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Abstract. This paper contains a new discussion for the type of generalized nonlinear Caputo
fractional q -difference equations with m -point boundary value problem and Riemann-Stieltjes
integral α̃[x] :=

∫ 1
0 x(t)dΛ(t) . By applying the fixed point theorem in cones, we investigate an

existence of a unique positive solution depends on λ > 0 . We present some useful properties
related to the Green’s function for m−point boundary value problem.

1. Introduction

In this paper, we have discussed the existence of unique positive solution for the
m-point nonlinear boundary value problem for generalized Caputo-type fractional q -
difference equations of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDα
q x(t)+ λh(t) f (t,x(t)) = 0, t ∈ (0,1), n−1 < α � n, n > 2,

x(0) = ∑m−2
i=1 γi x(ζi),

CD2
qx(0) = CD3

qx(0) = ... = CDn−1
q x(0) = 0,

ν CDqx(1)− μα̃[x] = ∑m−2
i=1 βi CDqx(ζi),

(1)

Where CDα
q is the generalized Caputo fractional q -derivative of order α, with

0 < q < 1, ∑m−2
i=1 γi < 1, βi � 0, ζi ∈ (0,1) , i = 1,2, ...,m−2, ζ1 < ζ2 < ... < ζm−2 ,

λ > 0 is a parameter, ν,μ > 0, h : [0,1] → R
+ , f : (0,1)×R → R is a continuous

function, and α̃[x] :=
∫ 1
0 x(t)dΛ(t) is the Riemann-Stieltjes integral with respect to the

bounded variation function Λ : [0,1] → R.
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The fractional q-difference equations introduced and studied by Jackson [1], Adams
[2], AlSalam [3] and Agarwal [4]. Due to its applicability in mathematical modeling in
different branches like technical sciences, engineering, physics and biomathematics, it
has drawn wide attention to many researchers.

Recent studies on fractional calculus and boundary value problems of fractional
q-difference equations indicate that it is an important topic of current research. There
have appeared various articles covering these problems related to finding the existence
positive or nontrivial solutions for different kinds of boundary value problems such as
nonlocal, integral, multiple-point, sub-strip boundary problems and some others, see
[5-15] and references therein.

In [5], Ahmad et al. considered the following nonlinear fractional q-difference
equations with nonlocal and sub-strip type boundary conditions{

CDα
q x(t) = f (t,x(t)), t ∈ [0,1], 1 < α � 2, 0 < q < 1,

x(0) = x0 +h(x), x(ζ ) = b
∫ 1

η x(τ)dqτ, 0 < ζ < η < 1,

where CDα
q are the Caputo fractional q−derivative of order α, f : [0,1]×R→R and h :

C([0,1],R) → R are given continuous functions, and b is a real constant. By applying
Banach ′ s contraction principle and a fixed point theorem due to O ′Regan, the existence
results of the solutions were obtained.

The aim of this paper is to establish the existence of unique positive solutions for
the class of generalized Caputo-type fractional q -difference equations with m-point
boundary value problem and Riemann-Stieltjes integral conditions by using the recent
fixed point theorem in cones. Moreover, the example is given to illustrate our main
results.

2. Preliminaries

In this section, we introduce some notations, definitions and lemmas for the theory
of fractional q -calculus [4,8,9].

For q ∈ (0,1), the class [â]q is defined as

[â]q =
1−qâ

1−q
, â ∈ R.

The Pochhammer symbol with the q -analogue (q -shifted factorial) is defined by

(â;q)0 = 1, (â;q)� =
�−1

∏
j=0

(1− âq j), � ∈ N∪∞.

Moreover, the exponent (â− b̂)� with the q -analogue is defined by

(â− b̂)(0) = 1, (â− b̂)(�) =
�−1

∏
j=0

(â− b̂q j), � ∈ N, â, b̂ ∈ R.
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The q -gamma function Γq(x̂) is defined by

Γq(x̂) =
(1−q)(x̂−1)

(1−q)x̂−1 , x̂ ∈ R\ {0,−1,−2, ...}

and note that Γq(x̂+1) = [x̂]qΓq(x̂).
Now, Let ϕ be the function defined on [0,1] and α � 0. Then, we have the fol-

lowing definitions:

DEFINITION 1. [4] The Riemann-Liouville type fractional q -integral of order α �
0 is (I0

q ϕ)(t) = ϕ(t) and

(Iα
q ϕ)(t) =

1
Γq(α)

∫ t

0
(t−qτ)α−1ϕ(τ)dqτ , α > 0, t ∈ [0,1].

DEFINITION 2. [10] The Riemann-Liouville type fractional q -derivative of order
α � 0 is (D0

qϕ)(t) = ϕ(t) and

(Dα
q ϕ)(t) := (Dn

qI
n−α
q ϕ)(t), α > 0,

where n is a smallest integer greater than or equal to α.

DEFINITION 3. [10] The Caputo type fractional q -derivative of order α > 0 is
defined as

(CDα
q ϕ)(t) := (In−α

q Dn
qϕ)(t), α > 0,

where n is a smallest integer greater than or equal to α.

LEMMA 1. Let ϕ be the function defined on [0,1] and α,β � 0. Then,
the q-fractional have the following property:
(1) (Iα

q Iβ
q ϕ)(t) = Iα+β

q ϕ(t); (2) (Dα
q Iα

q ϕ)(t) = ϕ(t).

LEMMA 2. If α ∈ R
+, γ ∈ (−1,∞), then

Iβ
q (t)(γ) =

Γq(γ +1)
Γq(α + γ +1)

(t)(α+γ), 0 < t < a.

LEMMA 3. For α > 0 and α ∈ R
+ \N, the following is holds:

(Iβ
q CDα

q ϕ)(t) = ϕ(t)−
n−1

∑
i=0

(Dα
q ϕ)(0)

Γq(i+1)
ti,

where n is a smallest integer greater than or equal to α.
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At first, we consider the generalized Caputo type fractional q -difference with the
following boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDα
q x(t)+ y(t) = 0, t ∈ (0,1), n−1 < α � n, n > 2,

x(0) = ∑m−2
i=1 γi x(ζi),

CD2
qx(0) = CD3

qx(0) = ... = CDn−1
q x(0) = 0,

ν CDqx(1)− μ
∫ 1
0 x(t)dΛ(t) = ∑m−2

i=1 βi CDqx(ζi),

(2)

and we need the following supposition:
(H1) The bounded variation function is Λ : [0,1]→ R. And

ρ = ν −
m−2

∑
i=1

βi − μB > 0, B :=
∫ 1

0

[
t +

∑m−2
i=1 γiζi

δ
]
dΛ(t) � 0, δ = 1−

m−2

∑
i=1

γi,

φ(τ) :=
∫ 1

0

[
H1(t,qτ)+H2(t,qτ;ζi)

]
dΛ(t) � 0

for

H1(t,qτ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
t+

∑m−2
i=1 γiζi

δ

]
2Γq(α−1) (1−qτ)(α−2)− (t−qτ)(α−1)

Γq(α) , 0 � qτ � t � 1,

[
t+

∑m−2
i=1 γiζi

δ

]
2Γq(α−1) (1−qτ)(α−2), 0 � t � qτ � 1,

(3)

H2(t,qτ;ζi) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
t+

∑m−2
i=1 γiζi

δ

]
2Γq(α−1) (1−qτ)(α−2)− ∑m−2

i=1 γi
δΓq(α) (ζi −qτ)(α−1), 0 � qτ � ζi � 1,

[
t+

∑m−2
i=1 γiζi

δ

]
2Γq(α−1) (1−qτ)(α−2), 0 � ζi � qτ � 1.

(4)
And let

H3(t,qτ;ζi) =

[
t + ∑m−2

i=1 γiζi
δ

]
Γq(α −1)

⎧⎨
⎩

(1−qτ)(α−2)− (ζi−qτ)(α−2), 0 � qτ � ζi � 1,

(1−qτ)(α−2), 0 � ζi � qτ � 1.
(5)

LEMMA 4. Let y ∈C[0,1] and assume that (H1) holds, then the boundary value
problem (2) has the unique solution x given in the form

x(t) =
∫ 1

0
G(t,qτ;ζi) y(τ) dqτ, (6)
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where

G(t,qτ;ζi) = H1(t,qτ)+H2(t,qτ;ζi)

+
∑m−2

i=1 βi

ρ
H3(t,qτ;ζi)

+
[
t +

∑m−2
i=1 γiζi

δ
] μ

ρ
φ(τ).

(7)

Proof. In view of the Lemma 3, the solution of the generalized Caputo type frac-
tional q -difference equation (2) can be written as

x(t) = − 1
Γq(α)

∫ 1

0
(t−qτ)(α−1) y(τ) dqτ + c0 + c1t + ...+ cn−1t

n−1,

CDqx(t) = − 1
Γq(α −1)

∫ 1

0
(t−qτ)(α−2) y(τ) dqτ + c1

+2c2t +3c3t
2 + ...+(n−1)cn−1t

n−2,

...

CD(n−1)
q x(t) = − 1

Γq(α −n+1)

∫ 1

0
(t −qτ)(α−n) y(τ) dqτ +(n−1)! cn−1,

(8)

where c0,c1, ...,cn−1 ∈ R are arbitrary constants. Applying the boundary conditions,
we found that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2 = c3 = c4 = ... = cn−1 = 0,

c1 = Iα−1
q y(1)+

∑m−2
i=1 βi

ρ
[
Iα−1
q y(1)− Iα−1

q y(ζi)
]

+
μ
ρ

∫ 1

0

[[
t +

∑m−2
i=1 γiζi

δ
]

Iα−1
q y(1)

−[
Iα
q y(t)+

∑m−2
i=1 γi

δ
Iα
q y(ζi)

]]
dΛ(t)

c0 =
∑m−2

i=1 γiζi

δ

[
Iα−1
q y(1)+

∑m−2
i=1 βi

ρ
[
Iα−1
q y(1)− Iα−1

q y(ζi)
]]

+
μ
ρ

[∑m−2
i=1 γiζi

δ
]∫ 1

0

[[
t +

∑m−2
i=1 γiζi

δ
]

Iα−1
q y(1)

−[
Iα
q y(t)+

∑m−2
i=1 γi

δ
Iα
q y(ζi)

]]
dΛ(t)

−∑m−2
i=1 γi

δ
Iα
q y(ζi).

(9)
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Substituting the values of c0,c1, ...,cn−1, we deduce that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) =

[
t + ∑m−2

i=1 γiζi
δ

]
Γq(α −1)

∫ 1

0
(1−qτ)(α−2) y(τ) dqτ

− 1
Γq(α)

∫ 1

0
(t−qτ)(α−1) y(τ) dqτ

−∑m−2
i=1 γi

δΓq(α)

∫ ζi

0
(ζi −qτ)(α−1) y(τ) dqτ

+
μ
ρ

[
t +

∑m−2
i=1 γiζi

δ
][∫ 1

0

∫ 1

0

[
t + ∑m−2

i=1 γiζi
δ

]
Γq(α −1)

(1−qτ)(α−2) y(τ) dqτ dΛ(t)

−
∫ 1

0

∫ t

0

(t−qτ)(α−1)

Γq(α)
y(τ) dqτ dΛ(t)

−∑m−2
i=1 γi

δ

∫ 1

0

∫ ζi

0

(ζi −qτ)(α−1)

Γq(α)
y(τ) dqτ dΛ(t)

]
,

(10)
that is

x(t) =
∫ 1

0

[
H1(t,qτ)+H2(t,qτ;ζi)

]
y(τ) dqτ

+
∫ 1

0

∑m−2
i=1 βi

ρ
H3(t,qτ;ζi) y(τ) dqτ

+
∫ 1

0

[
t +

∑m−2
i=1 γiζi

δ
] μ

ρ
φ(τ) y(τ) dqτ.

(11)

Hence, the proof of this Lemma is complete. �

LEMMA 5. H1(t,qτ),H2(t,qτ;ζi),H3(t,qτ;ζi) and G(t,qτ;ζi) are the Green’s
functions defined by (3),(4),(5) and (7) respectively, satisfy the following properties:

(i) H1(t,qτ),H2(t,qτ;ζi),H3(t,qτ;ζi) > 0, ∀t,τ ∈ (0,1),

& H1(t,qτ)+H2(t,qτ;ζi) �
[
t +

∑m−2
i=1 γiζi

δ
](1−qτ)(α−2)

Γq(α −1)
� σ (1−qτ)(α−2)

Γq(α −1)
,

&
1
σ

H3(t,qτ;ζi) � H3(t,qτ;ζi) �
[
t +

∑m−2
i=1 γiζi

δ
](1−qτ)(α−2)

Γq(α −1)
,

∀t,τ ∈ [0,1], σ = 1+
∑m−2

i=1 γiζi

δ
, i = 1,2, ...,m−2.

(12)
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(ii) ∀t,τ ∈ [0,1], i = 1,2, ...,m−2, we have[
t + ∑m−2

i=1 γiζi
δ

]
σ

[
H1(1,qτ)

+H2(1,qτ;1)
]

� H1(t,qτ)+H2(t,qτ;ζi) � H1(1,qτ)+H2(1,qτ;1).
(13)

(iii)

[
t + ∑m−2

i=1 γiζi
δ

]
σ

ψ1(τ) � G(t,qτ;ζi) �
[
t +

∑m−2
i=1 γiζi

δ
]
ψ2(τ),

here, ψ1(τ) =
[ σ

Γq(α −1)
(1−qτ)(α−2)− 1

δ Γq(α)
(1−qτ)(α−1)]P̂

+
[
(1−qτ)(α−2)− (ζm−2−qτ)(α−2)]P̃,

& ψ2(τ) =
[ 1

Γq(α −1)
P̂+ P̃

]
(1−qτ)(α−2),

where P̂ = 1+
μ B
ρ

, P̃ =
∑m−2

i=1 βi

ρ Γq(α −1)
, ∀t,τ ∈ [0,1].

(14)

Proof. It is easy to see that (i)&(ii) are true.
Now, we prove (iii) with the help of (i)&(ii), so we have

G(t,qτ;ζi) = H1(t,qτ)+H2(t,qτ;ζi)+
∑m−2

i=1 βi

ρ
H3(t,qτ;ζi)+

[
t+

∑m−2
i=1 γiζi

δ
]μ
ρ

φ(τ)

�
[[

t + ∑m−2
i=1 γiζi

δ
]

Γq(α −1)
(1−qτ)(α−2)

][
1+

∑m−2
i=1 βi

ρ

]

+
μ

[
t + ∑m−2

i=1 γiζi
δ

]
ρ Γq(α −1)

∫ 1

0

[
t +

∑m−2
i=1 γiζi

δ
]
(1−qτ)(α−2)dΛ(t)

=
[
t +

∑m−2
i=1 γiζi

δ
][ 1

Γq(α −1)
P̂+ P̃

]
(1−qτ)(α−2)

=
[
t +

∑m−2
i=1 γiζi

δ
]
ψ2(τ) (15)

Furthermore, we have

G(t,qτ;ζi) �
[
t + ∑m−2

i=1 γiζi
δ

]
σ

[
σ (1−qτ)(α−2)

Γq(α −1)
− (1−qτ)(α−1)

δ Γq(α)

+
∑m−2

i=1 βi

ρ Γq(α −1)
[
(1−qτ)(α−2)− (ζm−2−qτ)(α−2)]

+
μ
ρ

∫ 1

0

[
t +

∑m−2
i=1 γiζi

δ
][σ (1−qτ)(α−2)

Γq(α −1)
− (1−qτ)(α−1)

δ Γq(α)

]
dΛ(t)

]
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=

[
t + ∑m−2

i=1 γiζi
δ

]
σ

[[
σ (1−qτ)(α−2)

Γq(α −1)
− (1−qτ)(α−1)

δ Γq(α)

][
1+

μ B
ρ

]

+
∑m−2

i=1 βi

ρ Γq(α −1)
[
(1−qτ)(α−2)− (ζm−2−qτ)(α−2)]]

=

[
t + ∑m−2

i=1 γiζi
δ

]
σ

ψ1(τ) (16)

Hence, the proof of this Lemma is complete. �
Let the real Banach space (K,‖.‖) is partially ordered by the cone E ⊂ K, and

we denote a zero element of K by φ . For the fixed p > φ(i.e., p � φ and p 
= φ), the
set Ep defined by Ep = {x ∈ K|x ∼ p}, here ∀x,y ∈ K, the notation x ∼ y means that
∃μ̂ , ν̂ > 0 such that μ̂x � y � ν̂x, and easy to see that Ep ⊂ E.

Now, we will give the recent fixed point theorems, which play a key role in the
next analysis.

LEMMA 6. [16] Let E be a normal cone in the real Banach space K with p >
φ , and T : E → E is an increasing operator, satisfying:
(i) there is p0 ∈ Ep such that T p0 ∈ Ep;
(ii) for any x∈E, �∈ (0,1), there exists y(�)∈ (�,1) such that T (�x)(t) � y(�)T x(t).
Then:
(1) the operator equation T x = x has a unique solution x∗ in Ep;
(2) for any initial value x0 ∈Ep, constructing successively the sequence xn = T xn−1, n =
1,2, ..., we have xn → x∗ as n → ∞.

REMARK 1. [16] It is remarkable that
(1) if y(�) = �,� ∈ (0,1) in Lemma 6, then the operator T : E → E is said to be sub-
homogeneous;
(2) if y(�) = �r,0 � r < 1 in Lemma 6, then the operator T : E → E is said to be
r− concave.

LEMMA 7. [16] On the basis of Lemma 6, if xλ is a unique solution of the oper-
ator equation T x = λx for λ > 0, Then we have the following conclusions:
(i) xλ is strictly decreasing in λ , namely, 0 < λ1 < λ2 implies xλ1 > xλ2;
(ii) if there exists r ∈ (0,1) such that y(�) � �r for � ∈ (0,1), then xλ is continuous in
λ , namely, λ → λ0(λ0 > 0) implies ‖xλ − xλ0

‖→ 0;
(iii) limλ→+∞‖xλ‖ = 0, limλ→0 ‖xλ‖ = +∞.

3. Main Results

In this section, we present the existence of a unique positive solution for boundary
value problem (1) by using the recent fixed point theorem in cones. Let K = C[0,1]
be a Banach space endowed with the norm ‖x‖ = max{|x(t)| : t ∈ [0,1]} and let E be
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the standard cone E = {x ∈ K : x(t) � 0,t ∈ [0,1]}. So E is normal. The operator
T : K → K is given by

T x(t) =
∫ 1

0
G(t,qτ;ζi) h(τ) f (τ,x(τ)) dqτ, t ∈ [0,1]. (17)

THEOREM 1. Assume that (H1) holds. In addition,
(H2) f ∈C([0,1]×R

+,R+),h∈C([0,1]×R
+), f (t,0)� 0, f (t,0) 
≡ 0,h(t) 
≡ 0, f or t ∈

[0,1];
(H3) for each t ∈ [0,1], the function f (t,x) is increasing in x;
(H4) for any � ∈ (0,1), there exists y(�) ∈ (�,1) such that f (t, �x) � y(�) f (t,x),∀t ∈
[0,1],∀x ∈ R

+.
Then:
1. For any fixed λ > 0, the problem (1) has a unique positive solution x∗λ ∈Ep, where p(t)=[

t+
∑m−2

i=1 γiζi
δ

]
σ , t ∈ [0,1]. In addition, for any initial value x0 ∈ Ep, constructing the se-

quence

xn(t) = λ
∫ 1

0
G(t,qτ;ζi) h(τ) f (τ,xn−1(τ)) dqτ, n = 1,2, ..., (18)

one has limn→+∞ xn(t) = x∗λ (t), t ∈ [0,1];
2. x∗λ is strictly increasing in λ , namely, 0 < λ1 < λ2 implies x∗λ1

< x∗λ2
;

3. If there exists r ∈ (0,1) such that y(�) � �r for � ∈ (0,1), then x∗λ is continuous in
λ , that is, λ → λ0(λ0 > 0) means ‖xλ − xλ0

‖→ 0;
4. limλ→+∞ ‖xλ‖ = +∞, limλ→0+ ‖xλ‖ = 0.

Proof. According to the Lemma 4, it is easy to see that x(t) is a solution of prob-
lem (1) if, and only if, x(t) = λT x(t). By (H2) and Lemma 5, T : E → E is clear.
From the assumption (H3) we can easily obtain T : E → E is increasing.

Now, we will check that T satisfies all the assumptions of Lemma 6. For a

condition (i) of Lemma 6, we put p(t) =
[
t+

∑m−2
i=1 γiζi

δ

]
σ � 0, that is, p ∈ E, and we will

show that T p ∈ Ep. Set

θ1 =
∫ 1

0
ψ1(τ) h(τ) f (τ,0) dqτ, θ2 =

∫ 1

0
σ ψ2(τ) h(τ) f (τ,1) dqτ, (19)

since ν � 0, f is increasing with f (t,0) � 0, f (t,0) 
≡ 0,h(t) 
≡ 0, in view of Lemma
5, we can easily obtain 0 < θ1 � θ2. By (H3), we have

T p(t) =
∫ 1

0
G(t,qτ;ζi) h(τ) f (τ,

[
t + ∑m−2

i=1 γiζi
δ

]
σ

) dqτ

�
∫ 1

0

[
t +

∑m−2
i=1 γiζi

δ
]
ψ2(τ)h(τ) f (τ,1) dqτ

=
∫ 1

0
σ ψ2(τ) h(τ) f (τ,1) dqτ ·

[
t + ∑m−2

i=1 γiζi
δ

]
σ

= θ2p(t). (20)
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Furthermore, we get

T p(t) �
∫ 1

0

[
t + ∑m−2

i=1 γiζi
δ

]
σ

ψ1(τ)h(τ) f (τ,0) dqτ

=
∫ 1

0
ψ1(τ)h(τ) f (τ,0) dqτ ·

[
t + ∑m−2

i=1 γiζi
δ

]
σ

= θ1p(t). (21)

Therefore, θ1p(t)� T p(t)� θ2p(t), t ∈ [0,1], that is, θ1p � T p � θ2p, Hence, T p∈
Ep.

Next, for � ∈ (0,1), x ∈ E, and by (H4) it follows that

T (�x)(t) =
∫ 1

0
G(t,qτ;ζi) h(τ) f (τ, �x(τ)) dqτ

� y(�)
∫ 1

0
G(t,qτ;ζi) h(τ) f (τ,x(τ)) dqτ

= y(�)T (x)(t), t ∈ [0,1] (22)

So, we have T (�x) � y(�)T x, ∀x ∈ E, � ∈ (0,1). Hence, all the assumptions of
Lemma 6 are satisfied. Finally, from Lemma 7, there exists a unique x∗λ ∈ Ep such
that T x∗λ = 1

λ x∗λ , that is, λT x∗λ = x∗λ , so

x∗λ (t) = λ
∫ 1

0
G(t,qτ;ζi) h(τ) f (τ,x∗λ (τ)) dqτ, t ∈ [0,1]. (23)

Considering Lemma 4, x∗λ is a unique positive solution of problem (1) for given λ > 0.
By Lemma 7 (i), x∗λ is strictly decreasing in λ , that is, 0 < λ1 < λ2 implies x∗λ1

�
x∗λ2

, x∗λ1

= x∗λ2

. And here one has limλ→+∞‖x∗λ‖ = +∞, limλ→0+ ‖x∗λ‖= 0. Moreover,
if there exists r ∈ (0,1) such that y(�) � �r for � ∈ (0,1), then, by using Lemma 7, it
yields that x∗λ is continuous in λ , that is, ‖xλ − xλ0

‖→ 0 as λ → λ0(λ0 > 0).
Now, let Tλ = λT . And here for Tλ , all assumptions of Lemma 6, are satis-

fied. Hence, for any initial value x0 ∈ Ep, constructing the sequence xn = Tλ xn−1, n =
1,2, ..., one has xn → x∗λ as n→+∞. Thus, the equation (18) holds, and limn→+∞ xn(t)=
x∗λ (t). �

COROLLARY 1. Suppose that (H1)− (H4) holds. Then the following fractional
q-difference equation m−point nonlinear boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDα
q x(t)+h(t) f (t,x(t)) = 0, t ∈ (0,1), n−1 < α � n, n > 2,

x(0) = ∑m−2
i=1 γi x(ζi),

CD2
qx(0) = CD3

qx(0) = ... = CDn−1
q x(0) = 0,

ν CDqx(1)− μα̃[x] = ∑m−2
i=1 βi CDqx(ζi),

(24)
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has a unique positive solution x∗ in Ep, where p(t) =
[
t+

∑m−2
i=1 γiζi

δ

]
σ , t ∈ [0,1]. Further-

more, for x0 ∈ Ep, constructing the sequence

xn(t) =
∫ 1

0
G(t,qτ;ζi) h(τ) f (τ,xn−1(τ)) dqτ, n = 1,2, ..., (25)

and here limn→+∞ xn(t) = x∗(t), t ∈ [0,1].

COROLLARY 2. Suppose that (H2)− (H4) holds. Then the following fractional
q-difference equation m−point nonlinear boundary conditions⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

CDα
q x(t)+ λ f (t,x(t)) = 0, t ∈ (0,1), n−1 < α � n, n > 2,

CD2
qx(0) = CD3

qx(0) = ... = CDn−1
q x(0) = 0,

x(0) = ∑m−2
i=1 γi x(ζi), ν CDqx(1) = 0,

(26)

has a unique positive solution x∗ in Ep, where p(t) =
[
t+

∑m−2
i=1 γiζi

δ

]
σ , t ∈ [0,1]. Further-

more, for x0 ∈ Ep, constructing the sequence

xn(t) = λ
∫ 1

0

[
H1(t,qτ)+H2(t,qτ;ζi)

]
f (τ,xn−1(τ)) dqτ, n = 1,2, ..., (27)

and here limn→+∞ xn(t) = x∗λ (t), t ∈ [0,1].

REMARK 2. For the assumption (H4), if y(�) = �r, �∈ (0,1), then for any initial
value x0 ∈ Ep, there have xn → x∗λ as n → ∞. Moreover, by a proof of Theorem 2.1
[16], we have the error estimation

‖xn− x∗λ‖ = o(1− εrn), n → ∞,

here ε ∈ (0,1) is a constant depend on x0.

EXAMPLE 1. Consider the following boundary value problem for generalized Caputo-
type fractional q -difference equation⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CD
7
2
q x(t)+ λh(t) f (t,x(t)) = 0, t ∈ (0,1),

x(0) = 1
5x( 1

3 )+ 1
3x( 1

2 ), CD2
qx(0) = CD3

qx(0) = 0,

ν CDqx(1)− μα̃[x] = 2
3 CDqx( 1

3 )+ 1
4 CDqx( 1

2 ).

(28)

Here, α = 7
2 ,q = 1

3 ,ν = 5,μ = 3,γ1 = 1
5 ,γ2 = 1

3 ,β1 = 2
3 ,β2 = 1

4 ,ζ1 = 1
3 ,ζ2 = 1

2 , and
let

h(t) = loge(
1
t
), f (t,x(t)) =

(
3
√

3t3 +
[
x(t)

] 4
3 t +1

) 1
3

, t ∈ (0,1). (29)
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Clearly,

f (t,0) =
(

3
√

3t3 + 1

) 1
3

> 0, h(t) > 0 and f (t,x) is increasing in x for x ∈ R
+, t ∈

[0,1]. Therefore, assumptions (H2),(H3) hold. Set y(�)= �
4
9 , we have y(�)∈ (�,1), �∈

(0,1). Thus, for x ∈ [0,∞), we obtain

f (t, �x) =
(

3
√

3t3 +
[
�x(t)

] 4
3 t +1

) 1
3

� �
4
9

(
3
√

3t3 +
[
�x(t)

] 4
3 t +1

) 1
3

= y(�) f (t,x).

(30)
For the Riemann-Stieltjes integral we can discuss two cases:
(1) Let α̃ [x] = 0, then we get B = 0,ν,μ > 0, and ρ = ν −∑2

i=1 βi = 49
12 > 0.

(2) Let α̃[x] =
∫ 1
0 [2t − 1]x(t)dt, here the sign of the function (2t − 1) is change for

t ∈ [0,1]. Therefore, we have

B =
∫ 1
0

[
t + ∑m−2

i=1 γiζi
δ

](
2t − 1

)
dt =

∫ 1
0

(
2t2 − 1

2

)
dt = 1

6 > 0, and ρ � 3.5833 > 0. All
the assumptions of Theorem 1 are satisfied, then the problem (28) has a unique positive
solution x∗λ ∈ Ep, and here p(t) = 1

3(2t +1). Moreover, for x0 ∈ Ep, we can construct
the sequence

xn(t) = λ
∫ 1

0
G(t,qτ;ζi) loge(

1
τ
)
( 3
√

3τ3 +
[
xn−1(τ)

] 4
3 τ +1

) 1
3 dqτ, n = 1,2, ...,

so, xn(t) → x∗λ (t), as n → ∞.
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