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BLOW UP OF NONAUTONOMOUS
FRACTIONAL REACTION-DIFFUSION SYSTEMS

AROLDO PEREZ

(Communicated by N. Vasylyeva)

Abstract. We provide a sufficient condition for finite time blow up of the positive mild solution
to the nonautonomous Cauchy problem of a reaction-diffusion system with distinct fractional
diffusions. The proof is based on the reduction to an ordinary differential system by means
of a comparison between the transition densities of the semigroups generated by the different
fractional Laplacians. Moreover, we prove that this condition is also a sufficient condition for
the blow up of a related nonautonomous fractional diffusion-convection-reaction system.

1. Introduction

In this paper, i € {1,2} and i/ =3 —i. We consider blow up in finite time of pos-
itive solutions of the initial values problem for the nonautonomous reaction-diffusion
system

du;(t,x)
ot
ui(0,x) = @i(x) >0, x€RY,

— k(1) Agyi (t,%) + B (1,x), >0, x R, (1)

where Ay, 1= —(—A)% , 0 < 0y <2, denotes the fractional power of the Laplacian, f3;,
i = 1,2 are positive constants such that i3, > 1, the initial conditions ¢;, i = 1,2 are
bounded, continuous and not identically zero, and k;, h; : [0,00) — [0,00), i = 1,2 are
continuous functions such that for all 7 > 0 large enough,

. t .
aytPi </0 ki(r)dr < aht”, (2

where a,ab >0, p; >0, and
D% < hi(r) < b5, 3)
where b, b5 >0, 0; > 0.
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The associated integral system of (1) is given by

alt.0) = [ o0y =0 o)+ [ [ pilKie,s),y =) (o) (5.v)dvs,
“)

where p;(z,x) is the fundamental solution of % — Ay, and
t
Ki(t,s) :/ ki(r)dr, t>s5>0. (5)

A solution of the integral system (4) is called a mild solution of (1). In this paper
solutions of (1) will be understood in this mild sense. If there exists a solution (uy,u;)
of (4) defined in [0,0) x R? such that ||u; (z,-)||.. + |[ua(t,")||.. < o forany ¢ >0, we
say that (uj,uy) is a global solution, and when there exists a positive number 7, <
oo such that (4) has a bounded solution (uj,u3) in [0,7] x R? for all T < T,, with
limgy, (J|ui(2,-)]|o + [Ju2(2,)].) = oo, we say that (u1,u>) blows up in finite time.

The proof that we will give of the blow up in finite time of the positive mild
solution of system (1) is based on a technique that go back to Sugitani [17] (for the case
of a single equation), and which consists of reduce the blow up of system (1) to the
blow up of an ordinary differential system. We will achieve such reduction through a
comparison between the transition densities of the semigroup generated by the different
fractional Laplacians (see (iv) of Lemma 1 below).

Reaction-diffusion systems of prototype (1) model a great number of molecular bi-
ology, physic and engineering problems (see [1, 14, 16]). The fractional Laplacians A,
with 0 < o; <2, i= 1,2 count for the anomalous diffusion, and from a probabilistic
pespective, correspond to stable Lévy processes [15]. The most common interpretation
of system (1) is as a model to describe processes of heat diffusion and combustion in
two-component continuous media with temporary-inhomogeneous thermal conductiv-
ity and volume energy release given by powers of u;, i = 1,2. In this case u;, i = 1,2
represent the temperatures of the interacting components of some combustible mixture
[14, 3].

For a single equation, with oo =2 and k = h = 1, in his pioneering work, Fujita
[5] showed the influence of spatial dimension on the finite time blow up versus global
existence of solutions. Fujita’s results was extended to the case of a system with o; =2
and k; =h; =1, i = 1,2, by Escobedo and Herrero [3]. They showed that the positive
solution blows up in finite time if

2(B1VBa+1)
BiB—1

where 1,2 > 1 and B; V3, =max{fi, B2}, Bi AP =min{P;,B>}. A generalization
of this result for the case o; = o, o € (0,2] and k; = h; = 1, i = 1,2 was given by
Kakehi and Oshita [7]. In this case, they have proved that the positive mild solution
blows up in finite time if

d< ; (6)

aBiVvh+1)

d<
Bip—1

)
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Note that this coincides with (6) for o = 2. Other related cases involving Laplacians
and fractional Laplacians for autonomous and nonautonomous systems with nonlinear-
ities given by powers of u;, i = 1,2, can be found for instance in [12, 20, 8, 6, 4, 11,
13,21, 19].

This work can be considered as a generalization of the article [12]. In [12] system
(1) was studied with k; = h; = 1, i = 1,2; it is shown that the positive mild solution of
(1) blows up in finite time for any initial conditions ¢;, i = 1,2, bounded, continuous
and not identically zero provided that

+1>0. (8)

In this paper we will prove the next result.

THEOREM 1. Suppose that 0 < o; <2, i=1,2 andlet oq < 0. If (u1,u2) isa
positive mild solution of system (1) and

d(p2—Bi)

+0,+12>0, i=1,2, )
(05

then there exists a time ty > 1 such that the mild solution (uy,u) blows up for some
% (p1VP2)
. o
time to >to+1, '

Note that inequality (9) is reduced to inequality (8) when k; =h; =1, ie., pi =1
and o; =0, i = 1,2. Hence this result is a generalization of the corresponding result
given in [12]. Also, it should be noted that under the assumption that o < o, the
positive mild solution of system (1) blows up in finite time regardless of the value of
p1 (parameter p; has only influence on the size of the blow up time). In this way, our
result substantially improves that of Villa-Morales [20], because the blow up condition
givenin p. 2, Eq. (1.8) of [20] is not satisfied when p; is much bigger than p;. See also
the comments in [12], p. 184 for comparisons with the blow up results of Villa-Morales
[20] and Guedda and Kirane [6] for the autonomous case. Also, for the autonomous
case, with k; =h; =1 and o; = a, o € (0,2], i = 1,2, Wu and Tang [21] showed that
the positive mild solution blows up in finite time if

o (1+BiAB)
2(Bif—1) ’

with §; > 1, i = 1,2. In this particular case, our condition is better than that of Wu and
Tang. However, in this particular case, the condition (7) of Kakehi and Oshita is the
best.

For a single equation, with k = h = 1, under one dimensional superdiffusive
medium with advection, and a nonlinear source term, Kirk and Olmstead [9] showed
that there exists a critical convection speed above which blow up is avoided and below
which blow up is guaranteed (see also Tersenov [18] for the case oo =2). However, in
Pérez [12] it was showed that when volumes energy release are given by powers greater

d< (10)
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than one, the convection terms are of the form g;(x)-V (see (11)) for g; in the Kato
class, i=1,2 and o; € (1,2), i = 1,2, the blow up in finite time of system (1) (with
ki = h; =1, i=1, 2) implies blow up in finite time of the system with convection terms
(11) (with k; = h; = 1, i=1, 2), and vive versa. In this paper, we show that this result is
still valid in the nonautonomous case considered here. More specifically, we consider
the nonautonomous fractional reaction-diffusion system with convection terms

T — kit) (Mg + gi(%) - V) wilt,x) + ()b (1,%), 1>0,xe R, (11)

u;(0,x) = @i(x) >0, x¢€ RY,

where V is the gradient operator, 3, ¢;, ki, h;, i = 1,2 are as above, o; € (1,2) and
gi :RY — R? is a function in the Kato class ,%/da" “!onR? (see Bogdan and Jakubowski
[2], p. 185), i = 1,2, and prove the next result.

THEOREM 2. The positive mild solution of the nonautonomous reaction-convection-
diffusion system (11) blows up in finite time if and only if the positive mild solution of
the nonautonomous reaction-diffusion system (1) blows up in finite time.

As a direct consequence of Theorems 1 and 2 we have the next corollary.

COROLLARY 1. Suppose that 1 < o <2, i =1,2 and let oy < 0. Then the
positive mild solution of the nonautonomous reaction-convection-diffusion system (11)
blows up in finite time if (9) holds.

We have organized this paper as follows. In Section 2 we give some lemmas that
we will require for the proof of our main theorem (Theorem 1), in Section 3 we give the
proof of Theorem 1, and finally, in Section 4 we give the proof of our second theorem.

2. Preliminary results

In the proof of our Theorem 1, we will require some preliminary results. The first
one concerns about some properties of the fundamental solution, p;(z,x), of % —Ag,

i

LEMMA 1. Let s,t >0 and x,y € R?, then
_d 1
ﬁ)mmwzt%m@ﬁ%ﬁ,

4
(ii) pj(t,.X) > (%)ai pi(sax> for t>s,
(iii) pi (t,x(x—)) = pi(t,X)pi(t,y) if pi(t,0)< 1 and ©>2,
(iv) p1(t,x) = cpa (t"%,x) forsome 0<c<1, if o <op.
Proof. For (i)-(iii) see Sugitani [17] pp. 46-47 and for (iv) see Lopez-Mimbela
and Villa-Morales [10] p. 1699. [

The second lemma that we will need establishes that there exists a time 7y such
that the nonnegative mild solution of system (1) at time 7y is lower bounded by the
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function cops (1, ), for some positive constants ¢o and ¥ (here and in the sequel we
assume that o < o). But first, note that (iv) of Lemma 1 applied to (4) implies

o

M](l7x) >/I‘Qd cp2 (Klal (t70)7y_x> (Pl(y)dy
t o9
+/0 /Rd cp2 (Kf” (t,s),y—x> i (s)idh (s,y)dyds, (12)
w(t.2) > [ 2 (Ka(0,0).y =) 92(5)dy

+ /0’ /Rd P2 (Ka(t,),y — x) ha(s)ul? (s, y)dyds.

LEMMA 2. If (uy,uy) is a nonnegative mild solution of (1), then there exist some
positive constants co, Yy and to > 1 such that

min{u; (t9,x),us (to,x)} = cop2 (W,x), Vxé€ R,

Proof. Let us fix 7o > 1 such that inequalities (2) and (3) are valid for all ¢ > 1y,
and K; (10,0) > 1, i = 1,2. Additionally, by (i) of Lemma 1, we can suppose that 7 is
big enough such that

o
)22) (Klal (1070),()) <1 and py (K2 (1070),0) < 1. (13)

Hence, using (i) and (iii) of Lemma | we get
*

@ o [ K (0,0 @
P2 (Kll (t070)7y_x> >2 dp2 %7}6 P2 (Kll (t070)72y)7
K2 (t070)

—d
P2 (a0 ) > 2 (210

JC) P2 (K2 (10,0),2y).

Using these inequalities, it follows from (12) that

]
)

_ K (1,0 @
231 (t()ax) 2 2 deZ %7}6 /de2 <K1 ! (5070)72)’) (Pl(y)dy»

_ K (10,0
usli0:) > 2pa (20 x) [ pa (K20:0) 29) 0201
Rd
Let us consider

7]

a=min {2% /R P2 (Kf‘l (t0,0) ,2y> e1(y)dy, 27¢ /R  P2(K2(10,0),2y) %(y)dy}
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and
[}
. Klal (1070) K> (1070)

Y = min S0 s 20

Then from (ii) of Lemma 1 we get
d
Y0 "

uj (t07x) > a N P2 (YO7X) )

K (10,0)27%
d
Y 2
! zZa| <0 ) X) -
MQ(O,X) a<K2 (t070)2_0‘2> p2 (YO .X)
Finally, the desired result is obtained by taking

d
o d
Y Yo

) o
co=min{ a %— ,a (W) . g
K" (19,0)27%

The next equalities system will be used in our last lemma. Let 75 > 1 be as in
Lemma 2, the Chapman-Kolmogorov identity (see Sato [15], p. 54) implies

u; (t +19,x)
) ﬁ
= [ pi&i 10,00y =09y + [ [ pi (Kl 10,5) v 0)hi(s)ulf (5.2)dds
// pi (Ki (t +to,s+10),y — x) hi(s + 10)u ﬁ(s—l—to, )dyds (14)
=/ pi (Ki(t +10,10) ,y — x) u; (to,y) dy

// pi (Ki (t+19,s+10),y —x) hi(s +10) ﬁ(s+to, )dyds.

Now we shall derive an inequalities system that we will use in the proof of Theorem 1.
Using (iv) of Lemma 1 we get

]

uy (t+419,x) > / cp2 (Klal (t+t0,to),y—x> uy (to,y)dy

// CP2< (t+10,5+10),y — )h (s +10)uy" (s +10,y)dyds,
w21+ 10.3) > [ p2 (Ko (110,10 .y =) 10.3)

+// P2 (Ka (t +10,5+10) ,y —x) ha(s+10) B2(3+lo7y)dyds~
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Hence, Lemma 2 implies

uy (t +to,x) Zccopr (Klﬁ (t+10,00) + Yo,x)
t o9
+/0 /Rd cp2 (fo' (t+lo,S+fo),y—x> hy (s +10)uy' (s +to,y)dyds,
(15)
uz (¢ +10,x) Zcop2 (Ka (t +to,0) + 1, %)

5
+/0 /dez (K (t +10,5410) ,y — x) ha (s +1to)uy* (s + 19, y)dyds.

The result of the last lemma of this section allows us to reduce the blow up of
system (1) to the blow up of an ordinary differential system. Let us define

() = [ (K (1,0) 2w (r.2)dx, 130,
R

mo(t) = [ p2(Ka(1,0) X) 10 5)dx, 130,

LEMMA 3. Iffor some i (= 1,2), there exists t, > 0 such that u;(t) = o for all
t > t,, then the mild solution (uy,u;) of system (1) blows up in finite time.

Proof. Let 1y be as in Lemma 2. If #;(r) = o for all ¢ > t,, we consider #; such
that 7,7, < ty < eo. From (2) we have that there exists z > #; such that

oy

I(i/ ([ + 1o, 1y —|—t0) > 206,-/[(2072 (ti/ —|—[0,0) .

Thus, for every 0 < s < ty,

oy

Ky (t+1o,5+10) = 20‘i’K2@ (s+19,0).

Therefore .
K7 (t+1 , S+ 1
Ty = i l( 0 0) 2 2.

K2 (s +10,0)

Furthermore, from (i) of Lemma 1 and (13) it follows that

P2 (K> (s+19),0) < p2 (K> (2,0),0) < 1.

Thus, using (i) and (iii) of Lemma 1 we obtain

*
y _ 1
P (Kl.,”f (t+t0,s+to),y—x> =7,p, (Kz (s+10,0), — (y—X)>

1

> 1, ps (Kz (s +10,0) ,x) p2 (K2 (s +10,0) ).
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From (14), (iv) of Lemma 1 and Jensen’s inequality we get

a2

7 X
uy (t+19,x) = ¢ A hy (s—l—to)/ P2 (K (t+10,5+10), y—x> ull.s' (s+19,y)dyds

t,—/ ,
> e /O 4y (s+10) pa (Ka (s +10,0) )7 (s+10) s,

and thus uy (t +19,x) =co. O

3. Proof of the main theorem

1
Proof. Multiplying equations (15) by p» <K2 (l 2 (p1Ve2) +t070) 7x> , and then

integrating with respect x, we obtain

o
7 (l o (p1Ve2) +t0)

o * o
>ccopr <K2 (t o (p1vp2) +10,0> +K1”‘1 (; o (p1ve2) +lo,l0> +y070)

) o9 _
—|—/ / cp2 <K2 <l‘a2(p1v”2) —|—l‘0,0) —|—K1al <ta2(p1\/p2) +to,s+to> ,y)

“hy (s+10) u, b (s+10,y)dyds
and

o
7 (; a(p1ve2) to)

_ % _
=cop2 (Kz (l‘ @ (P1Vp2) +to,0> + K> (taZ(plv”Z) —|—l‘0,to) +’)/0,0)

) PlVPZ o) a
+/ / )2) (Kz (t"Z(”'V"Z) +to,0> + K> (t“Z(p”pZ) +to,s+to> ,y)

hy (s +to) u}? (s +10,y) dyds.

P1 \/132

Using (i) and (ii) of Lemma 1, we get
o
7 (; a(p1ve2) +ZO)

L1 o9 o
>ccopa <K2 (t o (p1vp) +t070) +K1"" (t o (p1vp2) +lo,l0> + y0,0>

o

Pl\/Pz

K> (s+19,0)

/ o) *Q _ %
K> (t”‘Z(PlVPZ) +to,0> +K! (’ a2(p1p) +to,S+fo>
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P2 (Ka (s +10,0) ,y) i (s +10) ub (s + 19, ) dyds
and

Gl
7 <z o (p1Ve2) _|_[0)

_ 9 _
=cop2 <K2 (taZ(plv”Z) —|—l‘0,0) + K> <l‘a2(p1\/p2) +to,l‘0> —|—)/0,0>
K> (S+t070)

+/ / o |
K> (t @ (p1vp2) —|—t0,0) +K> (t"Z(”lv”2) —HO’S"‘fO)

- pa (Ka (s +10,0) ,y) ha (s +10) u? (s + 19, y) dyds.

ol Pl VPz

Applying now the Jensen’s inequality, we obtain

o
7 (;%(PNPz) +t0)

o 27} o
>ccopa <K2 (t @ (p1vp2) +z0,0> +K! (z @ (p1VP2) +z0,t0> +y070)

[0 pNPz K> (s +10,0)
+/ o * _ %
K> (t“z(mvm) +to,0) + K1 (f"Z(”‘V”Z) +to,S+fo>

hy (s+10) (T2 (s +10))P ds

o
T <z o (p1ve2) 4 tO)

LS _ %
=cop2 <K2 <l‘a2(p1v”2) —|—l‘0,0) + K> (l‘ @ (P1Ve2) +to,l‘0> +’)/0,0)

and

) P1VP2
K> (s +10,0
+/ o e =
(taz(mVPZ) +t0,0> +K (t"2(”lv”2) —|—t0,s—|—to)

hy (s+10) (@ (s+10))P ds.

31 o
Using the fact that K; (t”‘Z(PlVPZ) +t07s+to) <K; (t”‘Z(PlV"Z) +to,0>, i=1,2, we

L
[0 <z a(p1ve2) 4 tO)

obtain
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) L3 _
=ccop2 <K2 (l‘ @ (p1vp2) —|—l‘0,0) +K1a1 (taZ(plv”Z) —|—l‘0,to) +’)/0,0)

t 2 PIVPZ K2 (S+t(),0)
+/ o *Q o
K, (z”‘z(f’lvf’z) +t0,0> + K" (t o (p1ve2) +t0,0)
hy (s+10) (112 (s +10))P' ds

and

o
75 (; o (p1ve) 4 t())

_ 9
>copa <K2 (; o (p1Vvp2) +10,0> +K (;az(plvpz) -HOJO) +y070)
d

o0

By (s +1to) (1 (s+10))P ds.

2 P1VP2
K> (s+1p,0
+/ 2((11 0,0)
2K, (taz(PNPz) +t070)

Now, using (2), we have

o
7 (; a(p1ve2) +t0>
PL%

% P2 o % o
>ceop | @3 (f o2(p1Vp) +to) + (ay) ™ (f%(p‘%) +f0) +%,0

\/
+/”‘2 "1 P2) a%(s—i—to)p2
o P2 o % %
a% (t @ (p1Vp2) +to> +(a3) ™ (t 2(e1vp) ‘HO)

chy (s+10) (1 (s +10))P1 ds

and

o (51 P2
) (t a(p1Vp2) +t0> > copa <2a% (t o (p1VP2) -Ho) ‘H’O,O)

o )

o (p1Vp2) 2 P2

+ 1

+ / 4 (Sal O | s o) @ s+ 10))* ds.
0 242 (; a(p1Ve2) -|-to>
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Using (i) of Lemma 1 we get

Gl
7 ([ a(p1ve2) 1 1‘0)
P12 T

o p2 a o o *
>ceo (a% (taz(mvpz) +t0> + (aé) o (taz(mvpz) "Ho) : —|—y0> p2(1,0)

)
+/ o ai (s +10)”
o P2 o o %
a% (, a(p1veo) _|_z0) + (aé) o (t o (p1VP2) -|-z0)
chy (s+10) (2 (s +10))Pr ds
and
o &1 p2 7‘;172
72} (t 0 (P1Vp2) +to> > ¢ (2613 (f e2(prvp2) +to) + Yo) p2(1,0)
d
(o102) h
o (p1Ve2 2 P2
ay (s+1o _
+/0 l(al ) 5 | e (s+10) (@ (s +10))P ds.
243 (t o2 (p1vp2) +t0>
Therefore
(Xl i
7 (taz(mvﬁz) -Ho) (t+10)®
d
%)
41ty
>
ZCC) " 02 w o % PZ(I,O)
() e () o
%
;0 pl sz a% (S + tO)PZ (l + tO)
+/ P19

o P2 o 1 o
a% (t o (p1Vp2) +zo> + (aé) @ (; o (p1Vp2) +t0>

hy (s +10) (702 (s +10))P! ds
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and

t+1ty

o P2
202 <z =) +to> I

3l

Z P2(170)

*
7} (t o (p1ve2) +f0) (t+10)

o L)

1 @2 (P1VP2) a? (s+10)P* (t +1o)
+ P B
0 %
2a3 (t @ (p1vp2) +t0)

hy (s + 1) (@ (s+10))P2 ds.

S _AP pL o P
Let us fix Ty > 0 such that 12(1V%2) > 1y, 2P2a3r@P1vp2) 4271 (a}) o 1P1ve2 >
1P
and 2p2+1a%t @(p1vP2) >y for all ¢ > Ty. Then for any ¢ > Ty

o i
uy (t%(PIVPz) +t0> (t+19)™

o
t+1
=cc @p Loy @ _p p2(1,0)
2p2+1a%t o (p1Vp2) —|—21+T1 (aé)”‘_ltplvpz
oy 4z
(0%
ealor ) @ (s +10)P2 ( +10) i
+ o ¢ o1 p) Py o _p
2P2a%t oo (p1ve) 12 (aé) o fP1YP
i (s +10) (72 (s +10)) Pt dis
and
a4
o d t+1o ”
) (zaz(mvm +to> (tt10)= 2co | ————ap— | p(L0)
2P2422¢ @2 (p1ve2)
_a o
ro2(prve) [ 2 s—+10)P? “
0 t+1t —
+/ SRR glpz ) hy (s +10) (7 (s +10))P ds.
0 2241 g3 @2 (P1ve2)
From here

i (l‘ o (p1Vpy) + tO) (I + tO) o)

t+1o
*1P2 P o p1
14 P1% o _P1
2P2+1a% (t +19) 2(P1vP2) 42 Ty (aé) I (t4-19) P1VP2

>cCo
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d
+/t‘72 P1VPy . 2(S+l0)p2 (Z+l0) )
1P 02 Pl
’ 2243 (t 4 19) 2(P1VP2) 42 CE (@) @ (1 410)P1VP2

“hy (s +10) (702 (s +10))P ds
and

d
o
) d_ I
uy (taZ(plvPZ) +t0) (t+t0)a2 = Co 0 P> p2(170)
2P2+2a% (t +10) a(p1Vve)
d

+/ e P1\/P2 a% (S-l—t())m (t+t0) 2

15 hy (s +10) (7 (s +10))P ds.
2P2+1a% (t +19) 2 (P1Vp2)

Using that —%P2__ < ] and -2

AR g S 1, we obtain
d
% d 1 o)
ui 12 (p1vP) +t0> (Z—HO) %2 > ccp Plaz 5 p2(170)
2m+lgd 2T e (ah) @
d
pl\/PZ 2 0 o
aj (s+ 1
_|_/ 1( 0)

NS ) hi (s+10) (72 (s—l—to))ﬁl ds
2P2a% +279 (aé) o

and
d
(1305 110} (04105 > o ([ — )™ pa(1.0
up +0 (+0) =z €0 2p2+2a% P2( 7)

1 %2 P1VP2 d
aj (s+t 0 B
+/ ( 12p2+103 ) ha (s +to) (1 (S+to))/32 ds.

Using now (3), we get

d

% d 1 %)
up 12 (p1VvP) +19 (t—i—to)a > cco o 5 p2(170)

202412 12" ()@
d
Plvpz 2 L) J
a apy
+/ Pnlw [} b (s+10) @ " (@ia (54 10))P1 ds
2P2a +2 * (aé) o)

and

o (a0 & L \®
i (’ 2o +to) (t+10) > o (rzg> p2(1,0)

13
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d

;02 Plvpz 2 o

+ 4 ’
p2+1a%

Let 1 be the minimum value of

A. PEREZ

dp
B2 (s+10) @ % (@) (s +10))P ds.

d d
) )
1 a?
cco plorz a p2(1a0)a c }Jlaz 2 bla
20412 42! e (gl) @ 202+ g3 + 27 (al)@
where by := b} Ab?. Since 0 < ¢ < 1, we have

_ d
i <I a(p1Vpy) —|—t0) (t —|—t0 orz

and

L d
i (’%(W” +f0) (t+10)% >n+ ’7/

or equivalently

%2 Plvpz
21N +Tl/

and

TH‘W/

dpy dpy
S+t()) o o] —

$ 02 Pl VPz dp,

(s+10) @ % (up (s—l—to))ﬁl ds

o Pl VPz dpy

(s+10) @ T (@ (s+10))P ds,

d

(Xl d
up <l‘a2(p1\/p2) —|—to> (l—|—l‘0) @

d
)

%, <(s+z0) i (s+to)>ﬁlds

) d
i (l a(p1Vpy) +t0) (t +t0) 7

o
o (p1Vp)

t 92
>n+n/0

From here, we have

4P | 5 4B d
(S+l0) oo T2 0 <(S—|—t0)a uj

s (p1ve)

dpy

(H—to)>l32 ds.

%

_ Y\ a 2 B [ 4 B
a (t2Pve) 1o >n4n 5@ D | s2uy(s) | ds
to+To
and
231
) 4 1 @2 (P1VP2) dpy o iy [ d B
i (;%(Pl%))z% >n+n s T2 m (s“zal (s)) ds,
to+71p
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1
with r2(P1ve) > 1+ Tp.
Consider the integral system

)ZTH'W

Wo (l “Z(PIIVPZ)) =N+

o
o2 (p1Ve2)

o
wi <z o (p1ve2)
to+Ty

o
2 (P1VP2)

to+T1p

(sel /\s62> wgl (s)ds

(s91 /\s92> wlfz (s)ds

o

r2(Pve2) > 1+ T,

(16)

1

121v02) > 10+ T,

where 6, = O% (p2 — Bi) + 0i, i = 1,2. The differential expression of (17) is

o I
P i m(erve) W/l (taz P1VP2) )

o (p1Vp2)

o S
— L %) [(l 0 PNPz

o (p1Vp2)

0, )
) /\( t% PNPz)) ‘|ng (taz(l?lVPz))

o L
71z02(01V92) wh < 1o PNPz )

o (p1Vp2)

o (p1Vp2)

31
:Lt o0 (p1Vp2) ln [(t D‘z(mvpz)

o

—; . . .- . ..
t2(P1vp2) > 4 4 Ty, with initial conditions wy (fo + Tp)

lently

(™

n
n (1A% ) w2 (o),
n=

1 ) 1
) /\([O‘Z(PIVPZ)) ‘| ﬁZ(“z(PNPz))

=n=w;(to+Tp), or equiva-

) ﬁl (1), t>to+To,

= t > to+ 1o, (17)
(t0+T0) = z(l()-l—T())7
whose solution satisfies
1 1
O LR S O R L
Br+1 Bi+1
/32+l /31+
n n
If By > B , then
w0 Wit
B+1 Bi+1
or, equivalently
— B+l
1\ B+l
wi(t) > (gil) Tl e), 1200+ T
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Substituting this into the second equation of (17) we obtain

Ba(By +1)

1 ﬁ+1

wh(t) =1 (tel/\t92> (gzil) w0, >0+ T,
1

Let us suppose (without loss of generality) that 8; < 6>, then % < % and thus,

By (Bi+1)
— +1 /3+1
wy P (wh(t) = (g?—i—l) LS

Integrating from 7y + 1o to ¢ yields

1-pyB .
ﬁzilz (t)—nlﬁfyfz] > <ﬁ2+ 1) e /t s%ds.
1

ﬁ2+l
1-Bips

ﬁl +1 0+To

Thus (recalling that B3, > 1), we obtain

/32+l
=By B,

=15, 1 /3+1
wa(t) = [n Pt —n(g?il) ’ /t+T s%ds
0+7To

Since 6, + 1= (Pz ﬁl +01+ 120, it follows that ft';+TO s91ds — oo when t — . So
there exists 7, > 1 + Ty such that wy (1) = e for t =1,. By comparison we have

dpy
W)t 2 2wy(t)=o fort=t,,

. . . . . By+1
and Lemma 3 implies that (uy,u;) blows up in finite time. In the case when 73 2+ T <
B
73 1+1 , it can be shown that there exists #, > 19+ Tp such that % (f,) = e, which implies

again that (u;,up) blows up in finite time. [

4. Other results

In this section o; € (1,2) and g; : RY — R¥ is a function in the Kato class ¢
onRY, i=1,2.

Let pf(z,y —x) be the transition density of the semigroup generated by Ay, +
gi(x)-V,i=1,2. Itis known (see Bogdan and Jakubowski [2], Theorems 1 and 2) that
p¥i(t,y—x) is continuous, and for every 0 < T < oo, there exists C; = C; (d, 0,8, T) >
1 such that

Ci_lpi(t7y—x) < pfi(t,y—x) < Cipi(t,y—x), 0<t<T, x,y € RY, (18)

and C; —1as T —0.
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The associated integral system to the nonautonomous fractional diffusion-convection-
reaction system (11) is given by

i(7,%) / pi(Ki(2,0),y —x) @i(y dy+// P ).y —x) hi(s)ul (s,y)dyds,
(19)
>0, xcRY, where i € {1,2} and i/ = 3 —i. A solution of integral system (19) is
called a mild solution of (11).
The proof of Theorem 2 is a simple adaptation of the proof given in Pérez [12] for
the autonomous case.

Proof. Letus fix 0 < T < co. From (18) we get
o / .0y ) o+ [ / i (m(r,sm—x)hi<s>uf?f<s,y>dyds}
/ P (Ki(2,0),y —x) i(y dy+// P ).y — ) hi(s)ul (s,y)dyds
<¢ [ /R (K100 y =) @ay+ [ /R i (Ki(t,5),y—=x) m(s)u?"(s,y)dyds] 7

forall 1 > 0 such that K;(r,0) < T, i=1,2.
Letting the integral system

wle) = [ piKi.0).y =090y + [ [ piKi(t.9).5 —0 (o) (s9)dves

>0, xeR?, i=1,2, we have that (vi,v2) is a nonnegative mild solution of the
nonautonomous reaction-diffusion system (1). Thus, by comparison

Cli(t,x) < uilt,x) < Cvi(t,x),

for all # > 0 such that K;(z,0) < T. Therefore (u,u;) blows up in finite time if and
only if (v1,v,) blows up in finite time. [
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