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Abstract. In this paper we prove some results on the exponential stability of the trivial solution
of a system of fractional differential equations with multiple delays and tempered Riemann-
Louville fractional integrals on its right-hand side.
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[18] M. MEDVEĎ, M. POSPÍŠIL, Sufficient conditions for the asymptotic stability of nonlinear multidelay
differential equations with linear parts defined by pairwise permutable matrices, Nonlinear Analysis,
75 (2012), 3348–3363.
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