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SERIES SOLUTION METHOD FOR CAUCHY PROBLEMS

WITH FRACTIONAL Δ–DERIVATIVE ON TIME SCALES

SVETLIN G. GEORGIEV AND İNCI M. ERHAN ∗

(Communicated by Y. Dimitrov)

Abstract. In this paper we introduce a series solution method for Cauchy problems associated
with Caputo fractional delta derivatives on time scales with delta differentiable graininess func-
tion. We also apply the method to Cauchy problems associated with dynamic equations and
present some illustrative examples.

1. Introduction

Calculus on time scales and fractional calculus are two topics which gained a great
interest in the past decades. Calculus on time scales unifies the discrete and continu-
ous cases while fractional calculus deals with differentiation and integration of frac-
tional order. These two topics have been combined recently and some studies related
with fractional calculus on time scales appeared in the literature. Among the most de-
tailed and thorough references on the subject we should mention a very recent book by
Georgiev [4].

In this paper we introduce the series solution method for a Cauchy problem with
Caputo fractional Δ-derivative on time scales with delta differentiable graininess func-
tion. After a brief introduction of fractional calculus on time scales we present the
series solution method. We also describe the series solution method for a Cauchy prob-
lem associated with dynamic equations on time scales. As an application we consider
some specific examples.

2. Basic notions of time scales and fractional calculus on time scales

In this section we briefly define some basic concepts on time scales to be used
throughout the paper. For detailed information on time scale calculus we refer the
reader to [1, 2, 3].

DEFINITION 1. A time scale is an arbitrary nonempty closed subset of the real
numbers and is usually denoted by the symbol T .
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DEFINITION 2. For a time scale T ,

1. the forward jump operator σ : T �−→ T is defined as

σ(t) = inf{s ∈ T : s > t},

2. the backward jump operator ρ : T �−→ T is defined as

ρ(t) = sup{s ∈ T : s < t},

3. the set Tκ is defined as

Tκ =

⎧⎨⎩
T\(ρ(supT),supT] if supT < ∞

T otherwise,

4. the graininess function μ : T �−→ [0,∞) is defined as

μ(t) = σ(t)− t.

We note that σ(t) � t for any t ∈ T and ρ(t) � t for any t ∈ T . Here we set

infØ = supT, supØ = infT.

DEFINITION 3. Assume that f : T �−→ R is a function and let t ∈ Tκ . We de-
fine f Δ(t) to be the number, provided it exists, as follows: for any ε > 0 there is a
neighborhood U of t , U = (t − δ ,t + δ )∩T with δ > 0, such that

| f (σ(t))− f (s)− f Δ(t)(σ(t)− s)| � ε|σ(t)− s| for all s ∈U, s �= σ(t).

We say f Δ(t) the delta or Hilger derivative of f at t .
We say that f is delta or Hilger differentiable, shortly differentiable in Tκ if

f Δ(t) exists for all t ∈ Tκ . The function f Δ : T �−→ R is said to be the delta derivative
or Hilger derivative, shortly derivative, of f in Tκ .

REMARK 1. If T = R , then the delta derivative coincides with the classical deriva-
tive.

Note that the delta derivative is well-defined. For the properties of the delta deriva-
tive we refer the reader to [1], [2] and [3].

DEFINITION 4. 1. A function f : T �−→ R is called regulated provided that
its right-sided limits exist(finite) at all right-dense points in T and its left-sided
limits exist(finite) at all left-dense points in T .
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2. A continuous function f : T �−→ R is called pre-differentiable with region of dif-
ferentiation D , provided that

(a) D ⊂ Tκ ,

(b) Tκ\D is countable and contains no right-scattered elements of T ,

(c) f is differentiable at each t ∈ D .

THEOREM 1. ([1],[2],[3]) Let t0 ∈ T , x0 ∈ R , f : Tκ �−→ R be given regulated
map. Then there exists exactly one pre-differentiable function F satisfying

FΔ(t) = f (t) for all t ∈ D, F(t0) = x0.

DEFINITION 5. Assume that f : T �−→ R is a regulated function. Any function F
by Theorem 1 is called a pre-antiderivative of f . We define the indefinite integral of a
regulated function f by ∫

f (t)Δt = F(t)+ c,

where c is an arbitrary constant and F is a pre-antiderivative of f . We define the
Cauchy integral by ∫ s

τ
f (t)Δt = F(s)−F(τ) for all τ,s ∈ T.

A function F : T �−→ R is called an antiderivative of f : T �−→ R provided

FΔ(t) = f (t) holds for all t ∈ Tκ .

For properties of the delta integral we refer the reader to [1], [2] and [3].
Let T be a time scale with forward jump operator σ , graininess function μ and

delta differential operator Δ .

DEFINITION 6. The time scale monomials hk(t,t0) , k ∈ N0 , on the time scale T

are defined as follows
h0(t,t0) = 1,

hk+1(t,t0) =
∫ t

t0
hk(τ,t0)Δτ,

for t,t0 ∈ T and k ∈ N0 .

Note that hΔ
k (t, t0) = hk−1(t,t0), t,t0 ∈ T, k ∈ N.

THEOREM 2. ([1, 3]) (Taylor’s Formula) Let n ∈ N . Suppose f is n times Δ-

differentiable on Tκn
. Let also, t0 ∈ Tκn−1

, t ∈ T. Then

f (t) =
n−1

∑
k=0

hk(t,t0) f Δk
(t0)+

∫ ρn−1(t)

t0
hn−1(t,σ(τ)) f Δn

(τ)Δτ.
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THEOREM 3. ([1, 3]) (Leibnitz Formula) Let S(n)
k be the set consisting of all pos-

sible strings of length n, containing exactly k times σ and n− k times Δ . If

f Λ exists for all Λ ∈ S(n)
k ,

then

( f g)Δn
=

n

∑
k=0

⎛⎜⎝ ∑
Λ∈S

(n)
k

f Λ

⎞⎟⎠gΔk
.

THEOREM 4. [3] For every m,n ∈ N0 we have

hn(t,t0)hm(t,t0) =
m+n

∑
l=m

⎛⎜⎝ ∑
Λl,m∈S

(l)
m

h
Λl,m
n (t0,t0)

⎞⎟⎠hl(t,t0)

for every t, t0 ∈ T .

We next recall some more notions and the definition of generalized exponential function
on time scales.

DEFINITION 7. We say that a function f : T → R is regressive provided

1+ μ(t) f (t) �= 0 for all t ∈ Tκ

holds. The set of all regressive and rd-continuous functions f : T → R is denoted by
R(T) or R .

DEFINITION 8. 1. In R , we define the “circle plus” addition ⊕ by

( f ⊕g)(t) = f (t)+g(t)+ μ(t) f (t)g(t).

2. The group (R,⊕) is called the regressive group.

3. For f ∈ R , we define

(
 f )(t) = − f (t)
1+ μ(t) f (t)

for all t ∈ Tκ .

4. In R , we define the“circle minus” subtraction 
 by

( f 
g)(t) = ( f ⊕ (
g))(t) for all t ∈ Tκ .

Note that for f ,g ∈ R , we have

f 
g =
f −g

1+ μg
.
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Finally, we recall the definition of generalized exponential function. Let h > 0. The
Hilger complex numbers are defined by

Ch =
{

z ∈ C : z �= −1
h

}
.

Let
Zh :=

{
z ∈ C : −π

h
< Im(z) � π

h

}
.

For h = 0, we set Z0 := C and C0 := C . For h > 0, we define the cylinder transfor-
mation ξh : Ch → Zh by

ξh(z) :=
1
h
Log(1+ zh),

where Log is the principal logarithm function. For h = 0, we define ξ0(z) = z for all
z ∈ C.

DEFINITION 9. If f ∈ R, then we define the generalized exponential function by

e f (t,s) = e
∫ t
s ξμ(τ)( f (τ))Δτ for s,t ∈ T.

In fact, using the definition for the cylindrical transformation, we have

e f (t,s) = e
∫ t
s

1
μ(τ) Log(1+μ(τ) f (τ))Δτ

for s,t ∈ T.

For more details and the properties of the generalized exponential function, we
refer the reader to [1, 3]. Next we recall the Laplace transform on time scales.

DEFINITION 10. [3] Let T0 be a time scale such that 0 ∈ T0 and supT0 = ∞ .
Let f : T0 → C and define the set

D( f ) = {z ∈ C : 1+ zμ(t) �= 0 for all t ∈ T0

and the improper integral
∫ ∞

0
f (y)eσ


z(y,0)Δy exists

}
,

where eσ
z(y,0) = (e
z ◦σ)(y,0) = e
z(σ(y),0) .
The Laplace transform of the function f is defined as

L ( f )(z) =
∫ ∞

0
f (y)eσ


z(y,0)Δy, (1)

for all z ∈ D( f ) .

Other concepts needed in the definition of fractional Δ-derivative are the shift of
a function and convolution of two functions on time scale.
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DEFINITION 11. [4] For a given function f : T → C the shift (delay) of f is
denoted by f̂ and defined as the solution of the shifting problem

uΔt (t,σ(s)) = −uΔs(t,s), t ∈ T, t � s � t0,
u(t,t0) = f (t), t ∈ T, t � t0.

(2)

EXAMPLE 1. [4]

1. Let f : T → C be any function where T is either R or Z . Then the shift of f is

f̂ (·)(t,s) = f (t − s+ t0), t � s � t0.

2. The shift of eλ (t,t0) , where t,t0 ∈ T and t � t0 is

̂eλ (·,t0)(t,s) = eλ (t,s), t,s ∈ T and are independent of t0.

3. Let f : [t0,∞] → C be a function of the form

f (t) =
∞

∑
k=0

akhk(t,t0),

where the coefficients ak satisfy

|ak| � MRk,

for some M,R > 0 and k ∈ N0 . Then the shift of f is in the form

f̂ (·)(t,s) =
∞

∑
k=0

akhk(t,s), t,s ∈ T, t � s � t0.

In particular, we have

ĥk(·,t0)(t,s) = hk(t,s), t,s ∈ T, t � s � t0 and k ∈ N0.

DEFINITION 12. [4] For the function f ,g : T → C , the convolution f ∗ g is de-
fined as

( f ∗ g)(t) =
∫ t

t0
f̂ (t,σ(s))g(s)Δs, t ∈ T, t � t0. (3)

The convolution is associative, that is, ( f ∗ g)∗ h = f ∗ (g ∗ h) . For a detailed overview
on Laplace transform, shifts and convolutions we refer the reader to [4].

In the following, we will suppose that T is a time scale with forward jump operator
σ , graininess function μ and delta differential operator Δ and that T has the form

T = {tn : n ∈ N0},
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where
lim
n→∞

tn = ∞,

σ(tn) = tn+1,n ∈ N0,
w = inf

n∈N0
μ(tn) > 0.

We define next the generalized Δ-power function, the Riemann-Liouville frac-
tional Δ-integral and Δ-derivative and the Caputo fractional Δ-derivative on the time
scale T in the form given above. Let α ∈ R .

DEFINITION 13. [4] The generalized Δ-power function hα(t,t0) on T is defined
as

hα(t,t0) = L −1
(

1
zα+1

)
(t), t � t0,

for all z ∈ C\{0} such that L −1 exists.
The fractional generalized Δ-power function hα(t,s) on T is defined as the shift

of hα(t, t0) , that is,

hα(t,s) = ̂hα(·,t0)(t,s), t,s ∈ T, t � s � t0.

The series solution method presented in the next section employs the following property
of the generalized Δ-power functions.

THEOREM 5. [4] Let α,β ∈ R . Then(
hα(·,t0)∗ hβ(·,t0)

)
(t) = hα+β+1(t,t0), t ∈ T.

DEFINITION 14. [4] Let α � 0 and [−α] denote the integer part of −α . For a
function f : T → R the Riemann-Liouville fractional Δ-integral of order α is defined
as

(I0
Δ,t0

f )(t) = f (t),
(Iα

Δ,t0
f )(t) = (hα−1(·,t0)∗ f )(t)

=
∫ t

t0

̂hα−1(·,t0)(t,σ(u)) f (u)Δu

=
∫ t

t0
hα−1(t,σ(u)) f (u)Δu,

(4)

for α > 0 and t � t0 .

DEFINITION 15. [4] Let α � 0, m = −[−α] and f : T → R . For s,t ∈ Tκm
,

s < t the Riemann-Liouville fractional Δ-derivative of order α is defined by

Dα
Δ,s f (t) = Dm

Δ Im−α
Δ,s f (t), t ∈ T, (5)

if it exists. For α < 0, we define

Dα
Δ,s f (t) = I−α

Δ,s f (t), t,s ∈ T, t > s.

Iα
Δ,s f (t) = D−α

Δ,s f (t), t,s ∈ Tκr
, t > s, r = [−α]+1.

(6)
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REMARK 2. If we note that the generalized monomials hα(t,t0) on the set of real
numbers R are computed as

hα(t,t0) = L −1
(

1
zα+1

)
(t) =

(t− t0)α

Γ(α)
, t � t0,

we observe that if T = R , that is, if Δ derivative is replaced by the classical deriva-
tive, the Riemann-Liouville fractional Δ-derivative defined in (5) becomes the usual
Riemann-Liouville fractional derivative.

By using these definitions, Caputo fractional Δ-derivative is defined as follows.

DEFINITION 16. [4] For a function f : T → R the Caputo fractional Δ-derivative
of order α is denoted by CDα

Δ,t0
and defined via the Riemann-Liouville fractional Δ-

derivative of order α as follows

CDα
Δ,t0

= Dα
Δ,t0

(
f (t)−

m−1

∑
k=0

hk(t,t0) f Δk
(t0)

)
, t > t0, (7)

where m = [α]+1 if α /∈ N and m = [α] if α ∈ N .

Another representation of the Caputo fractional Δ-derivative is given in the following
theorem (Theorem 7.1 in [4]).

THEOREM 6. Let α > 0 , m = [α]+1 if α /∈ N and m = α , if α ∈ N .

1. If α /∈ N then

CDα
Δ,t0

f (t) = Im−α
Δ,t0

Dm
Δ,t0

f (t), t ∈ T,t > t0.

2. If α ∈ N then
CDα

Δ,t0
f (t) = f Δm

(t), t ∈ T, t > t0.

REMARK 3. Regarding the result of the Theorem 6, if T = R , the Caputo frac-
tional Δ-derivative defined in (7) becomes the usual Caputo fractional derivative.

Now we continue with some more preliminary definitions and notations. Let T be a
time scale with a differentiable graininess function. Consider an infinite series of the
form

∞

∑
i=0

Aihi(t,t0), t,t0 ∈ T, t > t0. (8)

Define the constants Cr,k,l as

Cr,k,l = ∑
Λr,k−l∈S

(r)
k−l

h
Λr,k−l
l (t0, t0), (9)
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where r ∈ {k− l, . . . ,k} , l ∈ {0, . . . ,k} and k � r . Also, define the constants An,r as

A1,r = Ar,

An,r =
∞

∑
k=r

k

∑
l=k−r

An−1,lA1,k−lCr,k,l,
(10)

where r,k ∈N0 , k � r and n∈N,n > 1. Using these notation and the result in Theorem
4 we compute the following.(

∞

∑
i=0

Aihi(t,t0)

)2

=
∞

∑
i=0

∞

∑
j=0

AiA jhi(t,t0)h j(t,t0)

=
∞

∑
k=0

k

∑
l=0

AlAk−lhl(t,t0)hk−l(t,t0)

=
∞

∑
k=0

⎛⎜⎝ k

∑
l=0

AlAk−l

k

∑
r=k−l

⎛⎜⎝ ∑
Λr,k−l∈S

(r)
k−l

h
Λr,k−l
l (t0,t0)

⎞⎟⎠hr(t,t0)

⎞⎟⎠ .

Now, we employ the constants Cr,k,l defined in (9) and we get(
∞

∑
i=0

Aihi(t,t0)

)2

=
∞

∑
k=0

(
k

∑
l=0

AlAk−l

k

∑
r=k−l

Cr,k,lhr(t, t0)

)
=

∞

∑
k=0

k

∑
l=0

k

∑
r=k−l

AlAk−lCr,k,lhr(t,t0) =
∞

∑
r=0

∞

∑
k=r

k

∑
l=k−r

AlAk−lCr,k,lhr(t, t0)

=
∞

∑
r=0

∞

∑
k=r

k

∑
l=k−r

A1,lA1,k−lCr,k,lhr(t,t0) =
∞

∑
r=0

A2,rhr(t,t0).

In a similar way, we compute(
∞

∑
i=0

Aihi(t, t0)

)3

=

(
∞

∑
i=0

Aihi(t,t0)

)2( ∞

∑
j=0

Ajh j(t, t0)

)

=

(
∞

∑
i=0

A2,ihi(t, t0)

)(
∞

∑
j=0

A1, jh j(t,t0)

)
=

∞

∑
k=0

k

∑
l=0

k

∑
r=k−l

A2,lA1,k−lCr,k,lhr(t,t0)

=
∞

∑
r=0

∞

∑
k=r

(
k

∑
l=k−r

A2,lA1,k−lCr,k,l

)
hr(t,t0) =

∞

∑
r=0

A3,rhr(t, t0).

Generalizing this representation we end up with(
∞

∑
i=0

Aihi(t,t0)

)n

=
∞

∑
r=0

An,rhr(t,t0), (11)

for n ∈ N .
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3. The Series solution method for a Cauchy problem associate with Caputo
fractional dynamic equation

In this section we develop the series solution method for a Cauchy problem asso-
ciated with Caputo fractional dynamic equations.

Suppose that T is a time scales with forward jump operator σ , graininess function
μ and delta differential operator Δ , and that T has the form

T = {tn : n ∈ N0},

where
lim
n→∞

tn = ∞,

σ(tn) = tn+1,n ∈ N0,
w = inf

n∈N0
μ(tn) > 0.

Assume that the graininess function μ is delta differentiable. Let CDα
Δ,t0

denote

the Caputo fractional Δ-derivative. Suppose that α > 0 and that m = −[−α] . We will
consider the Cauchy problem associated with Caputo fractional Δ-derivative given as{

CDα
Δ,t0

y(t) = f (t,y(t)), t > t0,
CDk

Δ,t0
y(t) = bk, k ∈ {0, . . . ,m−1}, (12)

where f : T×R → R is a given function, bk ∈ R for k ∈ {0, . . . ,m− 1} are given
constants. The existence and uniqueness of solution of the problem (12) and its de-
pendance on the initial data has been studied in [4]. The cases of homogeneous and
nonhomogeneous constant coefficient dynamic equations with Caputo fractional delta
derivative are also discussed in the same reference [4]. In general, finding explicit solu-
tions for nonlinear fractional dynamic equations is very complicated and it depends on
the nature of the right-hand side of the considered equation. Obviously, in the classical
case many researchers use different numerical methods for the nonlinear case. To our
knowledge, there are not methods for finding the exact or approximate solution for the
considered Cauchy problem of the nonlinear Caputo fractional dynamic equations on
time scales. On the other hand, the usual fractional differential equations with Caputo
derivative are treated by numerical methods in several studies [6, 8].

We suppose that the nonlinear function f is in the form

f (t,y(t)) =

(
h−α−1(·,t0)∗

(
n

∑
p=1

ap(·)(y(·))p +a0(·)
))

(t),

where

ap(t) =
∞

∑
i=0

Ai,phi(t,t0), p ∈ {0, . . . ,n}, (13)

and the coefficients Ai,p are given real constants for i ∈ N0 , p ∈ {0, . . . ,n} .
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It is shown in [4] that the Cauchy problem (12) is equivalent to an integral equation
of the form

y(t) =
m−1

∑
j=0

h j(t,t0)b j

+
(
hα−1(·,t0)∗

(
h−α−1(·,t0)∗

(
∑n

p=1 ap(·)(y(·))p +a0(·)
)))

(t)

=
m−1

∑
j=0

h j(t,t0)b j +

(
h−1(·,t0)∗

(
n

∑
p=1

ap(·)(y(·))p +a0(·)
))

(t).

(14)

We will search a solution of the equation (14) of the form

y(t) =
∞

∑
i=0

Bihi(t,t0), (15)

where Bi , i ∈ N0 , are constants which will be determined below. Let B1,r = Br and

Bs,r =
∞

∑
k=r

k

∑
l=k−r

Bs−1,lB1,k−lCr,k,l, (16)

for r,k,s ∈ N0 , k � r , s � 2. Then, using (11), we obtain

(y(t))p =
∞

∑
r=0

Bp,rhr(t,t0), p ∈ {1, . . . ,n}. (17)

Consequently,

ap(y)(y(t))p =
∞

∑
i=0

Ai,phi(t,t0)
∞

∑
j=0

Bp, jh j(t,t0)

=
∞

∑
k=0

k

∑
l=0

k

∑
r=k−l

Al,pBp,k−lCr,k,lhr(t,t0) =
∞

∑
r=0

(
∞

∑
k=r

k

∑
l=k−r

Al,pBp,k−lCr,k,l

)
hr(t,t0),

(18)

where p ∈ {1, . . . ,n} . Let

Dr,p =
∞

∑
k=r

k

∑
l=k−r

Al,pBp,k−lCr,k,l . (19)

Then

ap(y)(y(t))p =
∞

∑
r=0

Dr,phr(t,t0), (20)

where p ∈ {1, . . . ,n} . Hence, we obtain
∞

∑
i=0

Bihi(t, t0) =
∞

∑
j=0

b jh j(t,t0)

+

(
h−1(·,t0)∗

(
n

∑
p=1

(
∞

∑
r=0

Dr,phr(·,t0)
)

+
∞

∑
r=0

A0,rhr(·,t0)
))

(t)

=
∞

∑
j=0

b jh j(t,t0)+
n

∑
p=1

∞

∑
r=0

Dr,phr(t,t0)+
∞

∑
r=0

A0,rhr(t,t0),

(21)
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and then

Bi = bi +
n

∑
p=1

Di,p +A0,i, i ∈ {0, . . . ,m−1},

Bi =
n

∑
p=1

Di,p +A0,i, i ∈ {m, . . . ,}.
(22)

Next we consider some particular examples of Cauchy problems associated with Caputo
fractional dynamic equations on time scales.

EXAMPLE 2. Consider the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

CD
11
4

Δ,0y(t) =

(
h− 15

4
(·,0)∗

((
∞

∑
i=0

1
i2 +3

hi(·,0)

)
y(·)

+

(
∞

∑
i=0

i
i2 + i+1

hi(·,0)

)
(y(·))2

))
(t), t > 0,

y(0) = 1, yΔ(0) = −1, yΔ2
(0) = 2.

(23)

Here we have α =
11
4

and m = −
[
−11

4

]
= 3. Employing the integral equation form

given in (14), we can rewrite the problem (23) as

y(t) = h0(t,0)−h1(t,0)+2h2(t,0)+
(
h 7

4
(·,0)∗ h− 15

4
(·,0)

∗
(

∞

∑
i=0

1
i2 +3

hi(·,0)

)
y(·) +

(
∞

∑
i=0

i
i2 + i+1

hi(·,0)

)
(y(·))2

)
(t)

= h0(t,0)−h1(t,0)+2h2(t,0)+

(
h−1(·,0)∗

((
∞

∑
i=0

1
i2 +3

hi(·,0)

)
y(·)

+

(
∞

∑
i=0

i
i2 + i+1

hi(·,0)

)
(y(·))2

)
(t)

= h0(t,0)−h1(t,0)+2h2(t,0)+

((
∞

∑
i=0

1
i2 +3

h−1(·,0)∗ hi(·,0)

)
y(·)

+

(
∞

∑
i=0

i
i2 + i+1

h−1(·,0)∗ hi(·,0)

)
(y(·))2

)
(t)

= h0(t,0)−h1(t,0)+2h2(t,0)+

(
∞

∑
i=0

1
i2 +3

hi(t,0)

)
y(t)

+

(
∞

∑
i=0

i
i2 + i+1

hi(t,0)

)
(y(t))2.

(24)

Assume that

y(t) =
∞

∑
r=0

Brhr(t,0), (25)
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where the coefficients Br are going to be obtained. Then, by (16) we have

(y(t))2 =
∞

∑
r=0

B2,rhr(t,0), (26)

where

B1,r = Br, B2,r =
∞

∑
k=r

k

∑
l=k−r

B1,lB1,k−lCr,k,l,

and r ∈ N0 . On the other hand,

Dr,1 =
∞

∑
k=r

k

∑
l=k−r

1
l2 +3

B1,k−lCr,k,l, Dr,2 =
∞

∑
k=r

k

∑
l=k−r

l
l2 + l +1

B2,k−lCr,k,l . (27)

Then we get (
∞

∑
i=0

1
i2 +3

hi(t,0)

)
y(t) =

∞

∑
r=0

Dr,1hr(t,0),(
∞

∑
i=0

i
i2 + i+1

hi(t,0)

)
(y(t))2 =

∞

∑
r=0

Dr,2hr(t,0).

We substitute these expressions and (25) into the equation (24) and we obtain

∞

∑
r=0

Brhr(t,0) = h0(t,0)−h1(t,0)+2h2(t,0)+
∞

∑
r=0

(Dr,1 +Dr,2)hr(t,0). (28)

From this equation we conclude

B0 = 1+D0,1 +D0,2, B1 = −1+D1,1 +D1,2, B2 = 2+D2,1 +D2,2,
Br = Dr,1 +Dr,2, r ∈ {3,4, . . .}. (29)

EXAMPLE 3. Consider the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CD
9
5
Δ,1y(t) =

(
h− 14

5
(·,1)∗

(
∞

∑
i=0

1
2+ i

hi(·,1)

+

(
∞

∑
i=0

i−1
i+4

hi(·,1)

)
y(·)

+

(
∞

∑
i=0

i+1
2i+3

hi(·,1)

)
(y(·))3

))
(t), t > 1,

y(1) = 0, yΔ(1) = 1.

(30)

Here we have α =
9
5

and m = −
[
−9

5

]
= 2. Employing the integral equation form



256 S. G. GEORGIEV AND İ. M. ERHAN

(14), we can rewrite the problem (30) as

y(t) = h1(t,1)+

(
h 4

5
(·,1)∗ h− 14

5
(·,1)∗

(
∞

∑
i=0

1
2+ i

hi(·,1)

+

(
∞

∑
i=0

i−1
i+4

hi(·,1)

)
y(·)+

(
∞

∑
i=0

i+1
2i+3

hi(·,1)

)
(y(·))3

))
(t)

= h1(t,1)+

(
h−1(·,1)∗

(
∞

∑
i=0

1
2+ i

hi(·,1)

+

(
∞

∑
i=0

i−1
i+4

hi(·,1)

)
y(·)+

(
∞

∑
i=0

i+1
2i+3

hi(·,1)

)
(y(·))3

))
(t).

Then we obtain

y(t) = h1(t,1)+

((
∞

∑
i=0

1
2+ i

h−1(·,1)∗ hi(·,1)

+

(
∞

∑
i=0

i−1
i+4

h−1(·,1)∗ hi(·,1)

)
y(·)

+

(
∞

∑
i=0

i+1
2i+3

h−1(·,1)∗ hi(·,1)

)
(y(·))3

))
(t)

= h1(t,1)+

((
∞

∑
i=0

1
2+ i

hi(t,1)

+

(
∞

∑
i=0

i−1
i+4

hi(t,1)

)
y(t)+

(
∞

∑
i=0

i+1
2i+3

hi(t,1)

)
(y(t))3

))
.

(31)

Assume that

y(t) =
∞

∑
r=0

Brhr(t,1), (32)

where the coefficients Br are going to be obtained. Then, by (16) we have

(y(t))2 =
∞

∑
r=0

B2,rhr(t,1), (y(t))3 =
∞

∑
r=0

B3,rhr(t,1), (33)

where B1,r = Br ,

B2,r =
∞

∑
k=r

k

∑
l=k−r

B1,lB1,k−lCr,k,l , B3,r =
∞

∑
k=r

k

∑
l=k−r

B2,lB1,k−lCr,k,l ,

and r ∈ N0 . Set

Dr,1 =
∞

∑
k=r

k

∑
l=k−r

l−1
l +4

B1,k−lCr,k,l, Dr,3 =
∞

∑
k=r

k

∑
l=k−r

l +1
2l +3

B3,k−lCr,k,l. (34)
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Then we get (
∞

∑
i=0

i−1
i+4

hi(t,1)

)
y(t) =

∞

∑
r=0

Dr,1hr(t,1),(
∞

∑
i=0

i+1
2i+3

hi(t,1)

)
(y(t))3 =

∞

∑
r=0

Dr,3hr(t,1).

We substitute these expressions and (32) into the equation (31) which gives

∞

∑
r=0

Brhr(t,1) = h1(t,1)+
∞

∑
r=0

(
1

2+ r
+Dr,1 +Dr,3

)
hr(t,1). (35)

From this equation we conclude

B0 =
1
2

+D0,1 +D0,3, B1 = 1+
1
3

+D1,1 +D1,3,

Br =
1

2+ r
+Dr,1 +Dr,3, r ∈ {2,3, . . .}.

(36)

4. Series solution method for Cauchy problems associated with dynamic
equations

In this section we suppose that T is a time scale with forward jump operator and
delta differential operator σ and Δ , respectively, and that the graininess function μ is
Δ-differentiable.

Consider the Cauchy problem{
yΔ(t) = f (t,y(t)), t > t0,
y(t0) = y0,

(37)

where f : T×R → R is a given function, y0 ∈ R is a given constant. Suppose that the
nonlinear function f is in the form

f (t,y(t)) =
n

∑
p=1

ap(t)(y(t))p +a0(t),

where

ap(t) =
∞

∑
i=0

Ai,phi(t,t0), p ∈ {0, . . . ,n}, (38)

and the coefficients Ai,p are given real constants for i ∈ N0 , p ∈ {0, . . . ,n} . The prob-
lem (37) is equivalent to the integral equation

y(t) = y0 +
∫ t

t0
f (u,y(u))Δu,

or,

y(t) = y0 +
∫ t

t0

(
n

∑
p=1

ap(u)(y(u))p +a0(u)

)
Δu.
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We assume that y(t) has the form (15), that is,

y(t) =
∞

∑
i=0

Bihi(t,t0).

Now, using (19) and (20), we get

∞

∑
i=0

Bihi(t, t0) = y0 +
∫ t

t0

(
n

∑
p=1

(
∞

∑
r=0

Dr,phr(u,t0)

)
+

∞

∑
r=0

A0,rhr(u,t0)

)
Δu

= y0 +
n

∑
p=1

∞

∑
r=0

Dr,phr+1(t,t0)+
∞

∑
r=0

A0,rhr+1(t,t0),
(39)

where B0 = y0 ,

Bi =
n

∑
p=1

Di−1,p +A0,i−1, i ∈ N. (40)

EXAMPLE 4. As a particular example we will apply the series solution method to
a population growth model known as the Logistic model. The Logistic model has also
been generalized in the case of fractional derivative [7, 9]. The Logistic model on an
arbitrary time scales is described by the Cauchy problem⎧⎨⎩NΔ(t) =

αN(t)
μ(t)

(
1− N(t)

K

)
, t � t0,

N(t0) = N0.
(41)

Here N(t) is the size of the population of a certain species at time t and N(t0) = N0 is
the initial size of the population. The constant α represents the proportionality constant
which is large for quickly growing species like bacteria and small for slowly growing
populations like elephants. The constant K stands for the carrying capacity of the
system, that is, the size of the population that the environment can long term sustain.

This model has been discussed and treated via the series solution method in [5]
on the time scales T = Z . We will consider this model on the more general case when
T = aZ for some positive constant a .

As noted above, the Cauchy problem (41) can be written as an integral equation of
the form

N(t) = N0 +
∫ t

t0

αN(u)
a

(
1− N(u)

K

)
Δu, t0 ∈ aZ, (42)

which is a nonlinear Volterra integral equation of the second kind. We will take the
initial time as t0 = 0 and the initial population as N0 and apply the series solution
method to solve this integral equation. Let

N(t) =
∞

∑
i=0

Bihi(t,0) =
∞

∑
i=0

B1,ihi(t,0), t ∈ aZ.
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Then,

(N(t))2 =

(
∞

∑
i=0

B1,ihi(t,0)

)(
∞

∑
j=0

B1, jh j(t,0)

)
=

∞

∑
r=0

B2,rhr(t,0), t ∈ aZ,

where

B2,r =
∞

∑
k=r

k

∑
l=k−r

B1,lB1,k−lCr,k,l ,

for r ∈ N0 . We insert these series into the equation (42) and we get

∞

∑
r=0

Brhr(t,0) = N0 +
∫ t

0

α
a

(
∞

∑
r=0

Brhr(u,0)− 1
K

∞

∑
r=0

B2,rhr(u,0)

)
Δu

= N0 +
α
a

(
∞

∑
r=0

Brhr+1(t,0)− 1
K

∞

∑
r=0

B2,rhr+1(t,0)

)
= N0 +

∞

∑
r=0

(
α
a

Br − α
aK

B2,r)hr+1(t,0), t ∈ aZ.

Therefore, we have B0 = N0 and

Br+1 =
α
a

Br − α
aK

B2,r, for all r ∈ N0. (43)

We recall that on T = aZ the forward jump operator is σ(t) = t + a . The first 5
monomials hn(t,0) , n = 0,1,2,3,4, are in the form

h0(t,0) = 1, h1(t,0) = t, h2(t,0) =
∫ t

0
xΔx =

t(t−a)
2

,

h3(t,0) =
∫ t

0

x(x−a)
2

Δx =
t(t−a)(t−2a)

6
,

h4(t,0) =
∫ t

0

x(x−a)(x−2a)
6

Δx =
t(t−a)(t−2a)(t−3a)

24
, t ∈ aZ.

To compute the first few coefficients B2,r , we consider the series expansion of N2

(N(t))2 = (B0h0(t,0)+B1h1(t,0)+B2h2(t,0)+B3h3(t,0)+ · · ·)2

= B0B0 +(B0B1 +B1B0)t +B1B1t
2 +(B0B2 +B2B0)

t(t−a)
2

+ (B1B2 +B2B1)
t2(t−a)

2
+B2B2

t2(t −a)2

4
+ · · · , t ∈ aZ.

Note that we have

t2 = ah1(t,0)+2h2(t,0),
t2(t−a)

2
= 2ah2(t,0)+3h3(t,0),

t2(t−a)2

4
= a2h2(t,0)+6ah3(t,0)+6h4(t,0), t ∈ aZ.
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As a result, we obtain

(N(t))2 =
∞

∑
n=0

B2,nhn(t,0) = B0B0h0(t,0)+ (B0B1 +B1B0 +aB1B1)h1(t,0)

+(B0B2 +B2B0 +2B1B1 +2aB1B2 +2aB2B1 +a2B2B2)h2(t,0)+ · · · , t ∈ aZ.

Then, the recurrence relation (43) yields B0 = N0 and

B1 =
α
a

B0− α
aK

B2,0 =
α
a

B0 − α
aK

B0B0,

B2 =
α
a

B1− α
aK

B2,1 =
α
a

B1 − α
aK

(B0B1 +B1B0 +aB1B1),

B3 =
α
a

B2− α
aK

B2,2

=
α
a

B2− α
aK

(B0B2 +B2B0 +2B1B1 +2aB1B2 +2aB2B1 +a2B2B2).

Then, the solution N(t) has the form

N(t) = B0 +B1t +B2
t(t−a)

2
+B3

t(t−a)(t−2a)
6

+ · · · , t ∈ aZ.

5. Conclusion

The series solution method introduced in this paper is the generalization of the se-
ries solution method of the Cauchy problems associated with ordinary differential equa-
tions. It can be easily seen that when T = R and the order α of the fractional derivative
is 1, we get the well known first order differential equation. The most difficult part is
the presence of the constants Cr,k,l which do not have a general representation and their
computation depends solely on the time scale under consideration.

An important feature of the method is that it can be extended to higher order dy-
namic equations and fractional dynamic equations of more general form.
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