
Fractional
Differential

Calculus

Volume 9, Number 2 (2019), 263–278 doi:10.7153/fdc-2019-09-17

SUFFICIENT CONDITIONS FOR THE EXPONENTIAL

STABILITY OF NONLINEAR FRACTIONALLY

PERTURBED ODEs WITH MULTIPLE TIME DELAYS

MILAN MEDVEĎ ∗ AND EVA BRESTOVANSKÁ

(Communicated by N. Vasylyeva)

Abstract. In this paper we prove some results on the exponential stability of the trivial solution
of a system of fractional differential equations with multiple delays and tempered Riemann-
Louville fractional integrals on its right-hand side.

1. Introduction

In this paper we consider the following class of fractional differential equations
with multiple delays

ẋ(t) = A(t)x(t)+F
(
t,x(t)

)
+G(t,x(t− τ1),x(t − τ2), . . . ,x(t − τk))

+ f
(
t, I(α ,β )x(t)

)
+g

(
t, I(α ,β )[x(t − τ1)], . . . , I(α ,β )[x(t − τk)]

)
, t � 0

x(t) = Φ(t), t ∈ [−τ,0],

(1)

where x(t) ∈ RN , 0 < τ = max1�i�k τi and

I(α ,β )x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1e−β (t−s)x(s)ds (2)

is so called the Riemann-Liouville tempered, or substantial fractional integral of the
function x(t) of order α > 0 with a parameter β > 0 and the Caputo tempered, or
substantial fractional derivative, corresponding to the tempered fractional integral, is
defined as

D(α ,β )x(t) =
e−β t

Γ(1−α)

∫ t

0
(t− s)−α d(eβ sx(s))

ds
ds

=
e−β t

Γ(1−α)

∫ t

0
(t− s)−αeβ s( d

ds
+ β

)
x(s)ds, 0 < α < 1,β > 0

(3)
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(see e.g. [5], [9], [22], [31]),

I(α ,β )[x(t − τi)] =
1

Γ(α)

∫ t

0
(t − s)α−1e−β (t−s)x(s− τi)ds, i = 1,2, . . . ,k. (4)

The integral Iαx(t) = I(α ,0)x(t) is the Riemann-Liouville fractional integral of the func-
tion x(t) of order α.

We establish some sufficient conditions to guarantee the trivial solution of the
equation (1) is exponentially stable. We note that the trivial solution of the linear frac-
tional differential equation

Dαx(t) = Ax(t), x(t) ∈ R
N , α ∈ (0,1), (5)

where Dαx(t) is the Riemann-Liouville or the Caputo derivative of x(t) of the order
α ∈ (0,1) and A is a constant matrix, can be asymptotically stable, but not exponen-
tially, and solutions decay towards 0 like t−α as t → ∞. The trivial solution of this
equation is asymptotically stable if and only if |arg(λ )| > απ

2 for all eigenvalues λ of
the matrix A. In this case all components of x(t) decay towards 0 like t−α (see e.g.
[10]).

The same problem is studied in the paper [3] for nonlinear fractional systems of
equations of the following class

ẋ(t) = Ax(t)+g
(
t,x(t),RL Iα1x(t), . . . ,RL Iαmx(t)

)
, x(t) ∈ R

N (6)

and in the paper [4] for fractional differential equations of the type (6), where instead
of the Riemann-Liouville fractional integrals there are Caputo-Fabrizio fractional inte-
grals.

DEFINITION 1. We say that x(t) = xΦ(t) is a solution of the initial value problem
(1), defined on the interval [−τ,T ), where 0 < τ = max{τ1,τ2,...<τk} if it is C1−differen-
tiable on the interval (0,T ) , the fractional integrals in this equation exists, x(t) fulfils
the equality (1) for all t ∈ (0,T ) with x(t) = Φ(t) ∀t ∈ [−τ,0]. It is called maximal,
if there is no its proper continuation, i.e. there is no ε > 0, such that there exists a
solution y(t) of this problem, defined on the interval [−τk,T + ε) with y(t) = x(t) for
all t ∈ [−τ,T ). If T = ∞, this solution is called global.

DEFINITION 2. The trivial solution of the equation (1) is exponentially stable with
respect to the ball Ω(r) = {y∈ R

N : ‖y‖< r} if there are constants M > 0,η > 0, such
that for any solution x(t) = x(t,Φ) of the initial value problem (1) with the initial
function Φ with ‖Φ‖∞ = maxt∈[−τ,0)‖Φ(t)‖ < r, the following inequality holds

‖x(t,Φ)‖ � Me−ηt‖Φ‖∞, ∀t � 0. (7)

A sufficient condition under which the zero solution of the equation

RLDαx(t) = f (t,x(t)), α ∈ (0,1), x ∈ R, (8)
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is asymptotically stable, where f : R
+ ×R → R , φ : R+ → R+ are continuous func-

tions, is proved in [7] and any solution x(t) of this equation, satisfying the condi-
tion limt→0 t1−αx(t) = x0 ∈ R, is global and |x(t)| � c

t1−α for some c > 0 and for all
t ∈ (0,∞). It is assume there that the function f (t,x) satisfies the condition

| f (t,x)| � tμφ(t)e−σt |u|m for all (t,u) ∈ R
+×R, (9)

where μ � 0, m > 1, σ > 0, μ +(m−1)(1−α) > 0,α > 1
2 and

‖φ‖q =
∫ ∞

0
φ(s)qds < L :=

Γ(α)
21+m−α |b|m−1

(
2m

m−1

) 1
q
[

(σ p)λ1

Γ(λ1)(1+ λ1
λ2

)

] 1
p

, (10)

pq = p+q , q > 1
α , λ1 = 1+ p(μ − (1−α)m] , λ2 = 1+ p(α −1) .

Our conditions (H3)–(H6), concerning the nonlinearities of the system (1), also
contain the exponential functions of the form e−ωt ,ω > 0, however with ω > ρ , where
ρ > 0 is the number from the condition (H2). It seems that such conditions are neces-
sary for the exponential stability of the trivial solution of the system (1).

It is proven in the paper [23] that solutions of the equation

u′′(t)+bCDαu(t)+ cu(t) = 0, α ∈ (0,1),a > 0,b > 0 (11)

have similar asymptotic properties as the equation (8). An equation of this type is the
well-known Bagley-Torvik equation

u′′(t)+ACD3/2u(t) = au(t)+ φ(t), (12)

modeling the motion of a rigid plate immersing in a viscous liquid with the fractional
damping term ACD3/2u(t) (see [30]). A two-point boundary value problems for the
following generalized Bagley-Torvik equation

u′′(t)+ACDαu(t) = f (t,u(t),C Dβ u(t),u′(t)) (13)

is studied e. g. in [29]. We were motivated by the paper [25], where an equation of the
form

Bu′′(t)+
N

∑
k=1

Bk
CDαku(t)) = g(t,u) (14)

is studied. In particular, this equation represent a nonlinear damped pendulum with N
fractional dampers. Systems of single-mass oscillators with different fractional dam-
ping terms are also studied in the paper [26].

In the book [27] a distributed-order fractional mass-spring viscoelastic damper
system with mass m, spring constant K and assembly of viscoelastic dampers of damp-
ing coefficients ci (1 � i � n), subjected to the spring force −kx(t) and damping force
−∑n

i=1 cC
i Dαi is studied.

We study the equation (1) with the Riemann-Liouville tempered integrals because
they have better asymptotic properties than the Riemann-Liouville ones. In the proofs
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of the main result we need to estimate the integral
∫ t
0(t − s)α−1e−η(t−s)g(s)ds for a

nonnegative nondecreasing function g(t) , where α ∈ (0,1),η > 0. Obviously,∫ t

0
(t − s)α−1e−η(t−s)g(s)ds � g(t)

∫ t

0
σα−1e−ησdσ � g(t)

Γ(α)
ηα . (15)

In the paper [3] the integral
∫ t
0(t− s)α−1‖x(s)‖ds, where x(t) is a solution of the equa-

tion (6), is estimated as follows:

∫ t

0
(t− s)α−1‖x(s)‖ds �

(∫ t

0
(t− s)p(α−1)eps

) 1
p
(∫ t

0
e−qs‖x(s)‖qds

) 1
q

� Kp

(∫ t

0
e−qs‖x(s)‖qds

) 1
q

,

(16)

where q = p
p−1 , p(α −1)+1 > 0 and

Kp =
[

Γ(p(α −1)+1)
pp(α−1)+1)

] 1
p

. (17)

For the final estimate of ‖x(t)‖ some further procedures are applied in the proof of [3,
Theorem 3.2].

It seems that the Riemann-Liouville tempered fractional integral is more conve-
nient for applications to many real models and their qualitative and numerical analysis
(see e.g. [1], [5], [9], [20]). This is also the reason why we study the equation (1) with
this type of fractional integrals.

The Medina’s method [12] applied to the delay systems of differential equations is
very powerful technique because the characteristic equation of the linear parts of these
equations is not necessary to analyze. In the papers [16], [17], [18], [19] the problem of
the exponential stability of the zero solution of systems of nonlinear differential equa-
tions with multiple time delays whose linear parts are defined by pairwise permutable
matrices is studied. In this case it is not necessary to know roots of the characteristic
equations of the linear parts. Sufficient conditions for the exponential stability of the
trivial solution for a class of fractionally perturbed ordinary differential equations with-
out delays with right-hand sides involving the Riemann-Liouville tempered fractional
integrals of different orders are proved in [14] (see also [15]). We extend results on ex-
ponential stability of the trivial solution of a non-fractional system proved in the papers
[12], [13] to a class of fractional systems of differential equations, represented by the
system (1).

A system of the form (1) can be obtained from the following linear multi-order
fractional pendulum equation

u′′(t)+a(t)CD(α ,β )u(t)

+ λ1(t)CD(α ,β )[u(t− τ1)] . . .+ λm(t)CD(α ,β )[u(t− τm)]+ λu′(t)+ ω2u(t) = 0,
(18)

which can be written as a system of the form (1) with

A =
(

0 1
−ω2 −λ

)
,
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x(t) =
(

x1(t)
x2(t)

)
,

f (t, I(γ,β )x(t)) =
(

0
−a(t)[β I(γ,β )x1(t)+ I(γ,β )x2(t)]

)
,

g(t, I(γ,β )[x(t− τ1)], . . . , I(γ,β )[x(t − τm)])

=

⎛
⎝ 0

−∑m
i=1 λi(t)

[
β I(γ,β )[x1(t− τi)]+ I(γ,β )[x2(t− τi)]

]⎞
⎠ ,

where x1(t)= u(t) , x2(t)= u′(t) , α ∈ (0,1),β > 0,γ = 1−α , a(t),λi(t) i = 1,2, . . . ,m
are continuous functions on [0,∞) and λ > 0, ω > 0 are constants.

Let us note that up to now little attention has been paid to time-delayed fractionally
damped oscillators (see e. g. [21], [24]).

2. Main results

In the paper [3] a local existence result for the system (6) (Theorem 2.1) is proved
by using the Picard’s method of successive approximations. This method is not quite
standard because the mapping g on the right-hand side of this equation contains the
fractional integrals. It was applied in recently published paper [19] in the proof of a
local existence theorem (Theorem 3.1) which can be formulated also for our system (1)
as follows:

THEOREM 1. Let I = [0,T ) ⊂ R for some T > 0,D ⊂ R
N be a region, H1 ⊂ R

N

be a region containing 0 ∈ R
N ,H2 ⊂ R

kN be a region containing 0 ∈ R
kN ,F ∈ C(I ×

D,RN),G ∈C(I×Dk,RN) f ∈C(I×H1,R
N),g ∈C(I×H2,R

N) be continuous locally
Lipschitz mappings. Then for any Φ ∈ C([−τ,0],D) there exists ε > 0 such that the
initial value problem (1) has a unique solution x(t) on the interval [−τ,ε).

In the paper [19] the stability problem for an equation of the type (1) is solved,
however under the assumption that its linear part is defined by pairwise permutable ma-
trices. In this case some results from [19] (see also [18],[16], [17]) on the representation
of solutions of this equation are used. We are avoiding this assumption to obtain more
readable results and more convenient for applications.

Except this theorem we shall also need the following integral inequality, proved in
[11] for integer powers. However it is clear that this inequality holds also for arbitrary
real powers greater or qual 1. We formulate its generalization without its proof as
follows

LEMMA 1. Let c � 0 be a constant, fi(t), i = 1,2, . . . ,n be nonnegative conti-
nuous functions on the interval I = [a,b),1 = k1 < k2 � k3 � . . . � kn be real numbers
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and v(t) be a nonnegative continuously differentiable real-valued function satisfying
the inequality:

v(t) � c+
∫ t

a

n

∑
i=1

fi(s)vki(s)ds, t ∈ I = [a,b). (19)

Then

v(t) �
cexp

(∫ t
a f1(s)ds

)
[
1− (kn−1)∑n

i=2 cki−1
∫ t
a fi(s)exp

(
(kn−1)

∫ s
a f1(σ)dσ

)
ds

] 1
kn−1

, (20)

under the assumption

n

∑
i=2

cki−1
∫ t

a
fi(s)exp

(
(kn−1)

∫ s

a
f1(σ)dσ

)
ds <

1
kn −1

, ∀t ∈ I. (21)

To establish the main results we make the following assumptions:

(H1) There are positive numbers q,Θ,δ and τ � 0 such that

‖A(t)−A(τ)‖� qe−δ |t−τ||t− τ|Θ ∀t � 0, (22)

where ‖.‖ denotes a norm in R
N ;

(H2)
‖eA(τ)t‖ � Ke−ρt ∀t � 0, (23)

where K > 0,ρ > 0 are constants.

We assume that there exist constants 0 < r � ∞,1 < M1 < .. . < Mm such that
the following conditions hold:

(H3) There exist constants γ0,δ0 > ρ ,γ j > 0, j = 1,2, . . . ,m such that

‖F(t,u)‖ � γ0‖u‖e−δ0t +
m

∑
j=1

γ j‖u‖Mj , ∀t � 0 ∀u ∈ Ω(r); (24)

(H4) There exist constants ωi0 > ρ ,ηi0 > 0,ηi j > 0, i = 1,2, . . . ,k;
j = 1,2, . . . ,m such that

‖G(t,u1,u2, . . . ,uk)‖ �
k

∑
i=1

ηi0e
−ωi0t‖ui‖

+
k

∑
i=1

m

∑
j=1

ηi j‖ui‖Mj ∀t � 0,∀ui ∈ Ω(r);

(25)
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(H5) There exist constants ξ0 > 0,ξ j,μ j > ρ , j = 1,2, . . . ,m such that

‖ f (t,u)‖ � ξ0e
−μ0t‖u‖+

m

∑
j=1

ξ je
−μ jt‖u‖Mj , ∀t � 0 ∀u ∈ Ω(r); (26)

(H6) There exist constants Δi0 > 0,νi0 > ρ ,Δi j > 0,νi j > ρ , i = 1,2, . . . ,k;
j = 1,2, . . . ,m such that

‖g(t,u1,u2, . . . ,uk)‖ �
k

∑
i=1

Δi0e
−νi0t‖ui‖

+
k

∑
i=1

m

∑
j=1

Δi je
−νi jt‖ui‖Mj ∀t � 0,∀ui ∈ Ω(r),

(27)

where Ω(r) = {h ∈ R
N : ‖h‖ < r},r � ∞.

THEOREM 2. Suppose that the conditions (H1)− (H6) are satisfied. In addition,
let

D(Φ) := (km −1)e(km−1)R0
m

∑
j=1

C(Φ)k j−1Rj < 1 (28)

for any Φ with ‖Φ‖∞ = maxt∈[−τ,0] ‖Φ(t)‖ < r, where

R0 = 2Kq
Γ(Θ +1)

δ Θ+1 +
Kγ0

δ0
+K

k

∑
i=1

ηi0
eρτi

ωi0

+
Kξ0

β α(μ0 −ρ)
+K

k

∑
i=1

Δi0
eρτi

νi0 −ρ
< ∞,

Rj =
K

[Mj −1]ρ
(
γ j + kη j

)
+

Kξ j

β Mjα
+

KkΔ j

ν j −ρ
, j = 1,2, . . . ,m,

(29)

where η j = eMmρτ max1�i�k ηi j,Δ j = eMmρτ max1�i�k Δi j,ν j = min1�i�k νi j and

C(Φ) = ‖Φ‖∞K

[
1+

k

∑
i=1

(
1

ωi0 −ρ
+

1
νi0−ρ

)
+

k

∑
i=1

m

∑
j=1

‖Φ‖Mj−1
∞

β αMj (νi j −ρ)

]
. (30)

Then there is a constant M > 0 such that any solution x(t) = x(t,Φ) of the initial value
problem (1) with ‖Φ‖∞ < r, satisfies the inequality

‖x(t,Φ)‖ � Me−ρt‖Φ‖∞ ∀t � 0. (31)

Proof. Let x(t) be the maximal solution of the system (1) on an interval [0,T )
with the initial value x(0) ∈ Ω(r),0 < T � ∞. From Theorem 1 it follows that this



270 M. MEDVEĎ AND E. BRESTOVANSKÁ

solution exists. Let us rewrite this system in the form

ẋ(t) = A(τ)x(t)+ [A(t)−A(τ)]x(t)

+F
(
t,x(t)

)
+G(t,x(t− τ1),x(t − τ2), . . . ,x(t− τk))

+ f
(
t, I(α ,β x(t)

)
+g

(
t, I(α ,β )[x(t− τ1)], . . . , I(α ,β )[x(t− τk)]

)
.

(32)

For now, let us assume that r = ∞. The case r < ∞ is postponed to the end of the proof.
Then for t ∈ [0,T ) we have

x(t) = eA(τ)tx(0)+
∫ t

0
eA(τ)(t−s)[A(s)−A(τ)]x(s)ds+

∫ t

0
eA(τ)(t−s)F(s,x(s))ds

+
∫ t

0
eA(τ)(t−s)G(s,x(s− τ1),x(s− τ1), . . . ,x(s− τk))ds

+
∫ t

0
eA(τ)(t−s) f

(
s, I(α ,β )x(s)

)
ds

+
∫ t

0
eA(τ)(t−s)g

(
s, I(α ,β )[x(s− τ1)], . . . , I(α ,β )[x(s− τk)]

)
ds.

(33)

The conditions (H1)-(H6) yield

‖x(t)‖ � Ke−ρt‖Φ‖∞ +Kqe−ρt
∫ t

0
eρse−δ |s−τ||s− τ|Θ‖x(s)‖ds

+Kγ0e
−ρt

∫ t

0
e−[δ0−ρ ]s‖x(s)‖ds+Ke−ρt

m

∑
j=1

γ j

∫ t

0
eρs‖x(s)‖Mjds

+Ke−ρt
k

∑
i=1

ηi0

∫ t

0
e−[ωi0−ρ ]s‖x(s− τi)‖ds+Ke−ρt

k

∑
i=1

m

∑
j=1

ηi j

∫ t

0
eρs‖x(s− τi)‖Mjds

+Kξ0e
−ρt

∫ t

0
e−[μ0−ρ ]s‖I(α ,β )x(s)‖ds+Ke−ρt

m

∑
j=1

ξ j

∫ t

0
eρs‖I(α ,β )x(s)‖Mj ds

+Ke−ρt
k

∑
i=1

Δi0

∫ t

0
e−[νi0−ρ ]s‖I(α ,β )[x(s− τi)]‖ds

+Ke−ρt
k

∑
i=1

m

∑
j=1

Δi j

∫ t

0
e−[νi j−ρ ]s‖I(α ,β )[x(s− τi)]‖Mjds.

(34)
If u(t) = eρt‖x(t)‖, then

‖x(t)‖ = e−ρtu(t),‖x(t)‖Mj = e−Mjρt u(t)Mj ,

‖x(t− τi)‖ = eρτi e−ρt u(t− τi),‖x(t − τi)‖Mj = eMjρτi e−Mjρt u(t− τi)Mj
(35)
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and we can write the above inequality as the following inequality for u(t) :

u(t) � Ke−ρt‖Φ‖∞ +Kq
∫ t

0
e−δ |s−τ||s− τ|Θu(s)ds+Kγ0

∫ t

0
e−δ0su(s)ds

+K
m

∑
j=1

γ j

∫ t

0
e−[Mj−1]ρsu(s)Mj ds+K

k

∑
i=1

ηi0e
ρτi

∫ t

0
e−ωi0su(s− τi)ds

+K
k

∑
i=1

m

∑
j=1

ηi je
Mjρτi

∫ t

0
e−[Mj−1]ρsu(s− τi)Mj ds

+Kξ0

∫ t

0
e−[μ0−ρ ]s‖I(α ,β )x(s)‖ds+K

m

∑
j=1

ξ j

∫ t

0
eρs‖I(α ,β )x(s)‖Mj ds

+K
k

∑
i=1

Δi0

∫ t

0
e−[νi0−ρ ]s‖I(α ,β )[x(s− τi)]‖ds

+K
k

∑
i=1

m

∑
j=1

Δi j

∫ t

0
e−[νi j−ρ ]s‖I(α ,β )[x(s− τi)]‖Mjds.

(36)

Now let us estimate the integrals with delays on the intervals [−τi,0].

∫ τi

0
e−[ωi0−ρ ]s‖x(s− τi)‖ds =

∫ τi

0
e−[ωi0−ρ ]s‖Φ(s− τi)‖ds � ‖Φ‖∞

ωi0 −ρ
;

∫ τi

0
e−[νi0−ρ ]s‖I(α ,β )[x(s− τi)]‖ds

� 1
Γ(α)

∫ τi

0
e−[νi0−ρ ]s

(∫ s

0
(s−σ)α−1e−β (s−σ)‖x(σ − τi)‖dσ

)
ds

� ‖Φ‖∞

Γ(α)

(∫ ∞

0
e−[νi0−ρ ]sds

)∫ ∞

0
ηα−1e−β ηdη � ‖Φ‖∞

β α(νi0 −ρ)
;

∫ τi

0
e−[νi j−ρ ]s‖I(α ,β )[x(s− τi)]‖Mjds � ‖Φ‖Mj

∞

β αMj (νi j −ρ)
.

(37)

Let C(Φ) be given by the formula (30). Then the inequalities (36), (37) yield

u(t) � C(Φ)+Kq
∫ t

0
e−δ |s−τ||s− τ|Θu(s)ds+Kγ0

∫ t

0
e−δ0su(s)ds

+K
k

∑
i=1

ηi0e
ρτi

∫ t

τi

e−ωi0su(s− τi)ds

+K
m

∑
j=1

γ j

∫ t

0
e−[Mj−1]ρsu(s)Mj ds

+K
k

∑
i=1

m

∑
j=1

ηi je
Mjρτi

∫ t

τi

e−[Mj−1]ρsu(s− τi)Mjds (38)
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+K
ξ0

Γ(α)

∫ t

0
e−[μ0−ρ ]s

(∫ s

0
(s−σ)α−1e−β (s−σ)u(σ)dσ

)
ds

+K
m

∑
j=1

ξ j

∫ t

0
e−[μ j−ρ ]s 1

Γ(α)Mj

(∫ s

0
(s−σ)α−1e−β (s−σ)u(σ)dσ

)Mj

ds

+K
k

∑
i=1

Δi0

∫ t

τi

e−[νi0−ρ ]s 1
Γ(α)

(∫ s

0
(s−σ)α−1e−β (s−σ)u(σ)dσ

)
ds

+K
k

∑
i=1

m

∑
j=1

Δi j

∫ t

τi

e−[νi j−ρ ]s 1

Γ(α)Mj

(∫ s

0
(s−σ)α−1e−β (s−σ)u(σ − τi)dσ

)Mj

ds.

Denote by z(t) the right-hand side of this inequality. This function is nondecreasing
and hence u(s− τi) � g(s− τi) � g(s) for all s � τi and hence we have

u(t) � z(t) � C(Φ)+Kq
∫ t

0
e−δ |s−τ||s− τ|Θz(s)ds+Kγ0

∫ t

0
e−δ0sz(s)ds

+K
k

∑
i=1

ηi0e
ρτi

∫ t

τi

e−ωi0sz(s)ds+K
m

∑
j=1

γ j

∫ t

0
e−[Mj−1]ρsz(s)Mj ds

+K
k

∑
i=1

m

∑
j=1

ηi je
Mjρτi

∫ t

τi

e−[Mj−1]ρsz(s)Mj ds

+K
ξ0

Γ(α)

∫ t

0
e−[μ0−ρ ]s

(∫ s

0
(s−σ)α−1e−β (s−σ)z(σ)dσ

)
ds

+K
m

∑
j=1

ξ j

∫ t

0
e−[μ j−ρ ]s 1

Γ(α)Mj

(∫ s

0
(s−σ)α−1e−β (s−σ)z(σ)dσ

)Mj

ds

+K
k

∑
i=1

Δi0

∫ t

τi

e−[νi0−ρ ]s 1
Γ(α)

(∫ s

0
(s−σ)α−1e−β (s−σ)z(σ)dσ

)
ds

+K
k

∑
i=1

m

∑
j=1

Δi j

∫ t

τi

e−[νi j−ρ ]s 1

Γ(α)Mj

(∫ s

0
(s−σ)α−1e−β (s−σ)z(σ)dσ

)Mj

ds.

(39)
Obviously ∫ s

0
(s−σ)α−1e−β (s−σ)dσ =

∫ s

0
ηα−1e−β ηdη � Γ(α)

β α (40)

and since z(t) is nondecreasing, z(σ) � z(s) for all s � σ this yields the following
inequality:

u(t) � z(t) � C(Φ)+Kq
∫ t

0
e−δ |s−τ||s− τ|Θz(s)ds+Kγ0

∫ t

0
e−δ0sz(s)ds

+K
m

∑
j=1

γ j

∫ t

0
e−[Mj−1]ρsz(s)Mj ds+K

k

∑
i=1

ηi0e
ρτi

∫ t

0
e−ωi0sz(s)ds

+K
k

∑
i=1

m

∑
j=1

ηi je
Mjρτi

∫ t

0
e−[Mj−1]ρsz(s)Mj +

Kξ0

β α

∫ t

0
e−[μ0−ρ ]sz(s)ds (41)
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+K
m

∑
j=1

ξ j

β Mjα

∫ t

0
e−[ν j−ρ ]sz(s)Mj ds+K

k

∑
i=1

Δi0e
ρτi

∫ t

0
e−[νi0−ρ ]sz(s)ds

+K
k

∑
i=1

m

∑
j=1

Δi je
Mjρτi

∫ t

0
e−[νi j−ρ ]sz(s)Mj ds.

Let
η j = max

1�i�k
ηi je

Mjρτi ,Δ j = max
1�i�k

Δi je
Mjρτi ,ν j = min

1�i�k
νi j,

F0(t) = Kqe−δ |t−τ||t− τ|Θ +Kγ0e
−δ0t

+K
k

∑
i=1

ηi0e
ρτi e−ωi0t +

Kξ0

β α e−[μ0−ρ ]t +K
k

∑
i=1

Δi0e
ρτi e−[νi0−ρ ]t ,

Fj(t) = Kγ je
−[Mj−1]ρt +Kkη je

Mjρτi

∫ t

0
e−[Mj−1]ρt

+K
ξ j

β Mjα
e−[ν j−ρ ]t +KkΔ je

−[ν j−ρ ]t .

(42)

Then we obtain the inequality

z(t) � C(Φ)+
∫ t

0
F0(s)z(s)ds+

m

∑
j=1

∫ t

0
Fj(s)z(s)Mj ds, t ∈ [0,T ). (43)

Obviously, ∫ t

0
F0(s)ds <

∫ ∞

0
F0(s)ds � R0, (44)

where

R0 = 2Kq
Γ(Θ +1)

δ Θ+1 +
Kγ0

δ0
+K

k

∑
i=1

ηi0
eρτi

ωi0
+

Kξ0

β α(μ0 −ρ)
+K

k

∑
i=1

Δi0
eρτi

νi0 −ρ
< ∞, (45)

∫ t

0
Fj(s)ds <

∫ ∞

0
Fj(s)ds < Rj, j = 1,2, . . . ,m, (46)

where

Rj =
Kγ j

[Mj −1]ρ
+

Kkη j

[Mj −1]ρ
+

Kξ j

β Mjα
+

KkΔ j

ν j −ρ
(47)

and from Lemma 1 it follows

u(t) � z(t)

� C(Φ)exp
∫ t
0 F0(s)ds[

1− (km−1)∑m
j=1C(Φ)k j−1 ∫ t

0 Fj(s)exp

(
(km −1)

∫ s
0 F0(τ)dτ

)
ds

] 1
km−1

� M‖Φ‖∞∀t ∈ [0,T ),

(48)
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where

M = M(Φ) =
R0K[1+ ∑k

i=1

(
1

ωi0−ρ + 1
νi0−ρ

)
+ ∑k

i=1 ∑m
j=1

‖Φ‖Mj−1
∞

β αMj (νi j−ρ)
]

[
1− (km−1)exp(km −1)R0 ∑m

j=1C(Φ)k j−1Rj

] 1
km−1

< ∞, (49)

under the assumption

D(Φ) := (km −1)exp[(km −1)R0]
m

∑
j=1

C(Φ)k j−1Rj < 1, (50)

i. e. u(t) � M‖Φ‖∞. This yields the inequality

‖x(t)‖ � Me−ρt‖Φ‖∞ ∀t ∈ [0,T ). (51)

From this inequality it follows that limt→T− ‖x(t)‖ = d < ∞ and by Theorem 1 there
exists an ε > 0 such that the solution x(t) can be extended to the interval [0,T +ε) and
this is a contradiction with the maximality of the solution x(t),t ∈ [0,T ). This means
that the solution x(t) exists on [0,∞) and since the right-hand side of the inequality
(51) is independent of t, the inequality (51) holds for all t ∈ [0,∞). Finally, if r < ∞,
then using the Urysohn’s lemma [2, Lemma 10.2], the nonlinearities F,G, f ,g can be
modified by functions F̃,G̃, f̃ , g̃, equal to F,G, f ,g, respectively, equal to F,G, f ,g on
the ball Ω(r) and equal to zero outside a ball Ω(r̃) with r < r̃ < ∞ and so the assertion
of theorem follows from the previous case.

Now, we extend the results proved in [12], [13] and [14] (see also [15]). Using
the Medina’s method and the method of integral inequalities applied in the proof of
Theorem (2), we will prove the following theorem.

THEOREM 3. Suppose that the conditions (H1)−(H6) are satisfied. Let R0,Rj, j =
1,2, . . . ,m,C(Φ) be as in Theorem 2 and assume that the following conditions are sa-
tisfied:

(C1)
R0 < 1, (52)

(C2)

H(Φ) := (km −1)
m

∑
j=1

[VC(Φ)]k j−1(R̃ j) < 1, (53)

where V = (1−R0)−1, R̃ j = VRj, j = 1,2, . . . ,m, for any Φ with ‖Φ‖∞ < r.

Then there is a constant M > 0 such that any solution x(t) = x(t,Φ) of the initial value
problem (1) with ‖Φ‖∞ < r, satisfies the inequality

‖x(t,Φ)‖ � Me−ρt‖Φ‖∞ ∀t � 0. (54)
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Proof. In the proof of Theorem 2 we have proved the inequality (43) for z(t).
Since this function is nondecreasing, this inequality yields

z(t) � C(Φ)+R0z(t)+
m

∑
j=1

∫ t

0
Fj(s)z(s)k j ds, (55)

where by the assumption (C1) R0 =
∫ ∞
0 F0(s)ds < 1 and so we have the inequality

z(t) � VC(Φ)+
m

∑
j=1

∫ t

0
VFj(s)z(s)k j ds, (56)

where V = (1−R0)−1. Hence, we have obtained the integral inequality for z(t) without
linear terms in its right-hand side, where we have C̃(Φ) =VC(Φ) instead of C(Φ) and
F̃j = VFj instead of Fj. Therefore the assertion of the theorem can be proved by using
Lemma 1 in an analogous way as in the proof of Theorem 2.

3. Illustrative example

From the practical point of view it is useful to work with the logarithmic norm
μ(B), of a square N ×N matrix B = (bi j). We will use this norm in an illustrative
example given below. This norm is defined by

μ(B) = lim
ε→0+

‖I + εB‖−1
ε

, (57)

where I is the unit matrix and ‖.‖ is a norm on R
N . For example,

μ(B) = μ1(B) = max

{
b j j +

n

∑
i	= j

|bi j|
}

, (58)

with respect to the 1−norm ‖x‖ := ‖x‖1 = ∑N
i=1 |xi|,x = (x1,x2, . . . ,xN) (see [12, Lemma

5]). We will apply the following Coppel’s inequality:

‖eBt‖ � eμ(B)t , ∀t � 0. (59)

Consider the system

ẋ(t) = A(t)x(t)

+F
(
x(t)

)
+G(t,x(t− τ))+ f

(
t, I(α ,β )x(t)

)
+g

(
t, I(α ,β )[x(t − τ)]

)
, t � 0,

x(t) = Φ(t) = (Φ1(t),Φ2(t)), t ∈ [−τ,0],

(60)

where x(t) = (x1(t),x2(t))T ,

A(t) =

[
−[a1 +d1(t)] d2(t)

d1(t) −[a2 +d2(t)]

]
, (61)
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a1,a2 are positive constants and d1(t),d2(t) are continuous nonnegative and bounded
functions, satisfying the condition

|di(t)−di(τ)| � qie
−δ |t−τ|t |t− τ|Θ, i = 1,2 ∀t,s � 0, (62)

where q1 > 0,q2 > 0,Θ > 0,τ � 0 are constants. This system is a fractional version
of the system from [12, Example 9, pp. 4].

Then
‖A(t)−A(τ)‖� qe−δ |t−τ||t− τ|Θ ∀t,s � 0, (63)

where q = max{2q1,2q2}.
By [12, (44)]

μ(A(0)) = −min{a1,a2},t � 0. (64)

From the inequality (59) with B = A(0) it follows that the inequality (23) in the condi-
tion (H2) is satisfied with K = 1 and ρ := min{a1,a2}.

Let us define the nonlinearities of the system (60) as follows:

F(t,u) =
(
F1(t,u),F2(t,u)

)
= γ0u+ γ1(u2

11,u
2
12), ∀t � 0, x ∈ R

2, (65)

where γ1,γ2,δ1 are positive constants, δ0 > ρ ,u = (u11,u12),

G(t,u1) = η10e
−ω10t u1 + η11(u2

11,u
2
12), ∀t � 0,u1,u2 ∈ R

2, (66)

where u1 = (u11,u12),η11 is a positive constant,ω10 > ρ ,

f (t,u) = ξ0e
−μ0t u+ ξ1e

−μ1t(u2
11,u

2
12), ∀t � 0,u ∈ R

2 (67)

ξ0,ξ1,μ1 are positive constants, μ0 > ρ ,μ1 > ρ and u = (u11,u12),

g(t,u1) = Δ10e
−ν10t u1 + Δ11e

−ν11t(u2
11,u

2
12), (68)

where Δ10,Δ11,ν10 > ρ are positive constants, ν11 > ρ ,u1 = (u11,u12). Obviously,

‖F(t,u)‖ � γ0‖u‖+ γ1e
−δ1t‖u‖2,∀t � 0, x ∈ R

2, (69)

‖G(t,u1,u2)‖ � η10e
−ω10t‖u1‖+ η11‖u2‖2 ∀t � 0,u1,u2 ∈ R

2, (70)

‖ f (t,u)‖ � ξ0e
−μ0t‖u‖+ ξ1e

−μ1t‖u‖2 ∀u ∈ R
2, (71)

‖g(t,u1)‖ = Δ10e
−ν10t‖u1‖+ Δ11e

−ν11t u2
1∀u1,u2 ∈ R

2. (72)

We note that in all these nonlinearities m = 1,1 < M1 = 2. Since in the equation (60)
there is only one delay we have k = 1. Now let us express the formulas for R0,R1,C(Φ)
and D(Φ)as follows:

R0 = 2q
Γ(Θ +1)

δ Θ+1 +
γ0

δ0
+ η10

eρτ

ω10
+

ξ0

β α(μ0 −ρ)
+ Δ10

eρτ

ν10 −ρ
, (73)

R1 =
γ1

ρ
+

η11

ρ
+

ξ1

β 2α + Δ11
eρτ

ν10 −ρ
, (74)
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C(φ) = ‖Φ‖∞

[
1+

1
ω10−ρ

+
1

ν10−ρ
+

‖Φ‖∞

β 2α(ν11−ρ)

]
, (75)

D(Φ) = (M1 −1)e(M1−1)R0C(Φ)R1 = eR0C(Φ)R1. (76)

If D(Φ) = eR0C(Φ)R1 < 1, then by Theorem 2 ‖x(t)‖ � Me−ρt‖Φ‖∞, where

M = R0

1+ 1
ω10−ρ + 1

ν0
+ ‖Φ‖∞

β α (ν11−ρ)

1− eR0C(Φ)R1
. (77)
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VEGA-MŠ, project No. 1/0078/17.

The authors thank the anonymous reviewers for careful reading of the manuscript
and also for valuable comments which significantly improved the original manuscript.

RE F ER EN C ES

[1] B. BAEMER, M. M. MEERSCHAERT, Tempered stable Lévy motion and transient super-diffusion,
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[14] M. MEDVEĎ, E. BRESTOVANSKÁ, New conditions for the exponential stability of fractionally per-
turbed ODEs, EJQTDE, 84 (2018), 1–14.
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[26] I. SCHÄFER, S. KEMPELE, Impulse responses of fractionallz damped systems, Nonlinear Dynamics,
38 (2004), 61–68.

[27] Z. J. JIAO, Y. Q. CHEN, I. PODLUBNY, Distributed-Ordered Dynamical Systems: Stability, Simula-
tions, Applications and Perspectives, Springer, London, Heidelberg, New York, Dortrecht 2012.

[28] S. S. RAY, S. SHAO, Generalized Fractional order Differential Equations Arising in Physical Models,
CRC Press, Taylor and Francis Group, London, New York 2019.
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