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ON AN INTEGRO–DIFFERENTIAL EQUATION OF ARBITRARY
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AND INFINITE–POINT BOUNDARY CONDITIONS
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(Communicated by C. Lizama)

Abstract. In this paper, we study the existence and uniqueness of solutions for an integro–
differential equation of arbitrary (fractional) orders with nonlocal integral and infinite-point
boundary conditions, continuous dependence of the solution on nonlocal data, on initial con-
dition and on functional equation also will be study. An examples to prove main results.

1. Introduction

Boundary value problems for nonlinear differential equations (fractional differen-
tial equations) have attracted great research efforts worldwide, as they arise from the
study of many important problems in various discipline areas such as fluid flows, elec-
trical networks, rheology, biology and chemical physics. In practical applications, it is
important to establish the conditions for the existence solutions. Hence, many authors
have investigated the existence solutions for various functional differential equation
(fractional differential equation) boundary value problems, and for details, the reader is
referred to [1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16, 19] and the references therein.
In [15], the authors proved the existence of absolute continuous solutions of the nonlo-
cal first-order boundary value problem (BVP) with the nonlinear function involving the
Liouville-Caputo fractional derivative:

dx
dt

= f (t,Dαx(t)), a.e t ∈ (0,1), 0 < α � 1,

together with either the Riemann-Stieltjes functional integral boundary condition (with
the advanced or deviated argument f) given by

∫ 1
0 x(φ(s))dg(s) = x0, or the infinite-

point boundary conditions given by ∑∞
k=1 akx(φ(τk)) = x0.

Motivated by the above mentioned paper, the purpose of this paper is to investigate the
existence solutions for a more general problem. Obviously, our work is different from
those in [20, 21, 22].
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In this paper, we are concerned with the nonlocal problem for the integro-differential
equation

dx
dt

= f (t,x(t),
∫ t

0
g(s,Dαx(s))ds), a.e t ∈ (0,1), α(0,1], (1)

with the nonlocal condition

m

∑
k=1

akx(τk) = x0, ak � 0, τk ∈ (0,1). (2)

The existence solution x ∈ AC[0,T ] of the nonlocal problem (1)-(2) we be proved. The
continuous dependence of the solution on the nonlocal data ak and on the function g ,
will be studied.
As applications, the nonlocal problem of equation (1) with the integral condition

∫ 1

0
x(s)dg(s) = x0, (3)

will be studied. Also, the nonlocal problem of equation (1) with infinite-point boundary
condition

∞

∑
k=1

akx(τk) = x0, (4)

will be studied. Finally, we give an examples to prove main results.
Main results in this paper are based onto Kolmogorov’s Compactness Criterion

[6], Schauder’s Fixed Point Theorem [10] and the following definitions:

DEFINITION 1. [18] The fractional order integral of order α of f ∈ L1 is defined
by

Iα f (t) =
∫ t

0

(t − s)α−1

Γ(α)
f (s)ds.

DEFINITION 2. [18] The Caputo fractional-order derivative Dα
a of order α ∈

(0,1] of the absolutely continuous function f (t) is given by

Dα
a f (t) = I1−α d

dt
f (t) =

∫ t

a

(t− s)−α

Γ(1−α)
d
ds

f (s)ds.

2. Integral Representation

Consider the nonlocal problem (1)-(2) with the assumptions:

1. f : [0,T ]×R
2 → R satisfies Caratheodory condition i. e f is measurable in t

for any x,y ∈ R and continuous in x,y for almost all t ∈ [0,1] . There exist a
function a1 ∈ L1[0,1] and a positive constant b1 > 0, such that

| f (t,η ,ϕ)| � a1(t)+b1|η |+b1|ϕ |.
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2. g : [0,1]×R → R satisfies Caratheodory condition i. e g is measurable in t for
any x ∈ R and continuous in x for almost all t ∈ [0,1] . There exist a function
c2 ∈ L1[0,1] and a positive constant b2 > 0, such that

|g(t,η)| � a2(t)+b2|η |.

3.

sup
t∈[0,1]

∫ t

0
a1(s)ds � M1, sup

t∈[0,1]

∫ t

0

∫ s

0
a(θ )dθds � M2.

4. (2b1 + b1b2
Γ(2−α) ) < 1.

LEMMA 1. Let A = ∑m
k=1 ak �= 0 , the solution of the nonlocal problem (1)-(2), if

it exist, then it can be expressed by the integral equation

x(t) = A−1[x0 −
m

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ t

0
v(s)ds. (5)

where

v(t) = f (t,A−1[x0 −
m

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ t

0
v(s)ds,

∫ t

0
g(s, I1−αv(s))ds). (6)

Proof. Let dx
dt = v(t) in (1), we obtain

v(t) = f (t,x(t),
∫ t

0
g(s, I1−αv(s))ds), t ∈ (0,1), (7)

where

x(t) = x(0)+
∫ t

0
v(s)ds, (8)

Using the nonlocal condition (2), we get

m

∑
k=1

akx(τk) = x(0)
m

∑
k=1

ak +
m

∑
k=1

ak

∫ τk

0
v(s)ds,

then

x(0) =
1

∑m
k=1 ak

[x0−
m

∑
k=1

ak

∫ τk

0
v(s)ds]. (9)

We obtain (5)and (6) from (7),(8) and (9). This completes the proof.
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3. Existence of solution

DEFINITION 3. By a solution of the functional integral equation (6) we mean a
function v ∈ L1[0,1] that satisfies (6).

THEOREM 1. Let the assumptions 1–4 be satisfied, then the functional integral
equation (6) has at least one solution v ∈ L1[0,1] .

Proof. Define the operator F associated with the v ∈ L1[0,1] by

Fv(t) = f (t,A−1[x0−
m

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ t

0
v(s)ds,

∫ t

0
g(s, I1−αv(s))ds).

Let Ωl = {v ∈ R : ||v|| � l} , where l = M3+b1A
−1|x0|+b1M4

1−(2b1+
b1b2

Γ(2−α) )
.

Then we have, for v ∈ Ωl

‖Fv(t)‖L1 �
∫ 1

0
| f (s,A−1[x0−

m

∑
k=1

ak

∫ τk

0
v(θ )dθ ]+

∫ s

0
v(θ )dθ ,

∫ s

0
g(θ , I1−αv(θ ))dθ )|ds.

�
∫ 1

0
[a1(s)+b1A

−1|x0 −
m

∑
k=1

ak

∫ τk

0
v(θ )dθ |

+b1|
∫ s

0
v(θ )dθ |+b1

∫ s

0
|g(θ , I1−αv(θ ))dθ |]ds

�
∫ 1

0
a1(s)ds+b1A

−1|x0|+b1A
−1

m

∑
k=1

ak

∫ t

0

∫ τk

0
|v(θ )|dθds

+b1

∫ t

0

∫ s

0
|v(θ )|dθds+b1

∫ t

0

∫ s

0
a(θ )dθds

+b1b2

∫ t

0

∫ s

0
I1−α |v(θ )|dθds

� M1 +b1A
−1|x0|+2b1‖v‖L11 +b1M2

+b1b2

∫ 1

0

∫ s

0

∫ θ

0

(θ −λ )−α

Γ(1−α)
|v(λ )|dλdθds

� M1 +b1A
−1|x0|+b1M2 +(2b1 +

b1b2

Γ(2−α)
)l = l

This prove that F : Ωl → Ωl and the class of functions {Fv} is uniformly bounded
in Ωl .

Let Ω be bounded subset of Ωl and F : Ωl → Ωl . Then F(Ω) is also bounded on
Ωl .
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Let v ∈ Ω , then

‖(Fv)h−Fv‖L1 =
∫ 1

0
|1
h

∫ θ+h

θ
(Fv)(s)ds− (Fv)(θ )|dθ

�
∫ 1

0

1
h

∫ θ+h

θ
| f (s,A−1[x0 −

m

∑
k=1

ak

∫ sk

0
u(λ )dλ ]+

∫ s

0
v(λ )dλ ,

∫ s

0
g(λ , I1−αv(λ ))dλ )− f (θ ,A−1[x0−

m

∑
k=1

ak

∫ θk

0
u(λ )dλ ]

+
∫ θ

0
v(λ )dλ ,

∫ θ

0
g(λ , I1−αv(λ ))dλ )|dsdθ ,

since f ∈ L1[0,T ] , It follows that

1
h

∫ θ+h

θ
| f (s,A−1[x0−

m

∑
k=1

ak

∫ sk

0
u(λ )dλ ]+

∫ s

0
v(λ )dλ ,

∫ s

0
g(λ , I1−αv(λ ))dλ )− f (θ ,A−1[x0−

m

∑
k=1

ak

∫ θk

0
u(λ )dλ ]+

∫ θ

0
v(λ )dλ ,

∫ θ

0
g(λ , I1−αv(λ ))dλ )|ds → 0 as h → 0,

then (Fv)h → (Fv) uniformly. Hence F(Ω) is relatively compact. Hence F is compact
operator.

Let {vn} ⊂ Ql and vn → v

lim
n→∞

Fvn = lim
n→∞

f (t,A−1[x0 −
m

∑
k=1

ak

∫ τk

0
vn(s)ds]+

∫ t

0
vn(s)ds,

∫ t

0
g(s, I1−αvn(s))ds) = Fv.

Then vn → v ⇒ Fvn → Fv as n → ∞ . This mean that the operator F is continuous
operator.

By Schauder fixed point Theorem [10] there exist at least one solution v∈ L1[0,T ]
of the functional integral equations (6).

Thus, based on the Lemma 1, the nonlocal problem (1)–(2) possess a solution
x ∈ AC[0,1] . Now, from (5), we have

x(0) = lim
t→0

x(t) = x(t) = A−1[x0 −
m

∑
k=1

ak

∫ τk

0
v(s)ds],

and

x(1) = lim
t→1

x(t) = x(t) = A−1[x0−
m

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ 1

0
u(s)ds.

Therefor the Equation (5) has a solution x ∈ AC[0,1] . Consequently, the nonlocal prob-
lem (1)–(2) has a solution x ∈ AC[0,1] given by (5).
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4. Uniqueness of the solution

Let f and g satisfy the following assumptions

5. f : [0,T ]×R
2 → R is measurable in t for any x,y ∈ R and satisfies the lipschitz

condition
| f (t,x,y)− f (t,u,v)| � b1|x−u|+b1|y− v|,

6. g : [0,T ]×R → R is measurable in t for any x ∈ R and satisfies the lipschitz
condition

|g(t,x)−g(t,u)|� b2|x−u|,

7.

sup
t∈[0,1]

∫ t

0
| f (s,0,0)|ds � L1, sup

t∈[0,1]

∫ t

0

∫ s

0
|g(θ ,0)|dθds � L2.

THEOREM 2. Let the assumptions 5–7 be satisfied, then the solution of the func-
tional integral equation (6) is unique v ∈ L1[0,1] .

Proof. From Theorem 1 the solution of the integral equation (6) exists.
Let v,y be two the solution of (6), then

∫ 1

0
|v(t)− y(t)|dt =

∫ 1

0
| f

(
t,A−1[x0 −

m

∑
k=1

ak

∫ τk

0
v(s)ds

]
+

∫ t

0
v(s)ds,

∫ t

0
g(s, I1−αv(s))ds

)

− f
(
t,A−1[x0−

m

∑
k=1

ak

∫ τk

0
y(s)ds

]
+

∫ t

0
y(s)ds,

∫ t

0
g(s, I1−αy(s))ds

)
|dt

� b1

∫ 1

0
A−1

m

∑
k=1

ak

∫ τk

0
|v(s)− y(s)|dsdt

+b1

∫ 1

0

∫ t

0
|v(s)− y(s)|dsdt

+b1b2

∫ 1

0

∫ t

0
I1−α |v(s)− y(s)|dsdt

� b1A
−1

m

∑
k=1

ak

∫ 1

0

∫ 1

τk

|v(s)− y(s)|dtds

+b1

∫ 1

0

∫ 1

t
|v(s)− y(s)|dtds

+b1b2

∫ 1

0

∫ t

0

∫ s

0

(s−θ )−α

Γ(1−α)
|v(s)− y(s)|dθdsdt
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� 2b1‖v− y‖+
b1b2

Γ(2−α)
‖v− y‖.

Hence

(1− (2b1 +
b1b2

Γ(2−α)
))‖v− y‖ � 0.

since (2b1 + b1b2
Γ(2−α) ) < 1, then v(t) = y(t) and the solution of the functional integral

equation (6) is unique.

Thus, based on the Lemma 1, the nonlocal problem (1)–(2) possess a unique solu-
tion x ∈ AC[0,1] . Now, from (5), we have

x(0) = lim
t→0

x(t) = x(t) = A−1[x0 −
m

∑
k=1

ak

∫ τk

0
v(s)ds],

and

x(1) = lim
t→1

x(t) = x(t) = A−1[x0−
m

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ 1

0
u(s)ds.

Therefore, the Equation (5) has a unique solution x ∈ AC[0,1] . Consequently, the non-
local problem (1)–(2) has a unique solution x ∈ AC[0,1] given by (5).

5. Nonlocal integral condition

Let x ∈ AC[0,1] be the solution of the nonlocal problem (1)-(2). Let ak = h(tk)−
h(tk−1) , h is increasing functions, τk ∈ (tk−1,tk) , 0 = t0 < t1 < t2, ... < tm = 1 then, as
m → ∞ the nonlocal conditions (2) will be

m

∑
k=1

h(t j)−h(tk−1)x(τk) = x0.

And

lim
m→∞

m

∑
k=1

h(tk)−h(tk−1)x(τk) =
∫ 1

0
x(s)dh(s) = x0

THEOREM 3. Let the assumptions 1–4 be satisfied, then the nonlocal problem of
(1)-(3) has at least one absolutely continuous solution.
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Proof. As m → ∞ , the solution of the nonlocal problem (1)-(2) will be

x(t) = lim
m→∞

A−1[x0−
m

∑
k=1

ak

∫ τk

0
u(s)ds]+

∫ t

0
v(s)ds

=
1

h(1)−h(0)
[
x0 −

m

∑
k=1

ak

∫ τk

0
v(s)ds(h(t j)

−h(tk−1))
]
+

∫ t

0
v(s)ds

=
1

h(1)−h(0)
[
x0 −

∫ 1

0

∫ τk

0
v(s)ds dh(t)

]
+

∫ t

0
v(s)ds,

where

v(t) = f (t,
1

h(1)−h(0)
[x0−

∫ 1

0

∫ τk

0
v(s)ds dh(t)]

∫ t

0
v(s)ds,

∫ t

0
g(θ , I1−αv(s))dθ )ds.

6. Infinite-point boundary condition

THEOREM 4. Let the assumptions 1–4 be satisfied, then the nonlocal problem of
(1)-(4) has at least one absolutely continuous solution.

Proof. Let the assumptions of Theorem 1 be satisfied.
Let ∑m

k=1 ak be convergent, then

xm(t) = A−1[x0 −
m

∑
k=1

ak

∫ τk

0
vm(s)ds]+

∫ t

0
vm(s)ds. (10)

Where

vm(t) = f (t,A−1[x0−
m

∑
k=1

ak

∫ τk

0
vm(θ )dθ ]

+
∫ t

0
vm(s)ds,

∫ t

0
g(s, I1−αvm(s))ds).

Take the limit to (10), as m → ∞ , we have

lim
m→∞

xm(t) = lim
m→∞

1

∑m
k=1 ak

[
x0−

m

∑
k=1

ak

∫ τk

0
vm(s)ds]+

∫ t

0
vm(s)ds. (11)

Where

lim
m→∞

vm(t) = lim
m→∞

f (t,
1

∑m
k=1 ak

[x0−
m

∑
k=1

ak

∫ τk

0
vm(θ )dθ ]

+
∫ t

0
vm(s)ds,

∫ t

0
g(s, I1−αvm(s))ds)
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Now

|akx(τk)| � |ak|‖x‖, |ak

∫ τk

0
v(s)ds| � |ak|‖v‖,

then by comparison test ∑∞
k=1 akx(τk) , ∑∞

k=1 ak
∫ τk
0 v(s)ds are convergent.

Using assumptions 1–2 and Lebesgue Dominated convergence Theorem [17],
from (11) we obtain

x(t) =
1

∑∞
k=1 ak

[
x0 −

∞

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ t

0
v(s)ds.

Where

v(t) = f (t,
1

∑∞
k=1 ak

[
x0−

∞

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ t

0
v(s)ds,

∫ t

0
g(s, I1−αv(s))ds)

The Theorem proved.

7. Continuous dependence

7.1. Continuous dependence on x0

DEFINITION 4. The solution x∈AC[0,1] of the nonlocal problem (1)-(2) depends
continuously on x0 , if

∀ε > 0, ∃ δ (ε) s.t |x0− x∗0| < δ ⇒ ||x− x∗||C < ε,

where x∗ is the solution of the nonlocal problem

dx∗

dt
= f (t,x∗(t),

∫ t

0
g(s,Dαx∗(s))ds), a.e t ∈ (0,1), (12)

with the nonlocal condition

n

∑
k=1

akx
∗(τk) = x∗0, ak � 0, τk ∈ (0,1). (13)

THEOREM 5. Let the assumptions of Theorem 2 be satisfied, then the solution of
the nonlocal problem (1)-(2) depends continuously on x0 .
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Proof. Let x,x∗ be two solutions of the nonlocal problem (1)-(2) and (12)-(13)
respectively. Then

∫ 1

0
|v(t)− v∗(t)|dt =

∫ 1

0
| f (t,A−1[x0 −

m

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ t

0
v(s)ds,

∫ t

0
g(s, I1−αv(s))ds)

− f (t,A−1[x∗0 −
m

∑
k=1

ak

∫ τk

0
v∗(s)ds]+

∫ t

0
v∗(s)ds,

∫ t

0
g(s, I1−αv∗(s))ds)|dt

� b1A
−1|x0 − x∗0|+b1

∫ 1

0
A−1

m

∑
k=1

ak

∫ τk

0
|v(s)− v∗(s)|dsdt

+b1

∫ 1

0

∫ t

0
|v(s)− v∗(s)|dsdt +b1b2

∫ 1

0

∫ t

0
I1−α |v(s)− v∗(s)|dsdt

� b1A
−1δ +b1A

−1
m

∑
k=1

ak

∫ 1

0

∫ 1

τk

|v(s)− v∗(s)|dtds

+b1

∫ 1

0

∫ 1

t
|v(s)− v∗(s)|dtds

+b1b2

∫ 1

0

∫ t

0

∫ s

0

(s−θ )−α

Γ(1−α)
|v(s)− v∗(s)|dθdsdt

� b1A
−1δ +2b1‖v− v∗‖L1 +

b1b2

Γ(2−α)
‖v− v∗‖L1 .

Hence

‖v− v∗‖L1 � b1A−1δ
1− (2b1 + b1b2

Γ(2−α) )
.

And

|x(t)− x∗(t)| = |A−1[x0−
m

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ t

0
v(s)ds

−A−1[x∗0 −
m

∑
k=1

ak

∫ τk

0
v∗(s)ds]+

∫ t

0
v∗(s)ds|

� A−1|x0− x∗0|+2‖v− v∗‖L1 .

Hence

‖x− x∗‖C � A−1δ +
2b1A−1δ

1− (2b1 + b1b2
Γ(2−α) )

= ε.

Therefor the solution of the nonlocal problem (1)-(2) depends continuously on x0 .
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7.2. Continuous dependence on ak

DEFINITION 5. The solution x∈AC[0,1] of the nonlocal problem (1)-(2) depends
continuously on ak , if

∀ε > 0, ∃ δ (ε) s.t |ak −a∗k| < δ ⇒ ||x− x∗||C < ε,

where x∗ is the solution of the nonlocal problem

dx∗

dt
= f (t,x∗(t),

∫ t

0
g(s,Dαx∗(s))ds), a.e t ∈ (0,1), (14)

with the nonlocal condition
n

∑
k=1

a∗kx
∗(τk) = x0, ak � 0, τk ∈ (0,1). (15)

THEOREM 6. Let the assumptions of Theorem 2 be satisfied, then the solution of
the nonlocal problem (1)-(2) depends continuously on ak .

Proof. Let B∗ = ∑n
k=1 a∗k �= 0 and x,x∗ be two solutions of the nonlocal problem

(1)-(2) and (14)-(15) respectively. Then

∫ 1

0
|v(t)− v∗(t)|dt =

∫ 1

0
| f (t, 1

∑m
k=1 ak

[x0−
m

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ t

0
v(s)ds,

∫ t

0
g(s, I1−αv(s))ds)

− f (t,
1

∑m
k=1 a∗k

[x0−
m

∑
k=1

a∗k
∫ τk

0
v∗(s)ds]+

∫ t

0
v∗(s)ds,

∫ t

0
g(s, I1−αv∗(s))ds)|dt

� mδ |x0|b1

A A∗ +b1

∫ 1

0
|A−1

m

∑
k=1

ak

∫ τk

0
|v(s)

−A−1∗
m

∑
k=1

a∗k
∫ τk

0
v∗(s)|dsdt +b1

∫ 1

0

∫ t

0
|v(s)− v∗(s)|dsdt

+b1b2

∫ 1

0

∫ t

0
I1−α |v(s)− v∗(s)|dsdt

� mδ |x0|b1

A A∗ +2b1A
−1lmδ +2b1‖v− v∗‖L1 +

b1b2

Γ(2−α)
‖v− v∗‖L1 .

Hence

‖v− v∗‖L1 � mδ |x0|b1A−1 A−1∗ +2b1A−1lmδ
1− (2b1 + b1b2

Γ(2−α) )
.
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And

|x(t)− x∗(t)| = |A−1[x0−
m

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ t

0
v(s)ds

−A−1[x0 −
m

∑
k=1

ak

∫ τk

0
v∗(s)ds]+

∫ t

0
v∗(s)ds|

� 2‖v− v∗‖L1 .

Hence

‖x− x∗‖C � 2mδ |x0|b1A−1 A−1∗ +4b1A−1lmδ
1− (2b1 + b1b2

Γ(2−α) )
= ε.

This mean that the solution of the nonlocal problem (1)-(2) depends continuously on
ak . The proof is completed.

7.3. Continuous dependence on the functional g

DEFINITION 6. The solution x∈AC[0,1] of the nonlocal problem (1)-(2) depends
continuously on the functional g , if

∀ε > 0, ∃ δ (ε) s.t |g−g∗| < δ ⇒ ||x− x∗||C < ε,

where x∗ is the solution of the nonlocal problem

dx∗

dt
= f (t,x∗(t),

∫ t

0
g∗(s,x∗(s))ds), a.e t ∈ (0,1), (16)

with the nonlocal condition

n

∑
k=1

akx
∗(τk) = x0, ak � 0, τk ∈ (0,1). (17)

THEOREM 7. Let the assumptions of Theorem 2 be satisfied, then the solution of
the nonlocal problem (1)-(2) depends continuously on the functional g.
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Proof. Let x,x∗ be two solutions of the nonlocal problem (1)-(2) and (16)-(17)
respectively. Then

∫ 1

0
|v(t)− v∗(t)|dt = |

∫ 1

0
| f (t,A−1[x0 −

m

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ t

0
v(s)ds,

∫ t

0
g(s, I1−αv(s))ds)

− f (t,A−1[x0−
m

∑
k=1

ak

∫ τk

0
v∗(s)ds]+

∫ t

0
v∗(s)ds,

∫ t

0
g∗(s, I1−αv∗(s))ds)|dt

� b1

∫ 1

0
A−1

m

∑
k=1

ak

∫ τk

0
|v(s)− v∗(s)|dsdt

+b1

∫ 1

0

∫ t

0
|v(s)− v∗(s)|dsdt

+b1

∫ 1

0

∫ t

0
(g(s, I1−αv(s))−g∗(s, I1−αv∗(s)))dsdt

� b1A
−1

m

∑
k=1

ak

∫ 1

0

∫ 1

τk

|v(s)− v∗(s)|dtds

+b1

∫ 1

0

∫ 1

t
|v(s)− v∗(s)|dtds

b1δ +b1b2

∫ 1

0

∫ t

0

∫ s

0

(s−θ )−α

Γ(1−α)
|v(s)− v∗(s)|dθdsdt

� b1δ +2b1‖v− v∗‖L1 +
b1b2

Γ(2−α)
‖v− v∗‖L1

Hence

‖v− v∗‖L1 � b1δ
1− (2b1 + b1b2

Γ(2−α) )
.

And

|x(t)− x∗(t)| = |A−1[x0−
m

∑
k=1

ak

∫ τk

0
v(s)ds]+

∫ t

0
v(s)ds

−A−1[x0 −
m

∑
k=1

ak

∫ τk

0
v∗(s)ds]+

∫ t

0
v∗(s)ds|

� 2‖v− v∗‖L1 .

Hence

‖x− x∗‖C � 2b1δ
1− (2b1 + b1b2

Γ(2−α) )
= ε.
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This mean that the solution of the nonlocal problem (1)-(2) depends continuously on
the functional g . The proof is completed.

8. Examples:

In this section we offer some examples to illustrate our results

EXAMPLE 1. Consider the following nonlinear integro–differential equation

dx
dt

= t3et +
ln(1+ x(t))

3+ t2
+

∫ t

0

1
9
(cos(3s+3)+ esD

1
2 x(s))dt, a.e t ∈ (0,1), (18)

with infinite point boundary condition

∞

∑
k=1

1
k3 x(

k2 +2k−1
k2 +2k

) = x0. (19)

Set

f (t,v(t),
∫ t

0
g(s, I1−αv(s))ds) = t3et

+
ln(1+ 1

∑∞
k=1

1
k3

[x0−∑∞
k=1

1
k3

∫ τk
0 v(s)ds]+

∫ t
0 v(s)ds)

3+ t2

+
∫ t

0

1
9
(cos(3s+3)+ esI

1
2 v(s))dt.

Then

| f (t,v(t),
∫ t

0
g(s, I1−αv(s))ds)| = |t3et |+ 1

3
|v(s)|

+
∫ t

0

1
3
|cos(3s+3)+ esI

1
2 v(s)|dt,

and also

|g(s, I1−αv(s))| � 1
3
|cos(3s+3)|+ 1

3
|v(s)|.

It is clear that the assumptions 1–4 of Theorem 1 are satisfied with c1(t) = t3et ∈
L1[0,1] , c2(t) = 1

2 |cos(3t + 3)| ∈ L1[0,1] , b1 = 1
3 , b2 = 1

3 , 2
3 +

1
9

Γ( 3
2 )

< 1,

and the series: ∑∞
k=1

1
k3 , is convergent. Therefore, by applying to Theorem 1, the given

nonlocal problem (18)-(19) has an absolutely continuous solution.

EXAMPLE 2. Consider the following nonlinear integro–differential equation

dx
dt

= t3 + t2 +
x(t)√
t +9

+
1
9

∫ t

0
(sin2(3s+3)

+
sD

1
2 x(s)

2(1+D
1
2 x(s))

)dt, a.e t ∈ (0,1), (20)
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with infinite point boundary condition

∞

∑
k=1

1
k5 x(

k2 +3k−1
k2 +3k

) = x0. (21)

Set

f (t,v(t),
∫ t

0
g(s, I1−αv(s))ds) = t3 + t2

+
ln(1+ 1

∑∞
k=1

1
k3

[x0−∑∞
k=1

1
k3

∫ τk
0 v(s)ds]+

∫ t
0 v(s)ds)

t +9

+
1
9

∫ t

0
(sin2(3s+3)+

sI
1
2 v(s)

2(1+ I
1
2 v(s))

)dt.

Then

| f (t,v(t),
∫ t

0
g(s, I1−αv(s))ds)| � t3 + t2 +

1
3
|v|+ 1

3

∫ t

0

1
3
|(sin2(3s+3)

+
sI

1
2 v(s)

2(1+ I
1
2 v(s))

|dt,

and also

|g(s, I
1
2 v(s))| � 1

3
|(sin2(3s+3)|+ 1

6
|v(s)|.

It is clear that the assumptions 1–4 of Theorem 1 are satisfied with c1(t) = t3 + t2 ∈
L1[0,1] , c2(t) = 1

3 |(sin2(3s+ 3)| ∈ L1[0,1] , b1 = 1
3 , b2 = 1

6 , 2
3 +

1
18

Γ( 3
2 )

< 1,

and the series: ∑∞
k=1

1
k3 , is convergent. Therefore, by applying to Theorem 1, the given

nonlocal problem (20)-(21) has an absolutely continuous solution.
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