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EXISTENCE OF POSITIVE SOLUTIONS FOR REGULAR

FRACTIONAL STURM–LIOUVILLE PROBLEMS

TAHEREH HAGHI, KAZEM GHANBARI ∗ AND ANGELO B. MINGARELLI

(Communicated by M. Al-Refai)

Abstract. In this article we investigate existence and nonexistence results for some regular frac-
tional Sturm-Liouville problems. We find the eigenvalues intervals of this problem may or may
not have a positive solution. Some sufficient conditions for existence and nonexistence of posi-
tive solutions are given. Further, we study some special properties of positive solutions. We give
some examples at the end.

1. Introduction

Fractional calculus is one of the useful fields of applied mathematics which has
applications in the areas such as engineering, economics, control theory, chemistry,
biology, medicine and other fields, see [7, 15].

In [3], the existence of at least one positive solution of the following problem
⎧⎪⎨
⎪⎩

Dα
0+x(t)+a(t) f (x) = 0,

x(0) = 0

Dβ
0+x(1) = 0

was obtained under the assumption 0 � β � 1,1 < α � 2 are real numbers,Dα
0+,Dβ

0+

is the Riemann-Liouville fractional derivatives of order α and β respectively, f :
[0,+∞)→ [0,+∞) is continuous. In this paper, we consider a fractional Sturm-Liouville
problem (FSLP), given by

⎧⎪⎨
⎪⎩

cDδ
1− p(t)cDδ

0+y(t) = ηh(y(t)), 0 < t < 1,

y(0) = 0,
cDδ

0+y(t)|t=1 = 0,

(1)

where h : [0,+∞) → [0,+∞) is continuous and p is an arbitrary positive function in
C[0,1] , and 1

2 < δ < 2. We provide sufficient conditions for the existence and nonex-
istence of positive solutions to (1) by using Guo-Krasnosel’skii fixed point theorem on
cones.
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2. Preliminaries

In this section, we present notation and some preliminary lemmas that will be used
in the proofs of the main results.

DEFINITION 1. [5] The left and the right Riemann-Liouville fractional integrals
of order δ > 0, of function h : (0,+∞) → R are defined as follows

I δ
a+h(t) =

1
Γ(δ )

∫ t

a

h(s)
(t− s)1−δ ds, t ∈ [a,b],

I δ
b−h(t) =

1
Γ(δ )

∫ b

t

h(s)
(s− t)1−δ ds, t ∈ [a,b].

DEFINITION 2. For δ ∈ (0,1) the left and right Riemann-Liouville fractional
derivatives of order δ of a function h , defined by

Dδ
a+h(t) := DI 1−δ

a+ h(t), ∀t ∈ (a,b],

Dδ
b−h(t) := −DI 1−δ

b− h(t), ∀t ∈ (a,b].

LEMMA 1. Let δ ∈ (0,1) the left and the right Caputo fractional derivatives of
order δ are given by

∀t ∈ (a,b], cDδ
a+h(t) := Dδ

a+[h(t)−h(a)],

∀t ∈ [a,b), cDδ
b−h(t) := Dδ

b− [h(t)−h(b)],

for order δ ∈ (0,1) and h ∈ AC[a,b] , the Caputo fractional derivatives satisfy the
following relations:

cDδ
a+h(t) := I 1−δ

a+ Dh(t), cDδ
b−h(t) := −I 1−δ

b− Dh(t),

respectively.

DEFINITION 3. Assume that E is a real Banach space and P ⊂ E be a cone and
for e ∈ P \ {0} , we define

Ee = {x ∈ E : ∃λ > 0 such that−λe � x � λe},
with norm

‖x‖e = inf{λ > 0 : −λe � x � λe}, ∀x ∈ Ee. (2)

It is easy to see that Ee becomes a normed linear space under the norm ‖.‖e. The
e-norm of the element x ∈ Ee is denoted by ‖x‖e .

LEMMA 2. [2] Suppose that the cone P be normal. Then
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(i)Ee is a Banach space with e-norm, and there exists a constant k > 0 such that
‖x‖ � k‖x‖e,∀x ∈ Ee;

(ii)Pe = Ee ∩P is a normal solid cone of Ee , and

Pe = {x ∈ Ee : ∃τ = τ(x) > 0 such that x � τe}.

LEMMA 3. [2] Suppose that P be a normal solid cone and

P0 = {x ∈ P|x is an interior point o f P}
and the operator A : P0 → P0 be increasing. Let there exists a constant 0 < γ < 1
such that

A (tx) � tγA x, ∀x ∈ P0, 0 < t < 1. (3)

If xη is the unique solution of the equation A x = ηx in P0, then
(i) If 0 < η1 < η2 then xη1 
 xη2 ;
(ii) If η → η0(η0 > 0) then ‖xη − xη0‖→ 0 ;
(iii) limη→+∞ ‖xη‖ = 0, limη→0+ ‖xη‖ = +∞ .

3. Main results

We assume the operator

Lδ y(t) =c Dδ
1− p(t)cDδ

0+y(t),

and consider the fractional differential equation

Lδ y(t) = h(y(t)),

y(t) = I δ
0+

1
p(t)

I δ
1−h(y(t)) = T h(y(t)). (4)

We define an operator T with kernel K

T h(y(t)) =
∫ 1

0
K (t,s)h(y(s))ds, (5)

where kernel K given by

K (t,s) =
1

Γ2(δ )

⎧⎪⎪⎨
⎪⎪⎩

k1(t,s) =
∫ s
0

(t− x)δ−1(s− x)δ−1

p(x)
dx, s � t

k2(t,s) =
∫ t
0

(t − x)δ−1(s− x)δ−1

p(x)
dx, s > t

(6)

see [4]. The following lemma and corollary describe the stationary functions of the
Sturm-Liouville operator Lδ in C[0,1] .
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LEMMA 4. [5] The function y(t) = C1 +C2I
δ
0+

1
p(t)

is the solution of the equa-

tion
cDδ

1− p(t)cDδ
0+y(t) = 0,

where C1 and C2 are arbitrary constants and y(t) continuously differentiable in [0,1] .

The fractional integral operator T , defined for a positive continuous function p , is
bounded on L2(0,1) see ([5], page 72, Lemma 2.1).

LEMMA 5. [4] Let δ ∈ (
1
2
,1), p ∈C[0,1] . Then,

(i) The operator T on the L2(0,1)- space is a self-adjoint operator.
(ii) The problem (1) has an infinite countable set of positive, simple eigenvalues.

LEMMA 6. Let p ∈C[0,1] be a given function. The function K (t,s) defined by
(6) satisfies the following conditions

(R1) K (t,s) ∈C([0,1]× [0,1]) and K (t,s) > 0 for (t,s) ∈ (0,1)× (0,1) ,

(R2) maxt∈[0,1] K (t,s) � M
(2δ −1)Γ2(δ )

, for (t,s) ∈ (0,1)× (0,1) ,

(R3) min 1
4�t� 3

4
K (t,s) � mγ(s)

(2δ −1)Γ2(δ )
, for s ∈ (0,1) ,

where γ(s) = min{( 1
4)2δ−1,s2δ−1},M = maxt∈[0,1]

1
p(t)

,m = mint∈[ 1
4 , 3

4 ]
1

p(t)
.

Proof. Obviously from definition of K (t,s) by (6) we conclude that
K (t,s) > 0 f or (t,s) ∈ (0,1)× (0,1) . By definition of k1 and k2 , we have

max
t∈[0,1]

k1(t,s) = max
t∈[0,1]

∫ s

0

(t − x)δ−1(s− x)δ−1

p(x)
dx � M

∫ 1

0
(1− x)(2δ−2)dx =

M
2δ −1

,

max
t∈[0,1]

k2(t,s) = max
t∈[0,1]

∫ t

0

(t− x)δ−1(s− x)δ−1

p(x)
dx � M

∫ 1

0
(1− x)(2δ−2)dx =

M
2δ −1

,

then we have

max
t∈[0,1]

K (t,s) � M
(2δ −1)Γ2(δ )

,

and

min
1
4 �t� 3

4

k1(t,s) = min
1
4 �t� 3

4

∫ s

0

(t − x)δ−1(s− x)δ−1

p(x)
dx � m

∫ s

0
(s− x)(2δ−2)dx =

ms2δ−1

2δ −1
,

min
1
4 �t� 3

4

k2(t,s) = min
1
4�t� 3

4

∫ t

0

(t − x)δ−1(s− x)δ−1

p(x)
dx � m

∫ 1
4

0
(t− x)(2δ−2)dx =

m( 1
4)2δ−1

2δ −1
,
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if γ(s) = min{( 1
4)2δ−1,s2δ−1} then

min
1
4 �t� 3

4

K (t,s) � mγ(s)
(2δ −1)Γ2(δ )

= γ(s)
m
M

max
t∈[0,1]

K (t,s).

The fractional integral operator T is bounded in L2(a,b) since for real order
δ > 0, we have the following relations

‖I δ
a+ f‖L2 � Kδ‖ f‖L2 , Kδ =

(b−a)δ

Γ(δ +1)
, (7)

which follow from Lemma 2.1 [5].

LEMMA 7. If 1
2 < δ < 1 , the operator T defined by (5) in L2(0,1) is a com-

pletely continuous operator.

Proof. By (7), the operator T is well defined as a bounded operator mapping
L2(a,b) → L2(a,b) . We prove that

∫ 1

0

∫ 1

0
K 2(t,s)dtds < ∞. (8)

We have
∫ 1

0

∫ 1

0
K 2(t,s)dtds =

∫ 1

0

[∫ t

0
K 2(t,s)ds+

∫ 1

t
K 2(t,s)ds

]
dt. (9)

For the first integral of the right hand side of (9), we have

∫ t

0
K 2(t,s)ds =

1
Γ4(δ )

∫ t

0

[∫ s

0

(t− x)δ−1(s− x)δ−1

p(x)
dx

]2
ds

� M
Γ4(δ )

∫ t

0

[∫ s

0
(s− x)2δ−2dx

]2
ds =

M
Γ4(δ )

∫ t

0

s4δ−2

(2δ −1)2 ds

=
M

Γ4(δ )
s4δ−1

(2δ −1)2(4δ −1)
,

where M = maxt∈[0,1]
1

p2(t)
and

1
2

< δ < 1. For the second integral of the right hand

side of (9), we have

∫ 1

t
K 2(t,s)ds =

1
Γ4(δ )

∫ 1

t

[∫ t

0

(t − x)δ−1(s− x)δ−1

p(x)
dx

]2
ds

� M
Γ4(δ )

∫ 1

t

[∫ t

0
(t − x)2δ−2dx

]2
ds =

M
Γ4(δ )

∫ t

0

t4δ−2

(2δ −1)2 ds

=
M

Γ4(δ )
t4δ−2(1− t)
(2δ −1)2 ,
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when
1
2

< δ < 1. By applying these estimations for integrals of (9), we obtain the

following upper bound for the kernel of operator T :

∫ 1

0

∫ 1

0
K 2(t,s)dtds � M

Γ4(δ )
2

(2δ −1)2 < ∞. (10)

Continuity of K in [0,1]× [0,1] and the condition (10) implies the operator T , de-
fined by kernel K , is compact. Therefor it is well known that every compact operator
is completely continuous [1].

THEOREM 1. ([6]) Suppose that X be a Banach space, and let P ⊂ X be a
cone in X . Assume Ψ1,Ψ2 are open subsets of X with 0 ∈ Ψ1 ⊂ Ψ1 ⊂ Ψ2 and let
S : P → P be a completely continuous operator such that, either
(1) for y∈P∩∂Ψ1, we have ‖Sy‖� ‖y‖ , and for y∈P∩∂Ψ2, we have ‖Sy‖� ‖y‖;
or
(2) for y∈P∩∂Ψ1 we have ‖Sy‖� ‖y‖ , and for y∈P∩∂Ψ2 we have ‖Sy‖� ‖y‖.
Then S has a fixed point in P ∩ (Ψ2 \Ψ1) .

3.1. Existence of a Positive Solution

Assume that the Banach space E = C[0,1] be endowed the max norm ‖y‖ =
max0�t�1|y(t)| . Define the cone P ⊂ E as follows

P = {y ∈ E : y(t) � 0, min
1
4 <t< 3

4

y(t) � 1
4
‖y‖ t ∈ [0,1]}. (11)

We introduce an operator Aη : P → E as follows

Aηy(t) = η
∫ 1

0
K (t,s)h(y(s))ds, t ∈ [0,1]. (12)

Therefore, if u is a fixed point of the operator Aη , then u is a positive solution of
boundary value problem (1). Obviously from definition (12) we conclude that Aη(P)⊂
P .

We introduce the following notation:

H0 = limsup
y→0+

h(y)
y

, H∞ = limsup
y→+∞

h(y)
y

,

h0 = liminf
y→0+

h(y)
y

, h∞ = liminf
y→+∞

h(y)
y

,

c1 =
M

Γ2(δ )(2δ −1)
, c2 =

m
4(2δ −1)Γ2(δ )

∫ 3
4

1
4

γ(s)ds.
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THEOREM 2. If 0 � h∞,H0 � +∞, h∞c2 > H0c1,h∞c2 �= 0 , then for every η sat-
isfying

1
h∞c2

< η <
1

H0c1
, (13)

the problem (1) has at least one positive solution.

Proof. If η satisfies (13) and ε > 0 is chosen such that

1
(h∞ − ε)c2

� η � 1
(H0 + ε)c1

, (14)

then by the definition of H0 , there exist r1 > 0 such that

h(y) � (H0 + ε)y, f or 0 < y � r1. (15)

If y ∈ ∂P whit‖y‖ = r1 , then from (14) and (15), we have

‖Aηy‖ � Mη
Γ2(δ )(2δ −1)

∫ 1

0
h(y(s))ds � η(H0 + ε)r1c1 � r1 = ‖y‖.

Therefore, if we define the open set Ψ1 = {y ∈ E : ‖y‖ < r1} , then

‖Aηy‖ � ‖y‖ f or y ∈ P ∩∂Ψ1. (16)

Suppose r3 > 0 such that

h(y) � (h∞ − ε)y f or y � r3. (17)

Let ‖y‖ = r2 = max{2r1,r3} for y ∈ ∂P , then using (14) and (17), we see that

‖Aηy‖ � Aηy(t) = η
∫ 1

0
K (x,s)h(y(s))ds

� mη
4(2δ −1)Γ2(δ )

(h∞ − ε)‖y‖
∫ 3

4

1
4

γ(s)ds � ‖y‖.

Therefore, if we define

Ψ2 = {y ∈ E : ‖y‖ < r2}, (18)

we have

‖Aηy‖ � ‖y‖ f or y ∈ P ∩∂Ψ2. (19)

Therefore, using the Theorem 1 and (16), (19) , we conclude that the problem (1) has a
positive solution y in P ∩ (Ψ2 \Ψ1) with r1 � ‖y‖ � r2 . This completes the proof.
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THEOREM 3. Let 0 � h0,H∞ � +∞, h0c2 > H∞c1, and h0c2 �= 0 . For every η
satisfying

1
h0c2

< η <
1

H∞c1
, (20)

the problem (1) has at least one positive solution.

Proof. If η satisfies (20) and ε > 0 is such that

1
(h0− ε)c2

� η � 1
(F∞ + ε)c1

. (21)

By h0 , we conclude that there exists r1 > 0 such that

h(y) � (h0− ε)y, f or 0 < y � r1. (22)

For y ∈ ∂P with ‖y‖ = r1 , similar to the second part of Theorem 2, we deduce
that

‖Aηy‖ � ‖y‖.
Define a set Ψ1 as Ψ1 = {y ∈ E : ‖y‖ < r1} , then

‖Aηy‖ � ‖y‖ f or y ∈ P ∩∂Ψ1. (23)

We can choose a constant R1 > 0 such that

h(y) � (H∞ + ε)y f or y � R1. (24)

Our proof will be divided into two Cases:
Case1. h is bounded. This implies that there exists some N > 0, such that

h(y) � N for y ∈ (0,+∞).

We define r3 = max{2r1,ηNc1} and y ∈ P with ‖y‖ = r3 , then

‖Aηy‖ � Mη
Γ2(δ )(2δ −1)

∫ 1

0
h(y(s))ds

� ηMN
Γ2(δ )(2δ −1)

= ηc1N � r3 � ‖y‖.

If we define Pr3 = {y ∈ P : ‖y‖ � r3} , we fined

‖Aηy‖ � ‖y‖ f or y ∈ ∂Pr3 . (25)

Case2. h is unbounded. We deduce that there exists some r4 > max{2r1,R1} such that

h(y) � h(r4) f or 0 < y � r4.
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If y in P with ‖y‖ = r4 , hence by using (21) and (24), we have

‖Aηy‖ � ηM
Γ2(δ )(2δ −1)

∫ 1

0
(H∞ + ε)‖y‖ds

� ηM
Γ2(δ )(2δ −1)

(H∞ + ε)‖y‖ = ηc1(H∞ + ε)‖y‖ � ‖y‖.

This shows that (25) is true.
In both Case 1 and Case 2, if we define Ψ2 = {y ∈ E : ‖y‖ < r2 = max{r3,r4}} ,

we conclude that for y ∈ P ∩∂Ψ2 we have

‖Aηy‖ � ‖y‖, (26)

Hence, using the Theorem 1 and (26) , (23) we conclude that the problem (1) has a
positive solution y ∈ P ∩ (Ψ2 \Ψ1) with r1 � ‖y‖ � r2 . This completes the proof.

THEOREM 4. Assume that for r2 > r1 > 0 and η > 0, we have

max
0�y�r2

h(y) � r2

ηc1
, min

0�y�r1
h(y) � r1

ηc2
.

Then the problem (1) has a positive solution y ∈ P with r1 � ‖y‖ � r2 .

Proof. Let us set Ψ1 = {y ∈ E : ‖y‖ < r1} , then for y ∈ P ∩∂Ψ1 , we have

‖Aηy‖ � Aηy(t) = η
∫ 1

0
K (t,s)h(y(s))ds

� ηm
(2δ −1)Γ2(δ )

∫ 3
4

1
4

γ(s)h(y(s))ds

� ηm
4(2δ −1)Γ2(δ )

∫ 3
4

1
4

γ(s) min
0�y�r1

h(y(s))ds

� ηc2
r1

ηc2
= r1 = ‖y‖.

If we define Ψ2 = {y ∈ E : ‖y‖ < r2} then for y ∈ P ∩∂Ψ2 , we conclude that

‖Aηy‖ � ηM
Γ2(δ )(2δ −1)

∫ 1

0
h(y(s))ds

� ηM
Γ2(δ )(2δ −1)

∫ 1

0
max

0�y�r2
h(y(s))ds

� ηc1
r2

ηc1
= r2 = ‖y‖.

Therefore, using the Theorem 1, the problem (1) has a positive solution y in P with
r1 � ‖y‖ � r2 .The proof is complete.
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3.2. Nonexistence of Positive Solution

Assume that the following condition holds:
(B) supr>0 miny∈(0,r) h(y) > 0.

THEOREM 5. Assume the condition (B) holds and H∞,H0 < +∞ , then there ex-
ists a real number η0 > 0 such that for every 0 < η < η0 the problem (1) has no
positive solution.

Proof. Because H0,H∞ < +∞ , thus

∃ l1, l2, r1, r2 : r1 < r2,

h(y) � l1y, f or y ∈ [0,r1],
h(y) � l2y, f or y ∈ [r2,+∞).

Assume that

l = max
{

l1, l2, max
r1�y�r2

{h(y)
y

}
}
.

Thus

h(y) � ly, f or y ∈ [0,+∞).

Let w(t) is a positive solution of (1) . We will show that this leads to a contradiction

for 0 < η < η0 :=
1

lc1
. In this case we have

Aηw(t) = w(t), t ∈ [0,1].

Thus

‖w‖ = ‖Aηw(t)‖ � ηM
Γ2(δ )(2δ −1)

∫ 1

0
h(w(s))ds

� ηMl‖w‖
Γ2(δ )(2δ −1)

< ‖w‖,

which is a contradiction, therefore completes the proof and the problem (1) has no
positive solution.

THEOREM 6. Assume (B) holds. If h0,h∞ > 0 , then there exists a real number
η0 > 0 such that for every η > η0 the problem (1) has no positive solution in the cone
P defined by (11).

Proof. Since h0,h∞ > 0, thus we conclude that

∃ n1, n2, r1, r2 : r1 < r2,

h(y) � n1y, f or y ∈ [0,r1],
h(y) � n2y, f or y ∈ [r2,+∞).
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Assume that

n = min
{

n1,n2, min
r1�y�r2

{h(y)
y

}
}

> 0.

Hence

h(y) � ny, f or y ∈ [0,+∞).

Let w(t) be a positive solution of (1). We will show that this leads to a contradiction

for η > η0 :=
1

nc2
. Since Aηw(t) = w(t) for t ∈ [0,1] , then

‖w‖ = ‖Aηw(t)‖ � ηm
(2δ −1)Γ2(δ )

∫ 3
4

1
4

γ(s)h(w(s))ds

� ηm
4(2δ −1)Γ2(δ )

n‖w‖
∫ 3

4

1
4

γ(s)ds > ‖w‖, (27)

which is a contradiction, therefore completes the proof and the problem (1) has no
positive solution.

3.3. Uniqueness

THEOREM 7. Let the Banach space X = C[0,1] be endowed with the norm ‖.‖∞
and h : X → X , satisfying the Lipschitz condition

‖h(y)−h(w)‖� L‖y−w‖, y,w ∈ X ,L > 0. (28)

Then the problem (1) has exactly one positive solution provided

ηLM
Γ2(δ )(2δ −1)

< 1,

where M is defined in Lemma 6.

Proof. For any y(t),w(t) ∈ X , using the assumption (28), we have

‖Aηy(t)−Aηw(t)‖ � η
∫ 1

0
K(t,s)‖h(y(t))− f (w(t))‖ds

� Lη‖y−w‖
∫ 1

0
K(t,s)ds

� ηLM
Γ2(δ )(2δ −1)

‖y−w‖.

Thus, when
ηLM

Γ2(δ )(2δ −1)
< 1 , the operator Aη is the contraction mapping. There-

fore, the problem (1) has exactly one positive solution y(t) in C[0,1] .
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4. Properties of solutions

In this section, by using Lemmas 2 and 3 we got some properties of positive solu-
tions of the problem (1).

Let h : [0,+∞) → [0,+∞) be continuous and increasing and assume that Banach
space E = C[0,1] be endowed with the ordering y � w if y(t) � w(t) for all t ∈ [0,1] ,
and the max norm

‖y‖E = max
0�t�1

|y(t)|.

Define the cone P ⊂ E as follows

P = {y ∈ E : y(t) � 0, t ∈ [0,1]},
then it is easy to verify that P is a normal, solid cone in E = C[0,1]. Also define P0

as follows
P0 = {y ∈ E : y(t) > 0, t ∈ [0,1]}.

Let

e(t) =
∫ 1

0
K (t,s)ds, t ∈ [0,1]. (29)

From Lemma 6 we conclude that K (t,s) � 0 and K (t,s) is nonzero. Therefore,
e(t) � 0 and e(t) is nonzero. We get e ∈ P \ {0} .

Assume that

X = Ee =
{
y ∈ E : ∃τ > 0,s.t. − τe(t) � y(t) � τe(t),∀t ∈ [0,1]

}
,

with endowed norm

‖y‖X = inf
{

τ > 0 : −τe(t) � y(t) � τe(t),∀t ∈ [0,1]
}
.

Let P̃ = X ∩P. From Lemma 2, we know that X is a Banach space, P̃ is a normal
solid cone in X and

P̃0 =
{
y ∈ X : there exists α > 0 such that y(t) � αe(t),∀t ∈ [0,1]

}
.

Besides, there exists a constant l > 0 such that

‖y‖E � l‖y‖X ,∀y ∈ X .

THEOREM 8. Suppose that following conditions hold
(1) there exists a constant 0 < r < 1 such that

h(θy(t)) � θ rh(y(t)) ∀t ∈ [0,1], y � 0, θ ∈ (0,1);

(2) there exists a constant γ > 0 such that h(1) � γ;
(3) mint∈[0,1] h(e(t)) > 0, where e(t) defined by (29).
Then
(i) the problem (1) has exactly one positive solution yη in P̃0 , for any η > 0 ;
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(ii) if 0 < η1 < η2, then yη1(t) � yη2(t) , ∀t ∈ [0,1] and yη1(t) �= yη2(t);
(iii) if η → η0(η0 > 0) then maxt∈[0,1] |yη(t)− yη0(t)| → 0 ;
(iv) if η → +∞ then maxt∈[0,1] |yη(t)| → +∞; if η → 0+ then

max
t∈[0,1]

|yη(t)| → 0.

Proof. Defined the operator A as

(Ay)(t) =
∫ 1

0
K (t,s)h(y(s))ds, t ∈ [0,1].

For y > 1 , we have

h(1) = h(
1
y
.y) � (

1
y
)rh(y),

thus
h(y) � yrh(1) � γyr.

Therefore

0 �
∫ 1

0
K (t,s)h(y(s))ds �

∫ 1

0
K (t,s)h(‖y‖E )ds � Me(t), y ∈ P, ∀t ∈ [0,1],

where
M = max

t∈[0,1]
h(‖y‖E ) � max

t∈[0,1]
h(‖y‖E +1) � γ(‖y‖E +1)r.

Since 0 � Ay(t) � Me(t),t ∈ [0,1], Ay ∈X . Then Ay belongs to X ∩P = P̃ . Thus
A : P̃ → P̃ .

For y ∈ P̃0 , there exists α > 0 such that y(t) � αe(t) � 0,t ∈ [0,1] . So we can
take τ ∈ (0,1) such that θ < α , then we have

(Ay)(t) =
∫ 1

0
K (t,s)h(y(s))ds �

∫ 1

0
K (t,s)h(αe(s))ds

� θ r
∫ 1

0
K (t,s)h(e(s))ds.

Let m = mint∈[0,1]{h(e(t))} . It is clear that m > 0 and Ay(t) � mθ re(t),t ∈ [0,1] .
Therefore, A : P̃0 → P̃0 . The increasing property of h(y(t)) implies that the operator
A is increasing. If y ∈ P̃0 and θ ∈ (0,1) , then

A(θy)(t) =
∫ 1

0
K (t,s)h(θy(s))ds �

∫ 1

0
K (t,s)θ rh(y(s))ds

� θ r
∫ 1

0
K (t,s)h(y(s))ds = θ r(Ay)(t).
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Thus, A satisfies (3). Consider the following equation

A(y)(t) = μy(t). (30)

From Lemma 3, for any μ > 0, (30) has a unique solution yμ in P̃0 , uμ is strictly
decreasing, i.e., 0 < μ1 < μ2 implies yμ1 
 yμ2 , yμ is continuous, i.e. μ → μ0(μ0 > 0)
implies ‖yμ − yμ0‖→ 0, limμ→∞ ‖yμ‖ = 0, limμ→0+ ‖yμ‖ = +∞ .

Let η =
1
μ

,η0 =
1
μ0

,η1 =
1
μ1

,η2 =
1
μ2

. Then (30) is changed to y(t) = η(Ay)(t)

that y is the solution of the problem (1) if and only if y = ηAy . Then
(i) the problem (1) has exactly one positive solution yη in P̃0 , for any η > 0;
(ii) if 0 < η1 < η2 , then there exists α > 0 such that yη1 − yη2 � αe(t), t ∈ [0,1] and
thus yη1 � yη2 ,∀t ∈ [0,1] and yη1 �= yη2 ;
(iii) if η → η0(η0 > 0) then maxt∈[0,1] |yη(t)− yη0(t)| → 0;(iv) if η → +∞ then
maxt∈[0,1] |yη (t)| → +∞, if η → 0+ then maxt∈[0,1] |yη(t)| → 0.

5. Illustrated Example

Example 5.1

Consider the fractional Sturm-Liouville problem
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cD
2
3
1−

cD
2
3
0+y(t) = η

(y2(t)+ y(t))(2+ siny(t))
15y(t)+1

, 0 < t < 1,

y(0) = 0,

cD
2
3
0+y(t)|t=1 = 0.

(31)

Here p(t) = 1, h(y) =
(y2 + y)(2+ siny)

15y+1
, δ = 2

3 . By simple calculation, we get H∞ =

0.2, h0 = 2, c1 = 1.636, c2 = 0.643, f0c2 = 1.286> H∞c1 = 0.327. Thus, by Theorem
3, the problem (31) has a positive solution for each η ∈ (0.7776,3.0581).

Example 5.2

Consider the boundary value problem of fractional differential equation
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cD
2
3
1−

cD
2
3
0+y(t) = η

(10y2(t)+ y(t))(2+ siny(t))
y(t)+1

, 0 < t < 1,

y(0) = 0,

cD
2
3
0+y(t)|t=1 = 0.

(32)

Here p(t) = 1, h(y) =
(10y2 + y)(2+ siny)

y+1
, δ = 2

3 . By calculating, we get H∞ = 30,

H0 = h0 = 2, h∞ = 10, c1 = 1.636, c2 = 0.643, y < h < 30y or y > 0.
(i) Thus, by Theorem 2, the problem (32) has a positive solution for each η ∈

(0.1555,0.3057) .
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(ii) By Theorem 5, the problem (32) has no positive solution for η ∈ (0,0.02037).
(iii) By Theorem6, the problem (32) has no positive solution for η ∈ (1.5552,+∞).

Example 5.3

Consider the boundary value problem of fractional differential equation

⎧⎪⎪⎨
⎪⎪⎩

cD
3
5
1−

(
(t2 +1) cD

3
5
0+

)
y(t) = η(y(t)+1)

1
2 , 0 < t < 1,

y(0) = 0,

cD
2
3
0+y(t)|t=1 = 0.

(33)

Where p(t) = t2 +1,h(y) = (y+1)
1
2 ,δ = 3

5 . Obviously, h : [0,+∞) → [0,+∞) is con-
tinuous and increasing. For 0 < θ < 1,

h(θy) = (θy+1)
1
2 > (θy+ θ )

1
2 = θ

1
2 (y+1)

1
2 = θ

1
2 h(y),

where r = 1
2 . We have h(1) =

√
2 � γ and h(e(t)) = (e(t) + 1)

1
2 > 0, and thus

mint∈[0,1] h(e(t)) > 0. Thus all requirements of Theorem 8 hold. Therefore:

(i) the problem (33) has exactly one positive solution yη in P̃0 , for any η > 0;
(ii) if 0 < η1 < η2, then yη1(t) � yη2(t) , ∀t ∈ [0,1] and yη1(t) �= yη2(t) ;
(iii) if η → η0,(η0 > 0) then maxt∈[0,1] |yη(t)− yη0(t)| → 0;
(iv) if η →+∞ then maxt∈[0,1] |yη (t)|→+∞; if η → 0+ then maxt∈[0,1] |yη(t)|→

0.

Moreover M = maxt∈[0,1]
1

p(t)
= 1 and

‖h(y)−h(w)‖ = ‖
√

y+1−√
w+1‖ � ‖y+1−w−1‖= ‖y−w‖.

So L = 1, Thus, by Theorem 7 for
η

1
5Γ2( 3

5 )
< 1 i.e. η < 1

5 Γ2( 3
5 ) = 0.4435, the prob-

lem (33) has exactly one positive solution.

Conclusion: In this paper the existence and nonexistence and uniqueness of positive
solutions for the fractional initial value problem (1) are proved by transforming the
problem in to an operator equation. Special properties of positive solutions are consid-
ered and under some assumption the uniqueness is obtained. A few examples are given
at the end to illustrate the results.
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