds
<Llim / als) f(s, 9(s))ds
—00 0
< oo,

a(s)f(s,0(s))ds — 0 as 11 — 1.

219

Hence, TQ is equiconvergentat e=. Hence, from steps 1-3, 7 : & — & is a completely

continuous operator.

3. Main Result

In this section, we discuss the existence of three positive solutions for the BVP (1)

by using the Six functionals fixed point theorem in [12].

Let o be nonnegative continuous concave functional on &2 and 3 be nonnegative
continuous convex functional on & then for positive numbers r and R, we define the

sets:

O(B.R)={0€Z:B(¥) <R}
and

and Q(o,B,rR)={% € Z:r<a(®)andB(¥) <R}.
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THEOREM 1. (Six Functionals Fixed Point Theorem)[12] Suppose &7 is a cone in
a real Banach space E. o, W and { are nonnegative continuous concave functionals
on &, B, 0 and M are nonnegative continuous convex functionals on &, and there
exist nonnegative numbers L, ', r, ¥, R and R' such that

A:Q(B,R)— &

is a completely continuous operator and

(a) Q(B,R) is a bounded set,

(b) O(n,1) and Q(c, B,1,R) are disjoint subsets of Q(B,R),

(¢) {ue 2:0(u)<r,r<a(),R <wyu) and P(u) <R} #0,
(d) {ue2:1I'< () and n(u) <1} #£0, and

(e) {ue Z:1<nu) and o(u) <r} #0.

Let the following properties be satisfied

(i) oAu)>r, forall ue P with o(u) =r,f(u) <R and r < 6(Au),
(ii) o(Au)>r, forall ue & with a(u)=r,f(u) <R and O(u) <7,
(iii) B(Au) <R, forall ue 2 with r < a(u),f(u) =R and y(Au) <R,
(iv) B(Au) <R, forallue & with r < a(u),f(u) =R and R < y(u),
(v) n(Au) <, forall ue & with n(u) =1 and §(Au) <!, and
(vi) n(Au) <1, forall uc 2 with n(u) =1 and ' < &(u).

Then A has at least three fixed points uy, uy and uz in Q(3,R) such that
N(ur) <Lr<o(uy) with B(u) <R and 1 < n(uz) with o(uz) <r.

Define the concave functionals o,y ve { by

V(1)

] L 2Tk(L+EVTY) R 9
(®):= 2‘? 1rv 17 y(®)=¢(0):= k-1 /; 1+zv—1dt
and the convex functionals 6,3 ve 1

B V(1) B _ [T B0
6(0) .—tg[lélX) 1+tV—1’ B(¥)=n(v) '_/o T

ncosec( )
here T = —dt = R o

/lka(s)ds

k

Let k£ > 1, for the convenience, we take the notations N = TE O

and M =L / s)ds, where L is defined by Lemma 6.
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THEOREM 2. Assume that (H1) — (H3) hold. If there exist constants r,r',R and
N R
R with r < MR and tT(1+k""Hr<R <7 < o and suppose that F(t,9) satisfies
the following conditions:

(H4) F(t,z?(t))>]%forall (1,0(1)) € [ ,k] x [r,7],

1
k
(HS) F(t,9()) < %forall (£,9()) € [0,%0) X [1,2).

Then the boundary value problem (1) has at least three positive solutions ¥, and

% € O(B,R).

v—1 2
(I+k )r’ ) R ’l:r(k 1A (k) and I — .
A (k) k+1 k2 k+1
By Lemma 10, we have that

Proof. Let ¥ =

T:Q(B,R)— 2
is a completely continuous operator. Applying a standard calculus argument, we have
that the set Q(B,R) is bounded, since if ¥ € Q(f,R), then A(k)||?¥| < o(¥¥), and
h V< —5—.
ence ||[9|| AT
Also, it can easily be shown that

1
_ |:r/+

5 } e{vez:09)<r,r<a(®),R <y(®) and () <R},

R
(k+1)t

%e{ﬂe@:lkc(ﬁ) and 1(9) <1},
and

%6{19632:!<n(19) and a(9) < r}.

and hence the sets are nonempty. Furthermore, if ¥ € Q(1,1), then A (k)[|¥] < a(¥),

and hence ||| < , and so, we get

(K —=1)A(k)

() = min 70 < max 70 = 0]
; %gzgkl—l—t"_l A I
oM _kE-DAK)
SE-DAG) SeE -k Sk

This implies that ¢ ¢ Q(o,8,r,R). Hence, the set conditions of (a), (b), (c), (d) and
(e) of Theorem 1 are obtained. Now, we satisfy the functional conditions.
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Claim 1. a(T¥) > r, for all ¥ € QO(o,B,r,R) with a(d) =r, B(¥) <R and
r<o(Ty).

Let ¥ € Q(a,B,r,R) with a(¥) =r and ¥ < 8(T¥). Then by Lemma 9, we
have

TO(r)
% t< 1+tv 1/
AR+
A (k)

o(TY) = AT > A (k)

=1+ YHr>r

Claim 2. a(T¥) >r, for all ® € O(o,B,r,R) with () =r, B(¥) <R and
0(9)<r.
Let ¥ € Q(o, B,r,R) with o(99) =r and 6(0¥) <. By using ¥ € Q(«, 3,1, R)

o 1 o
and 0(9) < ¥, we obtain r < % <7 forse {?k} . Using (H4), F (s, 1+(sf’)1>

r B (s) 1
> N, (S,W) € |:%,k:| X [r,r/]. We get

1 ko1 B(s)
P Tt | Gl(%,s)a(s)F (5’ l—f—s‘/_l)ds

r k
N (1 +&DI(v)k' 1 /,1{ a(s)ds

Claim 3. B(TY) <R, forall ¥ € Q(e,,r,R with r < a(¥), B(¥) =R and
y(TY)<R.
Let ¥ € Q(o, B,1,R),B(¥) =R and y(TVY) <R'.If ¥ € Q(a,B,r,R), then

B(s 5 0 )
% for s € [0,0). Using (H5), F (s,%) < ot (s, (s) ) c




POSITIVE SOLUTIONS OF M-POINT FRACTIONAL BVP ON THE HALF LINE 223
[0,00) x [r,00). We obtain

prow) = [ 0

_ O°° li(’t - szl als)f (s, 9(s))ds

< L/ ))ds
<[ at ( KR
+ v—1
< ML/O a(s)ds
=R
Note, the same argument as in claim 3 can be used to verify that n(7%) < I, for all

vV € Q(n,1), with n(¥) =1 and {(T¥) <!’ by simply replacing R with I, R’ with I’
in the arguments.

ds

Claim 4. B(TY) <R, VO € Q(a,B,r,R) with r < a(?), B(¥) =R and R’ <
w(9).
Let ¥ € O(a,B,r,R) with B(¥) =R and R’ < y(9). IflS‘EQ(a B,r,R), then

ﬂ for s € [0,). Using (H5), F<S 20 ) M (S’&> )

R T+svT I+sV-1
[0,00) x [r,o0). We have
< TU
prow) = [ 2
< G
- ftﬁla@)f(s,ﬂ(s»ds

<L / ))ds
V(s)

<L / ( T T ds

< ML /0 a(s)ds

=R
Note, the same argument as in Claim 4 can be used to verify that n(7¢) <, for all
Vo € Q(n,l), with n(99) =1 and I’ < {(¥) by simply replacing R with I, R" with /'
in the arguments. From the conditions (i) - (vi) and Theorem 1, T has at least three

positive solutions 1,1, and 3 belonging to Q(f3,R) of BVP (1) such that

Nn(h) <lLir<o(d) with B(%h) <R and 1 <n(%3) with a(d)<r.
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4. An Example

EXAMPLE 1. Consider the following boundary value problem:

DE.9(1) + 16 In16f (1, 5(1)) = 0, 1€ [0,00),
9(0) = 9'(0) =0,

3 2 (7
DG Do) = 3, milg ().
i=1
where
1329 t 1
192+ — (9 —1)+— ) -4 1,5184
F(taﬂ(t)): +5183( )+10’ (t’ )€|:4’ :|X[ ) ],
6180, (t,9) € [0,00) x [1,00).

By simple calculations, we have
L=0,8753486872, N =0,0052237687,M =2,4269818981,
< 1 4
A 1+—t% t = ﬁ
If we choose r =1 and R = 15000, then we get

T =

l=r< ER =32,2855845
M

and
l=r<R =3000<r =5148 <

al=

=6202,4500738.

It can be easily seen that the conditions (H1) —
conditions (H4) and (HS5) are satisfied.

—

H3) satisfied. Now we show that

1 r
Fs,0(s)) > 192,025> ——— — 19143267197 = —,
(s, 9(s)) ~ 0.0052237687 N
1
(5,0) € 174}x[175184}7
15000 R
F — 6180 < ——0 _ _6180,5158134 = -
(5.9(5) = 6180 < 5 erens = 6180,5158134 = 1.

(5,0) € [0,00] x [1,09] .

So, all conditions of Theorem 2 hold. Thus by Theorem 2, the BVP (7) has at least
three positive solutions 11,1 and 3 belonging to Q(f3,15000) such that

/w 210 dt <1, r< min L 1UO R 1) dt <R
0

3 3 3

1+12 <4 1412 0 1+4¢2
and
= (1 t
I< m(Zdt with  min 193(2 <r

0 1412 p<i<4 1412



POSITIVE SOLUTIONS OF M-POINT FRACTIONAL BVP ON THE HALF LINE 225

5. Conclusion

In this paper, by applying the six functionals fixed point theorem [12], which is

a generalization of the five functionals fixed point theorem [13] and Leggett-Williams
fixed point theorem [15], we investigate the existence of at least three positive solu-
tions for the m-point fractional boundary value problem on the half line. And then an
appropriate example that support the theoretical results is provided.
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