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REMARKS ON THE LINEAR FRACTIONAL INTEGRO–DIFFERENTIAL

EQUATION WITH VARIABLE COEFFICIENTS IN DISTRIBUTION
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Abstract. The goal of this paper is to study the following linear fractional integro-differential
equation with variable coefficients, for the first time, in the distributional space D ′(R+) by
Babenko’s approach

u(βn)(x)+an−1(x)u(βn−1)(x)+ · · ·+a1(x)u(β1)(x)+a0(x)u(β0)(x) = g(x),

where βn > βn−1 > · · · > β0 with βn > 0 . We obtain the solution as an infinite series and
show its convergence. Furthermore, we investigate this equation with the Riemann-Liouville
and Caputo derivatives (non-sequential) instead of distributional ones, and the initial conditions
in the classical sense by a new and simpler method. Several interesting applications to solving
the fractional differential and integral equations are presented using gamma functions, some of
which cannot be achieved by ordinary integral transforms or numerical analysis.
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