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ESTIMATES INVOLVING THE w-RIEMANN—LIOUVILLE
FRACTIONAL INTEGRAL OPERATORS BY MEANS OF
Nn-QUASICONVEXITY WITH APPLICATIONS TO MEANS

EZE R. NWAEZE

(Communicated by J. Wang)

Abstract. Since not every quasiconvex function is convex, it is our purpose in this present paper
to extend some already established inequalities of the Hermite—-Hadamard-Fejér type and its
companions for convex functions to the class of 1 -quasiconvex functions. The new results
obtained herein are in terms of the @ -Riemann-Liouville fractional integral operators and they
reduce to inequalities for quasiconvex functions for a particular choice of the bifunction 1. In
addition, we apply some of our results to certain special means of positive real numbers to obtain
more estimates in this regard.

1. Introduction

In the 17th century, the french mathematicians Charles Hermite [8] and Jacques S.
Hadamard [7] stipulate the following two-sided estimate of the mean value of a contin-
uous convex function & : [o, ] — R:

(S8 < s [hrar < LG "

The above inequality, known as the Hermite—Hadamard inequality, has motivated loads
of papers in this direction. In 1906, the award winning mathematician Lip6t Fejér
established the following weighted version of (1) in the following theorem:

THEOREM 1. ([4]) Suppose g : [o, ] — R is a nonnegative integrable function
with g(x) = gla+ B —x). If h:[o,B] — R is a convex function on o, 3], then the
following inequalities hold:

(522) [P s 5 [P K0 P

In 2013, Sarikaya et al. [24] obtained the following fractional version of (1):
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THEOREM 2. Let € >0 and h: [0, B] — R be a positive function with 0 < a0 < 3
and h € L([a, B]). If h is a convex function on |a, ], then the following inequalities

hold:
(£52) < 2220

where the Riemann—Liouville fractional integrals, If)(+ and Iﬁ

, are defined as thus:

X

I, h(x) = ﬁ /a (e— P Vh(r) dr

and

£ 1 ﬁ E—
15 h(x) = )/x (r—x)e'h(r)dr.

I'(e
Here, T'(€) is the Gamma function defined by T'(g) = / e xt L.
0

More papers in this sense can be found in [9, 17]. We now recall the definition of a
function integrated with respect to another function in the fractional sense:

DEFINITION 1. ([13]) Let @ : [, ] — R be an increasing and positive mono-
tone function on (¢, ] having a continuous derivative @’(x) on (o, ). The left and
right-sided fractional integral of & with respect to the function @ on [a, ] of order
€ > 0 are defined respectively by:

e R o'(r)
Jot:oh(x) = o) /a ()= w(r>]17£h(r) dr, x>o

and

~E _ 1 B a)/(r)
dﬁf;wh(x) = ] /x ()= a)(x)]lfeh(r)dr’ x < B.

REMARK 1. In view of the above definition, we make the following observations
that will aid the readability of this article.

1. If o(x) =x, then

Joroh(r) =T h(x) and 3§, h(x) =I5 h(x).

2. Let o(x) = Inx. Then the fractional operators become the Hadamard fractional
integrals, fo+ and J¢ _, defined as follows:

) =350 = s [ () My

and

) =y = = [ () M

X r
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Using the operators given in Definition 1, Budak [2] recently established the following
inequalities of the Hermite—Hadamard—Fejér type:

THEOREM 3. ([2]) Let € > 0. Suppose o : [0, B] — R is an increasing and pos-
itive monotone function on (o, 8] having a continuous derivative ®'(x) on (o, ) and
g [o,B] — R a nonnegative integrable function. If h is a convex function on [ct, 3],
then we have the following Hermite—Hadamard—Fejér type inequality for generalized
fractional integrals:

Ly, ~
<5 [35 s (B) + 35 08H (@)]

<MOVHB) (e e(B)+ 35 0slr)]

3fx+;wg(ﬁ> +3E,;wg(a)} h (a ; ﬁ)

where
H(x) =h(x)+h(x) and h(x)=h(a+p—x). 3)

In the same paper, Budak established the following trapezoid type result:

THEOREM 4. ([2]) Let € > 0. Suppose o : [0, B] — R is an increasing and pos-
itive monotone function on (o, B] having a continuous derivative ®'(x) on (a,). If
|| is a convex function on o, B, then we have the following trapezoid type inequality
for generalized fractional integrals:

M [Sfﬁ wé’(ﬁ)*"?fi’;wg(a)} _% {3;;ng([})+3737ng(0‘>}

2
Ko (o, o) + Ko ( ﬁ B) (
< OG- (1 o) 1B
where the function K&, : [ B] x [, B] — R is defined by

K& (x,y) / (/(Hﬁ rm(;)/is%ds) |x—r|dr

Ll 5 )t

Recently, Liu et al. [15] proved the following two results:

“4)

THEOREM 5. Let € € (0,1) and h : [o, B] be a differentiable function on (a., ).
Suppose o : [, B] — R is an increasing and positive monotone function on (a., f]
having a continuous derivative ®'(x) on (o, B). If |I| is convex on [o, B], then we
have the succeeding inequality for generalized fractional integrals:

‘h(a);h(ﬂ) . 22%8_2))8 (3100 (100) (7 (B) 35,15 (h000) (07 () ‘

<ot (13 ) Wl + s
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THEOREM 6. Let € € (0,1) and h: o, B] be a differentiable function on (o, f3).
Suppose o : [ot, ] — R is an increasing and positive monotone function on (a., ]
having a continuous derivative ®'(x) on (o, B). If |I| is convex on [o, B], then we
have the succeeding inequality for generalized fractional integrals:

— [32—1(a)+;w(how) (a)*l(l})) —|—3fo,1(ﬁ),;w(hoa)) (wfl(a))} _h (ﬂ) '

2
<P T (1 3 ) e e sl

Next, we recall the notion of quasiconvexity.

DEFINITION 2. A function #:1 C R — R is called quasiconvex on the interval I,
if
h(tx+ (1 —1)y) < max {h(x),h(y)}

forall x,y € I and T € [0,1].

Not too long ago, Gordji et al. [6] further generalized the class of quasiconvex functions
in the following manner:

DEFINITION 3. ([6]) A function i :1 C R — R is called 1n-quasiconvex on [
with respectto 1 : R xR — R, if

h(tx+ (1 = 1)y) < max{h(y), h(y) +n(h(x), h(y)) }
forall x,y € I and 7 € [0,1].

Inspired by the above mentioned articles, it is our purpose, in this paper, to extend The-
orems 3-6 to the class of 71 -quasiconvex functions. It is generally known that this class
of functions contains strictly the class of convex functions, and thus the inequalities
mentioned in the above theorems may not hold for those functions that are quasiconvex
but not convex. In view of this limitation, it is of interest to establish estimates for
this family of functions involving the w-Riemann-Liouville fractional integral opera-
tors. Results with the Riemann-Liouville and Hadamard fractional integral operators
can be deduced as special cases of our theorems by taking @(x) = x and ®(x) = Inx,
respectively. Besides, we also obtained more inequalities in this direction and applied
them to some special means of real numbers. For some recent results involving these
generalized fractional integral operators, we invite the interested reader to see the pa-
pers [16, 10] and the references cited therein.

This paper is organized in the following fashion: in Section 2, we frame and give proofs
to our main results. Some applications to certain special means are presented in Section
3, followed by a brief conclusion in the last section.



ESTIMATES INVOLVING THE @ -RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATORS 45

2. Main results

In the sequel, we will make use of the following notations: for any 1 -quasiconvex
function f : [a, B] — R, we denote

ZE(fim) == max {f(), f(@) + (£ (B), f(e))} )

and
B (fim) == max {£(B), £(B) +n(f(e), £(B))}- 6)

Now, we state and prove a right-sided inequality of the Hermite—Hadamard—Fejér type.

THEOREM 7. Let € > 0. Suppose o : [o,B] — R is an increasing and positive
monotone function on (o, ] having a continuous derivative ®'(x) on (o,B) and g €
L([ee,B]) a nonnegative function. If h € L([ee,B]) is an 1M -quasiconvex function on
[, B], then we have the succeeding inequality for generalized fractional integrals:

30 8H) (B) 35 (8H) (@) < (35,0 (8) (B) 435 o (&) (@) [ZE () +- 2 s
where the function H is defined by (3).

Proof. Using the 1 -quasiconvexity of %, one gets that for all 7 € [0, 1], the fol-
lowing inequalities hold:

h(tB+(1- 1)) < 25 (hm) (7)
and
h(to+(1-1)B) < 26(him). (8)
Adding (7) and (8) gives:
(T +(1—1)a) +h(ta+ (1 —1)B) < Ph(hsn) + 25 (k). )

Now multiplying both sides of (9) by

B« o' (tf+(1-1)a)
(&) [0(B) ~ (B +(1-1)a)]

and integrate the resultant inequality over [0, 1] to give:

=8B+ (1-1)a)

B—o ! o (B +(1-17)a)
T Jy M o) e

o' (1f+ (1 —-1)ox)
[o(B)—o(tf+(1-1)0)]

. 5. 1 o' (tB+(1-7)a)
[@a(h’n)"_"@a(h’n)]/o [a)(ﬁ)—w(‘[ﬂ-i-(l_f)a)]

8B+ (1-1)a)dr

+Br<_—s?/olh<w‘+<1—f>ﬁ> g (tB+(1—T)a) dt
B—a

STle)

—8(tf+(1-1)a) dt.
(10)
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If we substitute x = T8 4+ (1 — 7)o, then d7 = ﬁ
Using this change of variable, we get:

o (B +(1-17)a)

Sdx, a+B—x=to+(1—-1)B.

g+ (1—1)0a)dt

p
)/a [@(B) — o )]~
=Jo+0(8R)(B);

o' (tf+(1—1)a)

)or) ¢
) [o(B)—w(tf+(1-1)0)]
—“ h(x o' (%) X ! dx
>/ Vo) —owr Ve
o (%) h(x)g(x) dx

(1)

B—oa !
m/O h(ta+(1-1)B)

g(tp+(1—1)a)dr

[@(B) — (1B + (1 - 1))~
L. o (tf+(1-1)a)
( )a) e
0 [0(B) - (1B +(1-1)a)]
=Jot:0(8h) (B)
and

ﬁ—a/l o' (1f+(1—1)a)
0 [o(B)-w(tB+(1-1)a)'"

Using (11), (12) and (13) in (10), we obtain:

3o 0 (80)(B) +35,0 (8N (B) < | 2L (him) + 26 (i) | 35,

Equivalently,

3o (gH)(B) < [ Zh () + 25|

Similarly, one gets, by multiplying (9) by
B—a o (ta+(1—-1)B)

g(tp+(1—1)o)dr

12)

28 (B + (1 -1)a) dT =54, (2)(B)-

T'(e) [o(to+(1—-1)B)— w(c)]

and integrating the resultant inequality over [0, 1], the succeeding inequality:

o' (ta+(1-1)p8)

) [o(ta+(1—-1)B)—

]
o (to+(1—1)B)

(13)
©@&MB). (14
Jot0(8)(B)- (15)
g (ta+(1-1)B)
—g(ta+(1-1)B) dt

o(o)

B—o /!
+W/o h(ta+(1—1)B)

[o(ta+(1—-1)B)—
o (ta+(1-1)p

o(@]" -g(ta+(1-1)B)dr

<!y [Posmy s 2boen)] [

T'(e)

o (ta+(1—-1)B)—o(a)]' ¢

g(to+(1—-1)B) dz.
(16)
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Changing variable to y = Tt + (1 — 1) and applying Definition 1, we get:

35 0(8h) (@) + 35 o (eh) (@) < [ ZE(hin) + 280sm) | 35 () (). (A7)

That is;
35 (gt (@) < | 2R 0sm) + 28] 35, (2)(@). (18)

The desired inequality is established by adding (15) and (18).
The next theorem contains a right-sided Hermite—-Hadamard type inequality.

THEOREM 8. Let € € (0,1). Suppose o : o, ] — R is an increasing and pos-
itive monotone function on (o, B] having a continuous derivative ®'(x) on (o, ). If
h € L([e, B]) is a positive N -quasiconvex function on [o, ], then we have the suc-
ceeding inequality for generalized fractional integrals:

T(e+1) 1., B . -
W[\qu(aﬁ;w(kow) (o 1([3))+Jw,l(ﬁ),;w(hoa)) (@ l(a))}

<ZE () + 285 (h;m).

Proof. To obtain the desired inequality, we multiply both sides of (9) by t€~! and
integrate over 7 on the interval [0, 1] to get:

/lr“*lh(rﬁ +(1-1)a) dr+/118*1h(ra+ (1-17)B)dr
0 0
1
<[Pl + Do) [t ar (19)

_ l@ﬁ(km)ﬂ@ﬁ(km)] |

€

Next, we observe that

I'(e) [~g

(B—a)*

[ () oo e0
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1 1
:/ rg‘lh(wc+(1—1:)[3)d1:+/ B+ (1—1)ox) de
0 0
{with 1:%} {with t:%]

=[G+ Dey s [ izt (1-0)p) dr
0 0

Substituting (20) into the left hand side of (19), one gets the desired result.
If we let 1 = (x—y), we then obtain the following corollary:

COROLLARY 1. Let € € (0,1). Suppose o : [a, 3] — R is an increasing and pos-
itive monotone function on (o, B] having a continuous derivative ®'(x) on (o, ). If
h e L([a, B]) is a positive quasiconvex function on [o, B], then we have the succeeding
inequality for generalized fractional integrals:

% Jort(ay0(ho @) (@7 (B) +351 ) (ho®) (07 (a))}

<max {h(o),h(B)}.

The following lemma will be useful in the proof of the next result.

LEMMA 1. ([2]) Let € > O and let the mappings ® and g be as in Theorem 7.
If h:|a, B] — R is a differentiable mapping on (o, ), then the following identity for
generalized fractional integrals holds:

MO TP 3t )+ 3508(@)] — 3 [35e 6P (B)+ 3P 1)
B

where the mapping Lq., : [ot, B] — R is defined by

_ [ '(x) ’ '(x)
e e e g A R

REMARK 2. Since @ is an increasing function on [o, 8] and g is nonnegative, it
follows therefore from the definition of Lg.(r) that:

B B ' (x) B ' (x)
Leol®) =~ |, G o, o) w4 <O

Ly (O‘Zﬂ) =0.

<0 if a<r< %8
Lg'w() o+ :

and

Hence,
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THEOREM 9. Let € >0 and let the mappings ® and g be as in Theorem 7. If |} |
is M -quasiconvex on o, B], then the following inequality of the trapezoid type holds:

MO EHE) g5+ 6] 3 3l B) 3 e 0]

2
05 (%) +O%(B) LB .1
T(S)QQ(MLTI)’ o
where the function ©%) : [ar, B] — R is defined by
S o/ (s)g(s)
0% (y) = OIS g a
o= ([ e @ )

/r __OEs) (5)8(s) ds) dr.

atpr |O(y) — o(s)|'~*

B
a
2

Proof. Using the 7 -quasiconvexity of |/'| on [a, ], we get the following in-

equality:
h“;_ a+<1 g__;)ﬂH<££(h';n). (23)

From Lemma 1 and (23), one obtains:

‘M{ggmg(ﬁ)ﬂﬁ 08l )} ;[dw w(gH)(ﬁ)+3f3;w(gH>(“)]’

Qﬁh’n
o [ e < 2 P

Now, using Remark 2 and (22), we obtain:

[ (r)] =

(24)

a+/3

/\ng |dr—/ Leolr dr—i—/ngw

a+,B

-/ U o e (S?a)}ug@dx} ar

+/w Lo G et g

oc+ﬁ

LT e etestad o

o' (x)
+/# o oy Zomresta] o
— () + 05 (B).
The intended result is achieved by using (25) in (24).
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REMARK 3. Let n(x,y) = x —y. From Theorem 9, we deduce the following in-
equalities:

1. If g(x) =1, then (21) becomes:

h(a) +h(B) Te+1) (., .
2  4oB)—o(a)t {‘joﬁ;w(H)(ﬁ) +Jﬁ7;w(H)(a)] '
() + 9, (B)
(B)— (o) "X I (@LIH B}

where

@5 () 1= ®€<>g1=/fﬁ(/r°‘+ﬁ’|()“"% )dr
)
(

foa =)

/’ o' (s
atp-r|o(y) — @

2. Suppose ®(x) =k(x) =x. Then (21) amounts to the following Riemann-Liouville
fractional inequality:

'im) 15 9(B)+15 g(a)] - % [I§+(gH)(ﬁ)+IE(8H>(O‘)H
%(?S(B)max{h/ 1R (B[}

where

[ parbr g(s) Bo( (s)
or ::/2 (/ Ld)d—k (/ g7d>d.
k() ; : b—s|I¢ s |ar B \ JorprJy— s ¢ S |ar.

3. Suppose ®(x) = Inx. Then (21) reduces to the following Hadamard fractional
inequality:

MDD (g 5435 5000] - 1. a8+ 35 o0

%(gfmm{w(a» (B},

oh0 = [ N ([ ) ) ar
([ DG )

For the rest of our theorems, the following two lemmas will be useful.

where
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LEMMA 2. ([15]) Let € € (0,1) and h: [o,B] be a differentiable function on
(ct,B). Suppose I’ € L([e, B]), @ [et, B] — R is an increasing and positive monotone
function on (o, B] having a continuous derivative ®'(x) on (o, ). Then we have the
succeeding equality for generalized fractional integrals:

h(a);h(ﬁ) - 2121(38—_:16))8 {/Ji)*l(a)ﬁw (hO(D) (wil(ﬁ)) +3fo*'(ﬁ)*;w (hO(D) (wil(a))}

1 o 1 (B) . o /
:W/C‘Oil(a) [((D(I")—OC) _(ﬁ_(D(I")) }(h OQ)(r)a) (r)dr.

LEMMA 3. ([15]) Let € € (0,1) and h: [a, ] be a differentiable function on
(ct,B). Suppose I’ € L([e, B]), @ [at, B] — R is an increasing and positive monotone
function on (o, B] having a continuous derivative ®'(x) on (o, ). Then we have the
succeeding equality for generalized fractional integrals:

2121(38:1)) hi”l(a)*:w(how) (("_l(ﬁ))-f—ﬁfo—l(ﬁ)*;w(how) (a)_l(a))] —h (#)
1 o' (B) o /
2B a>/ [(B= () = (@)~ ) | i o 0) (@ (r)r
o ' (B)
+/w,l(a) p(h ow)(r)o (r)dr,
where
1 1 (otB . .
r=3" o~ (%5F) <r<o”'(p) .

- 1 (ot
-3, o Na)<r<o 1<Tﬁ>
We are now ready to state and prove our last two theorems.

THEOREM 10. Let € € (0,1) and h: [e, B] be a differentiable function on (a., ).
Suppose o : [, B] — R is an increasing and positive monotone function on (a., f]
having a continuous derivative @'(x) on (o, ). If |W| is n-quasiconvex on [a, ],
then we have the succeeding inequality for generalized fractional integrals:

M) D 00020 07 (8) 435 1200 0”0

ﬁ o 1 B/
(BRI

Proof. We start by observing that for every r € (0~ '(a), @ '(B)), we have o <

o(r) < B. Letting 7= ﬁﬁ ©0) then o(r)=at+(1—1)B. Using Lemma 2 and the
7 -quasiconvexity of ||, we get

e 86 s (h0) @ (B35 gy h00) (0 (@)
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1 o '(B) . .
ey | @) =0~ (B 0()

(Wow ’|a) V| dr

1 o (B) . . /
s @) 0 = B~ 000 [ 0)) o)

)¢ — 1| |W (ot + (1 —1)B)|d7

ey
L32[ -0 was) 2w,

To finish up, we need to compute fol |(1—17)¢ — 7%| dt. To do this, we note that:

>0, if 0<7t<}?
(I-1)f—1°¢=0, if 7=3% 27
<0, if I<r<1

Now, using (27), we write:
1 1
/\1—1 —T|dT—/ [(1-7)f=1f]dt+ [ [1°—(1-71)dr
2
1 1 1 1
= (1—— —(1-= 28
() e () @

2 { 1
e+l 2¢ )
The proof is complete by using (28).

THEOREM 11. Let € € (0,1) and h: [e, B] be a differentiable function on (a., ).
Suppose o : [ot, ] — R is an increasing and positive monotone function on (a., ]
having a continuous derivative @'(x) on (o, ). If |W| is n-quasiconvex on [a, ],
then we have the succeeding inequality for generalized fractional integrals:

% [3271(a)+;w(hoa)) (a)_l(ﬁ)) +Jfo,1(ﬁ),;w(how) (w_l(a))} _h (ﬂ) ’

‘ 2( 2
<li+l (1__>£/3(|h )+ Ih(ﬂ);h(a)\_

Proof. Taking the absolute value of both sides of the identity in Lemma 3 and
utilizing the 1 -quasiconvexity of || on [, B] to get:

‘ [(e+1)

2(B—a)e [38 1<a)+;w(hoco)(wfl(ﬁ))+3§),l(ﬁ),;w(how)(wfl(a))}_h (#)’

1 o 1(B) . o /
- W/arl(a) [(ﬁ—w(r)) —(o(r) — o) }(h ow)(r)o'(r)dr
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ol ,
+ / (i o @) (P (r)dr
o 1()
1

e Lo | (B 00~ (@) e

o 1 (B)
+ / p(H 0 0)(P @ (r) dr

o~ (a)
(15 ) 2Wism +p(B - o) [ W (o 1~ )p) e

+
o~ (1—2%) DB (W) + plh(B) — h(ar),

Te+1
_B-o
from which the desired result is deduced.

<

3. Applications

In this section, we present some applications of some of our results to the following
special means of u,v € R.

1. Arithmetic mean:

u+v
o (u,v) = >
2. Harmonic mean:
I (u,v) = 2uv .
u+v
3. Logarithmic mean:
$(u7v):m7 lu| #|v], wu,v#0.

4. Generalized logarithmic mean:

vm+l _ um+l

Zulu) = |

—_ , eN, .
m—|—1)(v—u)} " ugv
PROPOSITION 1. If 0 <x <y and m = 2, then the following inequality holds:

—x o
|%(xm’ym)_$nr1"(x7y)| <mmiax{xm 17y 1}. (29)

Proof. Let n(s,t) =s—t, h(r) =" and @(r) = r. Then, |I'(r)| = mr™! is
quasiconvex on [x,y]. Also,

1 ym-H _xm+l

Jo-1(a) 0 (h o @) (07'(B)) =Jo1(p)-s0 (10 @) (07 () = I'(e) m+1

As € — 17, the inequality in Theorem 10 amounts to (29).
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PROPOSITION 2. If 0 < x <y, then the following inequality holds:

o (&5, &%) — L(e", )| < ¥max{eﬁey}. (30)

Proof. Let n(s,t) =s—t, h(r) =¢" and ©(r) = r. Then, |K'(r)| = ¢ is quasi-
convex on [x,y]. In this case,

32)*1(O£)+;w(ho CO) ((Dil(ﬂ)) = ‘Njfo’l(ﬁ)*;w(ho (D) (a)fl((x)) = = (ey — €x) .
As € — 17, the inequality in Theorem 10 becomes (30).

PROPOSITION 3. If 0 < x <y, then the following inequality holds:

| () — 2 ()| < %‘max{ L } G1)

pal
Proof. Suppose N(s,t) =s—t, h(r) = % and o(r) = r. Then, |I/'(r)| = rlz is
quasiconvex on [x,y]. In this case,

Szfl(a)ﬂw(hoa)) (0™ '(B)) :sz—l(ﬁ)—;w(how) (0 ) = % (Iny —Inx).

By letting € — 1, we get the desired inequality by applying Theorem 10.

PROPOSITION 4. If 0 < x <y, then the following inequality holds:

-1 P ot 1 1] y—x
27 ) = )| < = 1na><{x27y2 e (32)

Proof. 1If we let, as in the proof of Proposition 3, n(s,t) =s—1t, h(r) = % and
o(r) = r, then we arrive at the intended inequality by utilizing Theorem 11 with € —
1.

4. Conclusion

New estimates of the Hermite—Hadamard—Fejér type and its associates have been
established. We did this by utilizing fractional integral of a function /, whose derivative
in absolute value is 71 -quasiconvex, with respect to another function @. In addition, we
applied Theorems 10 and 11 to the arithmetic, harmonic, logarithmic and generalized
logarithmic means to deduce more results in this regard. We anticipate that this work
will arouse interest in finding more applications in other field of the mathematical sci-
ences and beyond. Some recent results associated with the 1 -quasi(convex) functions
can be found in the papers [14, 18, 1,3,5,19,20,21,22,23,11, 12] and the references
cited therein.

Acknowledgement. Many thanks to the anonymous referee for his/her remarks that
improved this work.
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