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EXISTENCE OF POSITIVE SOLUTIONS FOR REGULAR
FRACTIONAL STURM-LIOUVILLE PROBLEMS

TAHEREH HAGHI, KAZEM GHANBARI* AND ANGELO B. MINGARELLI

(Communicated by M. Al-Refai)

Abstract. In this article we investigate existence and nonexistence results for some regular frac-
tional Sturm-Liouville problems. We find the eigenvalues intervals of this problem may or may
not have a positive solution. Some sufficient conditions for existence and nonexistence of posi-
tive solutions are given. Further, we study some special properties of positive solutions. We give
some examples at the end.

1. Introduction

Fractional calculus is one of the useful fields of applied mathematics which has
applications in the areas such as engineering, economics, control theory, chemistry,
biology, medicine and other fields, see [7, 15].

In [3], the existence of at least one positive solution of the following problem

8x(1) +al0)f () =0,
x(0)=0
Dy x(1) =0

was obtained under the assumption 0 < < 1,1 < o < 2 are real numbe:rs,_@(‘)’&,@(lf+
is the Riemann-Liouville fractional derivatives of order o and B respectively, f :
[0,400) — [0,4-0) is continuous. In this paper, we consider a fractional Sturm-Liouville
problem (FSLP), given by

P8 p(t)°Z2.y(t) =nh(y(t)), 0<t<1,
y(0) =0, (D
¢ (?+Y(t)‘t=1 =0,

where & : [0,4e) — [0,+e0) is continuous and p is an arbitrary positive function in
C[0,1], and % < 0 < 2. We provide sufficient conditions for the existence and nonex-
istence of positive solutions to (1) by using Guo-Krasnosel’skii fixed point theorem on
cones.
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2. Preliminaries

In this section, we present notation and some preliminary lemmas that will be used
in the proofs of the main results.

DEFINITION 1. [5] The left and the right Riemann-Liouville fractional integrals
of order & > 0, of function % : (0, +e) — R are defined as follows

I3 n(1) = 1)/5,1( M9 s e lan),

I3 () = r(ls) /tb( M) s e lab.

DEFINITION 2. For 6 € (0,1) the left and right Riemann-Liouville fractional
derivatives of order & of a function %, defined by

D0.h(t) == DI °h(t), Vi € (a,b],

DR h(t) = —DI)On(t), Vi € (a,b).

LEMMA 1. Let 0 € (0,1) the left and the right Caputo fractional derivatives of
order § are given by

Vi € (a,b], D5 h(t) := 2% [h(t) — h(a)],
Vi € [a,b), <D0 h(t):= D0 [h(t) — h(b)],

for order 6 € (0,1) and h € ACla,b], the Caputo fractional derivatives satisfy the
following relations:

‘PP h(t) = I O0Dh(t), ‘DL h(t):=—I P Dh(r),

respectively.

DEFINITION 3. Assume that E is a real Banach space and & C E be a cone and
for e € 7\ {0}, we define

E,={x€E:3A1 > 0suchthat —Ae < x < Ae},

with norm
|x|le =inf{A >0: —Ae<x < Ae}, Vx€E,. (2)

It is easy to see that E, becomes a normed linear space under the norm ||.||,. The
e-norm of the element x € E, is denoted by ||x]|. -

LEMMA 2. [2] Suppose that the cone &2 be normal. Then
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(i)E, is a Banach space with e-norm, and there exists a constant k > 0 such that
]l < Kllx[le, Vx € Ee;

(ii) #, = E. N2 is a normal solid cone of E,, and
Po={x€E,:3t=1(x) > 0suchthat x > te}.
LEMMA 3. [2] Suppose that & be a normal solid cone and
P = {x € P|xisan interior point of P}

and the operator o : P° — P° be increasing. Let there exists a constant 0 < y < 1
such that

o (1x) > tValx, Yxe P° 0<r<1. (3)

If xy is the unique solution of the equation o/x = Nx in PO, then
(DIFO<N <M then xy > Xy, ;
(ii) If 1 — no(no > 0) then |xn —xnyl| — 0 ;
(i) 1imy oo [y | = 0, Timy o [} = +oo.

3. Main results
We assume the operator
ZLsy(t) = DY p(t)° D (1),
and consider the fractional differential equation

Lsy(t) =h(y(t)),

1
p(1)
We define an operator .7 with kernel ¢

W1 = I8 —— 78 h(y(2) = Th(y(r)). @)
1
Tho) = [ () 5)

where kernel . given by

(¢ —x)‘s_l(s —x)‘s_1

| ki(t,s) = [ 00 dx, s<t
s r(8) ka(t,s) = [ v _X)‘s:(gcs)_X)é_ldX, s>t ©

see [4]. The following lemma and corollary describe the stationary functions of the
Sturm-Liouville operator .Z5 in C[0,1].
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LEMMA 4. [5] The function y(t) = C, —|—C2f0‘1 is the solution of the equa-

L
p(t)
‘P8 p(t)° D y(t) =0,

where Cy and C, are arbitrary constants and y(t) continuously differentiable in [0,1].

tion

The fractional integral operator .7, defined for a positive continuous function p, is
bounded on L?(0, 1) see ([5], page 72, Lemma 2.1).

1
LEMMA 5. [4] Let 6 € (2 1),p € C[0,1] . Then,

(i) The operator .7 on the L*(0,1)- space is a self-adjoint operator:
(ii) The problem (1) has an infinite countable set of positive, simple eigenvalues.

LEMMA 6. Let p € C[0,1] be a given function. The function J (t,s) defined by
(6) satisfies the following conditions
(R1) X (t,5) € C([0,1] x [0,1]) and J (t,5)>0 for (t,5)€(0,1)x(0,1),

(R2) max,cjo;) A (t,5) < for (t,s)€(0,1)x(0,1),

(26 - )( )(5)’
my(s
> v
(R3) mm% << %%(I,s) > 35— D123) for s€(0,1),
. _ _ 1 . 1
where y(s) = min{(1)20~1,s°~1} M = max;cjo, 1] m,m =min, 1 3 o0
Proof. Obviously from definition of % (¢,s) by (6) we conclude that
H(t,8) >0 for (t,s) € (0,1)x (0,1). By definition of k; and k>, we have
s (1 +)0—1
maxkl(t,s):max/ (t—x)° s —x)° dx<M/ )29-2)gx = M ,
1€[0,1] 1€0,1]Jo p(x) 26—1
C(t—x)° N (s—x)°" )(26-2) M
ko(t,s) = d <M Jdx =
sl = s [T [ i ot

then we have

M
H <——
max X (9 S G5 rete)’
and
S (4 _ \0—1(q__ \6—1 s 26—1
min kl(t S) — min / (t x) (5 x) dx}m/ (S )(23 2)dx ms
L3 l<i<3Jo p(x) 0 26—17

t (4 \O—1(o_ \6—1 1
min_ky(¢,s) = min / (r=x)"" (s=%) dx > m/4 (t—x)29 Dy =
0 0

ta<d Lol p(x)
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if y(s) =min{(1)?°~1,5?°~1} then

S M) gm
;2123%0 52 (26 — 1)I2(5) Y(S)Mtgl[g’;]% (,5).

The fractional integral operator .7 is bounded in L?(a,b) since for real order
0 > 0, we have the following relations

(b—a)®

1.7, +f||L2 Kl N2, %:F(SH)’

(M

which follow from Lemma 2.1 [5].

LEMMA 7. If % < 8 < 1, the operator 7 defined by (5) in L*(0,1) is a com-
pletely continuous operator.

Proof. By (7), the operator .7 is well defined as a bounded operator mapping
L?(a,b) — L*(a,b). We prove that

1 rl
/ / H(t,s)dtds < oo. (8)
0 JO

‘We have

1 r1 L gt 1
//xz(t7s)dzds:/ [/ ,%/2(t,s)ds+/ A1, s)ds]dr. ©)
0 Jo o LJo '
For the first integral of the right hand side of (9), we have
1 trs (t—x)0 " (s—x 2
2(
/‘%/ L) r4(5)/ I () d’“} as

1 s 1 s45—2
F‘f‘(/lé)/ UO (s =" zdx} ds = rf(da)/o o1

M 54671
= T5) 26— 126 —1)’

//\

1
d = < 8§ < 1. For the second integral of the right hand

1
——— an
pA(r) 2

where M = max;c|o 1]

side of (9), we have

1 1 1 (f—x)0-1
/t %2(t,s)ds= 1_‘416)[ {/0 (=) p(Ec) dx]zds

1 t t 462
S r‘f‘(la)/, UO (1 =) 2‘“} ds _rf(la)/o (2t5—1)2ds

M *92(1—1)
T9(5) 2612
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1
when 7 < 8 < 1. By applying these estimations for integrals of (9), we obtain the
following upper bound for the kernel of operator .7 :

Lo Mo 2
/()/()Ji/(t,s)dtdsgr4(6) (25_1)2< . (10)

Continuity of %" in [0,1] x [0,1] and the condition (10) implies the operator .7 , de-
fined by kernel %, is compact. Therefor it is well known that every compact operator
is completely continuous [1].

THEOREM 1. ([6]) Suppose that 2~ be a Banach space, and let & C 2 be a
cone in Z . Assume ¥ \,¥Y, are open subsets of Z~ with 0 € ¥| C Y, C ¥, and let
S: P — P be acompletely continuous operator such that, either
(1) for ye £2NadYy, we have ||Sy|| < |ly||, andfor y € P NdY,, we have ||Sy|| = ||yl
or
(2) fory e ZZNIY| we have ||Sy|| = ||y||, and for y € ZZ N IW2 we have ||Sy|| < ||y]|-
Then S has a fixed pointin 2N (W2 \ W1).

3.1. Existence of a Positive Solution
Assume that the Banach space E = CJ0,1] be endowed the max norm |y =
maxo<i<1]y(t)| - Define the cone & C E as follows
. 1
P ={yeE:y() >0, min y(1) > =] 1€ [0,1]}. (an
t<i<d 4

We introduce an operator Ay : & — E as follows

Any0) =1 [ A 065, 1€ 0,1 12)

Therefore, if u is a fixed point of the operator Ay, then u is a positive solution of
boundary value problem (1). Obviously from definition (12) we conclude that Ay (P) C
P.

We introduce the following notation:

h h
Hy = limsupﬂ7 H.. = limsup ﬂ,
yg>0+ y y—rtoo y
hy = liminf@, heo = liminf@,
y—=0t oy yote Y

M m 3
W? = m/ﬁ y(s)ds.

Ccl1 =
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THEOREM 2. If 0 < heo,Hy < +90, hooty > Hycl, heoCy # 0, then for every M sat-
isfying

h:cz << H;cl’ (3)
the problem (1) has at least one positive solution.
Proof. If n satisfies (13) and € > 0 is chosen such that
s S e (14)
then by the definition of Hy, there exist r; > 0 such that
h(y) < (Ho+¢€)y, for 0<y<ri. (15)
If y € 027 whit||y|| = r1 , then from (14) and (15), we have
4231 < s [ OGS < (o +e)res < ri =l
I2(6)26—1)Jo
Therefore, if we define the open set W) = {y € E : ||y|| < r1}, then
[Anyl <yl for ye 2NdY¥,. (16)
Suppose r3 > 0 such that
h(y) = (he—€)y for y=rs. (17)
Let |ly|| = r» = max{2ry,r3} for y € 9.7, then using (14) and (17), we see that
Jansll > Any(0) = [ (e ()
3
> 255 1) (e~ O, 70)ds > bl
Therefore, if we define
Yo={yeE:|yll <r}, (18)
we have
[Anyl = Iyl for y€ ZNa¥s. (19)

Therefore, using the Theorem_l and (16), (19) , we conclude that the problem (1) has a
positive solution y in &2 N (W, \ ¥1) with r; < ||y|| < r2. This completes the proof.
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THEOREM 3. Let 0 < ho,He < 400, hocy > Hwcy, and hocy # 0 . For every
satisfying

1 1
— , 20
h0C2 n chl ( )
the problem (1) has at least one positive solution.
Proof. If n satisfies (20) and € > 0 is such that
1 1
— <N ——. 21
(ho — €)ca " (Foo +€)c1 @b
By hg, we conclude that there exists r; > 0 such that
h(y) > (ho—€)y, for 0<y<r. (22)

For y € 077 with ||y|| = r1, similar to the second part of Theorem 2, we deduce
that

[Any[l = 1]l
Define aset ¥y as ¥y ={y € E: |ly]| <ri}, then
[Anyll Z [yl for ye &Zna¥. (23)

We can choose a constant Ry > 0 such that

h(y) < (Ho+¢€)y for y=Ry. (24)

Our proof will be divided into two Cases:
Casel. & is bounded. This implies that there exists some N > 0, such that

h(y) <N  for ye(0,400).

We define r3 = max{2r;,NNc,} and y € & with ||y|| = r3, then

1
Iansl < Frgag = ) MO
nMN

S Sravas o = NaN << |yl
If we define Pr, = {y € & : |y|| < r3}, we fined
[yl < Iyl fory € 0. (25)

Case2. /i is unbounded. We deduce that there exists some r4 > max{2r,R; } such that

h(y) <h(ra) for0<y<rs.
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If y in & with ||y|| = r4 , hence by using (21) and (24), we have

1
41 < farsig—Ty ) (B +lvlds
< Frs 5=y e+ O = nea e+ )bl <

This shows that (25) is true.

In both Case 1 and Case 2, if we define W, = {y € E : ||y|| < r» = max{rs,r1}},
we conclude that for y € 22N d¥, we have

[Any[l < [I¥ll, (26)

Hence, using the Theorem 1_ and (26) , (23) we conclude that the problem (1) has a
positive solution y € Z N (¥, \ W) with r; < ||y|| < r2. This completes the proof.

THEOREM 4. Assume that for ry >r; >0 and n > 0, we have

}" . r
max h(y) < min h(y) > —.
0<y<n T]Cl 0<y<n T]Cz

Then the problem (1) has a positive solution y € & with r1 < ||y|| <
Proof. Letusset ¥; ={y€E:|jy| <r} ,thenforyec ZNJ¥,, we have

An3] > Any () n/%ts (5))ds
> o5 e s A5

ﬁ/l Y(s) min h(y(s))ds

0<y<n

> Tlcz— =r =yl
2 n= bl

If we define W, = {y € E : ||y|| < r2} then for y € 22N JY,, we conclude that

1
41 < farg =Ty ) MO
nm !

S TE(E)(25 1) Jo o8, 00N

< = H ||
Cl—— =71 = .
s e " y

Therefore, using the Theorem 1, the problem (1) has a positive solution y in & with
r1 < ||y|| € r2 .The proof is complete.



288 T. HAGHI, K. GHANBARI AND A. B. MINGARELLI

3.2. Nonexistence of Positive Solution

Assume that the following condition holds:
(B) sup,-minyc (o, h(y) > 0.

THEOREM 5. Assume the condition (B) holds and H..,Hy < oo, then there ex-
ists a real number Mo > 0 such that for every 0 < n < ng the problem (1) has no
positive solution.

Proof. Because Hy,H. < oo, thus
b, by, <,
h(y) < l1y7 for y € [07}’1]7
h(y) < by, for y € [r,+e).

Assume that 5
l:max{ll,l27 max {M}}

r<ysrz -y
Thus
h(y) <ly, for y€|[0,+oc0).
Let w(r) is a positive solution of (1) . We will show that this leads to a contradiction

forO<n <n:= o In this case we have
c1

Apw(t) =w(t), t€][0,1].
Thus

1
Il = IAqw )] < Egiea5 = ) HOve)ds

el
ST2(8)(26 1) ’
which is a contradiction, therefore completes the proof and the problem (1) has no

positive solution.

THEOREM 6. Assume (B) holds. If ho,h. > 0, then there exists a real number

No > 0 such that for every M > g the problem (1) has no positive solution in the cone
P defined by (11).

Proof. Since hy,h. > 0, thus we conclude that

dng, o, 1, L1 <7,
h(y) > nyy, fOV ye [Ovrl}v
h(y) = nay, for y € [ry,+eo).
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Assume that

h
n:min{nhnz, min {M}}>0
riSysr -y

Hence
h(y) = ny, for y€|[0,+o).
Let w(r) be a positive solution of (1). We will show that this leads to a contradiction

1

forn >np = e Since Apyw(t) =w(r) for r € [0,1], then
2
Il = 14nw) > 5 —Tiracg) /1 s

nm

3
7
> 25y, s > Il @)

which is a contradiction, therefore completes the proof and the problem (1) has no
positive solution.
3.3. Uniqueness

THEOREM 7. Let the Banach space X = C|0,1] be endowed with the norm ||.||c
and h: X — X, satisfying the Lipschitz condition

1h(y) =h(W)| < Llly —wl, y,weX,L>0. (28)

Then the problem (1) has exactly one positive solution provided

nLm <1
I2(6)(26 — 1) ’

where M is defined in Lemma 6.

Proof. For any y(t),w(t) € X, using the assumption (28), we have
[Any(z) = Aqw(r) Tl/ K(1,5)||h(y()) = f(w(z))llds

< LnHy—wH/ K(t,s)ds
0
nLm
< —————1ly—w|.
< s
nLm

I2(6)(26 —1)
fore, the problem (1) has exactly one positive solution y(7) in C[0,1].

Thus, when < 1, the operator Ay is the contraction mapping. There-
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4. Properties of solutions

In this section, by using Lemmas 2 and 3 we got some properties of positive solu-
tions of the problem (1).

Let /i : [0,4+o0) — [0,+o0) be continuous and increasing and assume that Banach
space & = C|0, 1] be endowed with the ordering y < w if y(t) < w(¢) forall 7 € [0,1],
and the max norm

= 1)l.
ylle Jnax ()]

Define the cone & C & as follows
P ={ye&:yt) 20, 1€0,1]},

then it is easy to verify that &2 is a normal, solid cone in & = C[0, 1]. Also define &?°
as follows
PP ={ye&:yt)>0, r€[0,1]}.

Let X
o(t) = /0 A (t,5)ds, 1€[0,1]. (29)

From Lemma 6 we conclude that J# (¢,s) > 0 and J#(¢,s) is nonzero. Therefore,
e(t) >0 and e(r) is nonzero. We get e € &7\ {0}.
Assume that

X =6={ye&:31>0,s51. —1e(t) <y(r) < te(t),vr € [0,1]},
with endowed norm
[yl 2- =inf{7>0:—7e(r) < y(r) < 7e(r),vr € [0,1]}.

Let £ = 2° N . From Lemma 2, we know that 2" is a Banach space, & is a normal
solid cone in 2" and

P = {y € Z :there exists 0. > 0 such that y(t) > oe(t),Vt € [0,1]}.
Besides, there exists a constant / > 0 such that
Ivlle <IyllaVye Z.

THEOREM 8. Suppose that following conditions hold
(1) there exists a constant 0 < r < 1 such that

h(6y(t)) = 0"h(y(t)) Vre[0,1], y=0, 6 €(0,1);

(2) there exists a constant y > 0 such that h(1) < y;

(3) minc(o 1 h(e(t)) > 0, where e(t) defined by (29).

Then

(i) the problem (1) has exactly one positive solution yy in PO, forany n > 0;



EXISTENCE OF POSITIVE SOLUTIONS 291

(if) if 0 <M < M2, then yy, (t) <y, (1), Vt€[0,1] and yy, (t) # yn,(t);
(iii) if n — Mo(10 > 0) then max,c(o 1) [yy (1) — yny(1)] — 0;
(iv) if N — oo then max,cpo ) [yn (2)] — +oo; if N — 0T then

max — 0.
rel0.1] lyn (1)]
Proof. Defined the operator A as

= [[Hwspisnas, 1<)

For y > 1 , we have

1

h(1) =h(-.y) = (=) h(y),

(1) (yy) (y) )
thus

h(y) <y'h(1) <7y
Therefore

0< [ A0S < [ @sh(Ivlo)ds < Mele), ve 2. v € (0,1),

where

M = max h(|[ylls) < max h([[ylle+1) < y(lylle+1)"
1€[0,1] 1€[0,1]

Since 0 < Ay(t) < Me(t),t € [0,1], Ay € 2. Then Ay belongsto 2° NP = & . Thus
AP — P,

For y € 2°, there exists o > 0 such that y(¢) > ae(t) > 0,z € [0,1]. So we can
take 7 € (0,1) such that 6 < ¢, then we have

1 = /0 L )h(y(s))ds > /0 't s)h(aels))ds

Let m = min,c|g j{h(e(r))}. Tt is clear that m >0 and Ay(r) > m6"e(t),t € [0, 1].
Therefore, A : 20 — @NO. The increasing property of h(y(¢)) implies that the operator
A is increasing. If y € 2% and 6 € (0,1), then

A(By)(z /%ts (0y(s) /%ts 0"h(y(s))ds
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Thus, A satisfies (3). Consider the following equation

A)(1) = py(). (30)

From Lemma 3, for any u > 0, (30) has a unique solution y; in P, uy is strictly
decreasing, i.e., 0 < u; < U implies yy, > yu,, yu is continuous, i.e. y — to(o >0)
implies |[yy — Yyl — 0,1imy —co ||y || = 0,1imy, o+ [[ypul| = +oe.

1 1 1 1
Letn= H,Tlo = — 1M1 = —,N, = —. Then (30) is changed to y(r) = n(Ay)(r)

that y is the solution of t(l)le problein (1) if a121d only if y = nAy. Then

(i) the problem (1) has exactly one positive solution y, in P, forany n > 0;

(if) if 0 < My < 12, then there exists o0 > 0 such that y,, —yp, > ae(),t € [0,1] and
thus y,, <yp,,Vr €[0,1] and yy, # yp,;

(iii) if m — Mo(no > 0) then max,cig 1) |yn(¢) — yny(¢)] — 0;(iv) if N — +oo then
maX;e(o,1] ‘yn (t)| = oo, if n — 0T then max;eo, 1] Ivn ()] —0.

5. Illustrated Example

Example 5.1

Consider the fractional Sturm-Liouville problem

2 2 2 in
D3 <D}, y(1) :n(y (t)+lys(;)(3§2++ls y(1))

5(0) =0, G
D3, y(t)]i—1 = 0.

, 0<r <1,

(v* +y)(2 +siny)
H = 1 =
ere p(t) =1, h(y) 5y r1

0.2, hg=2, c; =1.636, ¢ =0.643, foco =1.286 > H..c; =0.327. Thus, by Theorem
3, the problem (31) has a positive solution for each 1 € (0.7776,3.0581).

, 0= % . By simple calculation, we get H., =

Example 5.2

Consider the boundary value problem of fractional differential equation

2 2 2 i
D} 0] () - WAL o, oy

(0) =0, 32
CDg+y(t) li=1 =0.

10y? 2+si
Here p(1) =1, h(y) = (10y +yl(1+ siny) , 0= % By calculating, we get H., = 30,
y
Hy=ho=2, heo =10, c; =1.636, ¢, =0.643, y <h <30y or y > 0.
(i) Thus, by Theorem 2, the problem (32) has a positive solution for each 1 €

(0.1555,0.3057).
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(ii) By Theorem 5, the problem (32) has no positive solution for 1 € (0,0.02037).
(iii) By Theorem 6, the problem (32) has no positive solution for 1 € (1.5552, +-c0).

Example 5.3

Consider the boundary value problem of fractional differential equation

3 3

D} ((2+1) Dy, )y(0) =n((0) + DI, 0<r<1,

¥(0) =0, (33)
2

Dy ¥(1)li=1 =0,

Where p(t) =12+ 1,h(y) = (y+ 1)%,5 = 2. Obviously, & : [0,+c0) — [0,+c0) is con-
tinuous and increasing. For 0 < 6 < 1,

h(By) = (By+1)? > (8y+0)? = 07 (y+ 1) = 67 h(y),

where r = 4. We have h(1) =2 <y and h(e(t)) = (e(t) + l)% > 0, and thus
min, (o1 h(e(t)) > 0. Thus all requirements of Theorem 8 hold. Therefore:
(i) the problem (33) has exactly one positive solution y, in PV, forany n > 0;
(if) if O <1y <My, then yy, (1) <yn, (1), V1 €[0,1] and yn, (1) # yn, (1);
(iii) if M — Mo, (10 > 0) then max,c(o 1 |yn(t) — yn, ()] — 03
(iv) if M — oo then max;c(o ] |yn (1) — 405 if N — 07 then max;eo ] [yn (1) —

1
Moreover M = max;cjo,;) ——~ = | and

p(t)
[h(y) —hW)[ = [[vy+1=Vw+1[| < |y+1-w—1]=[y—w].
So L =1, Thus, by Theorem 7 for i n

lem (33) has exactly one positive solution.

< lie n<1ir?(2)=0.4435, the prob-

w

Conclusion: In this paper the existence and nonexistence and uniqueness of positive
solutions for the fractional initial value problem (1) are proved by transforming the
problem in to an operator equation. Special properties of positive solutions are consid-
ered and under some assumption the uniqueness is obtained. A few examples are given
at the end to illustrate the results.
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