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Abstract. In this paper, an attempt is made to understand the dynamics of a three-dimensional
discrete fractional-order eco-epidemiological model with Holling type II functional response.
We first discretize a fractional-order predator-prey-parasite system with piecewise constant ar-
guments and then explore the system dynamics. Analytical conditions for the local stability of
different fixed points have been determined using the Jury criterion. Several examples are given
to substantiate the analytical results. Our analysis shows that stability of the discrete fractional
order system strongly depends on the step-size and the fractional order. More specifically, the
critical value of the step-size, where the switching of stability occurs, decreases as the order of
the fractional derivative decreases. Simulation results explore that the discrete fractional-order
system may also exhibit complex dynamics, like chaos, for higher step-size.

1. Introduction

The idea of fractional calculus has been known since the notion of fractional
derivative was firstly introduced by Leibniz in a letter dated 30th September, 1695,
where half-order derivative was mentioned. Since then it was subsequently developed
by Euler, Lagrange, Laplace, Fourier, Abel, Liouville, Riemann, Heaviside, Caputo
along with many others [1]. Generally, fractional calculus deals with the study of frac-
tional order integral and derivative operators over real or complex domains and their
applications [2]. Specifically, it is a generalization of classical differential and integral
calculus of integer order to arbitrary order. In recent times, fractional order derivatives
and fractional order differential equations have been applied in several fields of science
and engineering [3, 4, 5, 6, 7, 8, 9, 10], however, initially it was treated as a topic of
interest of pure mathematicians only [11]. The reason is two-fold. First, fractional
derivatives have an additional degree of freedom over its integer order counterpart due
to the additional parameter that represents its order and more suitable for those systems
having higher order dynamics and complex nonlinear phenomena [12, 13]. Secondly
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and more importantly, fractional order derivatives not only depend on the local condi-
tions but also on the history of the function [14] and, therefore, fractional derivatives
have become an efficient tool for those systems, where the consideration of memory
or hereditary properties of the function is essential to represent the system, e.g., in the
case of biological systems. In the last two decades, fractional order calculus has found
its many applications in biological sciences [15, 16, 17, 18, 19, 20, 21, 22, 23].

Discrete system of a continuous time model has significant applications in simu-
lations and computations. Particularly, the population model can be better described
in discrete time and it is especially applicable in populations having non-overlapping
generations, e.g., insect populations. Such discrete models are known to show richer
dynamics compare to its continuous counterpart [24, 25, 26, 27, 28, 29]. Thus, both
from biological and dynamic point of views, study of discrete system is important.
Though the number of discrete population models is numerous, the study of discrete
fractional-order population models is rarely observed in the literature. Recently, a
transformed method was employed to obtain solutions of a family of finite fractional
difference equations in [30]. The global and local existence of solutions for the frac-
tional difference equation are given in [31]. Numerical solution was adopted to syn-
chronize chaos in a discrete fractional logistic map [32]. For an ecological system,
Elsadany and Matouk [33] recently studied a two-dimensional fractional-order Lotka-
Volterra predator prey model with its discretization and showed complex dynamics.
The existence and uniqueness of solutions in two-dimensional discrete fractional Lotka-
Volterra model was addressed in [34]. Selvam and Janagaraj [35] studied the dynam-
ics of a two-dimensional discrete fractional order predator-prey system with type II
functional response. A two-dimensional fractional-order predator-prey model with sat-
urated harvesting was studied in [36]. Local stability analysis and bifurcation anal-
ysis have been done in a simple fractional-order SIR model by Salman [37]. Simi-
lar analysis was done for a fractional-order discrete SI epidemic model in [38]. Dis-
cretization has also been done in other fractional-order biological and physical systems
[39, 40, 41, 42, 43, 44, 45]. These relatively simple models show that the fractional-
order plays a critical role in breaking the stability. By considering a simple two-
dimensional epidemic model, Raheem and Salman [46] have shown that the dynamic
complexity depends also on the step-size of the discrete system. Analytical complexity,
however, multiplies if the dimension of the system increases and/or strong nonliearity
is there. In this paper, we construct a discrete version of a highly nonlinear three-
dimensional fractional-order predator-prey-parasite (PPP) model and reveal its dynam-
ics. So far our knowledge goes, no study has been done on a discrete fractional-order
PPP system. We unveil the dynamic properties of this highly nonlinear model both
from analytical and numerical points of view. We show analytically that the stability of
different fixed points depends on both the fractional order and step-size. It also shows
complex dynamics like chaos as shown by the continuous time integer order system for
some parameter values.

For this study, we assume the following continuous-time PPP model studied by
Chattopadhyay and Bairagi [47]:
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dX
dt

= rX

(
1− X +Y

K

)
−λYX ,

dY
dt

= λYX − mYZ
a+Y

− μY, (1)

dZ
dt

=
θYZ
a+Y

−dZ.

It says that a prey species is divided into two sub classes: susceptible prey (X) and
infected prey (Y ) due to some micro-parasite infection. Susceptible prey can give
birth and grow logistically to its maximum value K supported by the environment with
intrinsic growth rate r . The infection spreads by contact following mass action law with
λ as its force of infection. Infected prey is unable to reproduce but share resources with
susceptible prey. Infected prey dies out at a rate μ , which considers both the natural and
infection-related deaths. Predator population Z consumes infected preys only as they
are weakened due to infection and can not escape predation. Here m is the maximum
prey attack rate of predator and a is the half-saturation constant. The parameter θ
(0 < θ < 1) measures the reproductive gain of predator and d measures its natural
mortality. All parameters are assumed to be positive from biological point of view.
Readers are referred to [47] for more discussion about the model.

Table 1.1. Parameter descriptions and their units

Parameters Description Units
X Density of susceptible prey Number per unit designated area
Y Density of infected prey Number per unit designated area
Z Density of predator Number per unit designated area
r Intrinsic growth rate of prey Per day
K Carrying capacity Number per unit designated area
a Half-saturation constant Number per unit designated area
λ Force of infection Per day
m Search rate for infected prey Per day
μ Total (natural + disease-induced) Per day

death rate of infected prey
θ Reproductive gain Per day
d Death rate of predator Per day
α Fractional order 0 < α < 1

Considering the fractional derivative in caputo sense, Mondal et al. [23] extended
the work of Chattopadhyay and Bairagi [47] and analyzed the following fractional order
PPP model (1):

c
0D

α
t X = rX

(
1− X +Y

K

)
−λYX , X(0) > 0,

c
0D

α
t Y = λYX − mYZ

a+Y
− μY, Y (0) > 0, (2)
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c
0D

α
t Z =

θYZ
a+Y

−dZ, Z(0) > 0,

where c
0D

α
t is the Caputo fractional derivative with fractional order α (0 < α < 1) . It

is worth mentioning that the systems (1) and (2) become identical for α = 1. They have
shown that the solutions of system (2) are positively invariant and uniformly bounded
in R3

+ under some restrictions. Existence and uniqueness of solution of system (2) have
also been discussed. Local and global stability of all biologically feasible equilibrium
points of system (2) were also proved. Here we discritize the model system (2) and
explore its dynamics.

2. Discretized fractional-order model and its analysis

Following Elsadany and Matouk [33], discretization of model system (2) with
piecewise constant arguments can be done in the following manner:

c
0D

α
t X = rX([t/s]s)

(
1− X([t/s]s)+Y([t/s]s)

K

)
−λX([t/s]s)Y([t/s]s),

c
0D

α
t Y = λX([t/s]s)Y ([t/s]s)− mY ([t/s]s)Z([t/s]s)

(a+Y([t/s]s))
− μY([t/s]s),

c
0D

α
t Z =

θY ([t/s]s)Z([t/s]s)
(a+Y([t/s]s))

−dZ([t/s]s),

with initial condition X(0) = X0 > 0, Y (0) = Y0 > 0,Z(0) = Z0 > 0 and s(> 0) is the
step-size. Let t ∈ [0,s) , so that t/s ∈ [0,1) . In this case, we have

c
0D

α
t X = X0

(
r(1− X0 +Y0

K
)−λY0

)
,

c
0D

α
t Y = Y0

(
λX0− mZ0

(a+Y0)
− μ

)
,

c
0D

α
t Z = Z0

(
θY0

(a+Y0)
−d

)
,

and the solution of this fractional differential equation can be written as

X1(t) = X0 + Jα
0

(
X0

(
r(1− X0 +Y0

K
)−λY0

))

= X0 +
tα

αΓ(α)

(
X0

(
r(1− X0 +Y0

K
)−λY0

))
,

Y1(t) = Y0 + Jα
0

(
Y0

(
λX0− mZ0

(a+Y0)
− μ

))

= Y0 +
tα

αΓ(α)

(
Y0

(
λX0− mZ0

(a+Y0)
− μ

))
,

Z1(t) = Z0 + Jα
0

(
Z0

(
θY0

(a+Y0)
−d

))
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= Z0 +
tα

αΓ(α)

(
Z0

(
θY0

(a+Y0)
−d

))
,

where Jα
0 = 1

Γ(α)
∫ t
0(t− τ)α−1dτ,α > 0.

In the second step, we assume t ∈ [s,2s) so that t/s ∈ [1,2) and similarly obtain

c
0D

α
t X = X1(s)

(
r(1− X1(s)+Y1(s)

K
)−λY1(s)

)
,

c
0D

α
t Y = Y1(s)

(
λX1(s)− mZ1(s)

(a+Y1(s))
− μ

)
,

c
0D

α
t Z = Z1(s)

(
θY1(s)

(a+Y1(s))
−d

)
.

The solution of this equation reads

X2(t) = X1(s)+ Jα
s

(
X1(s)

(
r(1− X1(s)+Y1(s)

K
)−λY1(s)

))

= X1(s)+
(t − s)α

αΓ(α)

(
X1(s)

(
r(1− X1(s)+Y1(s)

K
)−λY1(s)

))
,

Y2(t) = Y1(s)+ Jα
s

(
Y1(s)

(
λX1(s)− mZ1(s)

(a+Y1(s))
− μ

))

= Y1(s)+
(t− s)α

αΓ(α)

(
Y1(s)

(
λX1(s)− mZ1(s)

(a+Y1(s))
− μ

))
,

Z2(t) = Z1(s)+ Jα
s

(
Z1(s)

(
θY1(s)

(a+Y1(s))
−d

))

= Z1(s)+
(t− s)α

αΓ(α)

(
Z1(s)

(
θY1(s)

(a+Y1(s))
−d

))
,

where Jα
s = 1

Γ(α)
∫ t
s (t− τ)α−1dτ,α > 0.

Repeating the discretization process n times, we have

Xn+1(t) = Xn(ns)+
(t−ns)α

αΓ(α)

(
Xn(ns)

(
r(1− Xn(ns)+Yn(ns)

K
)−λYn(ns)

))
,

Yn+1(t) = Yn(ns)+
(t−ns)α

αΓ(α)

(
Yn(ns)

(
λXn(ns)− mZn(ns)

(a+Yn(ns))
− μ

))
,

Zn+1(t) = Zn(ns)+
(t −ns)α

αΓ(α)

(
Zn(ns)

(
θYn(ns)

(a+Yn(ns))
−d

))
,

where t ∈ [ns,(n+1)s) .
Making t → (n + 1)s , the corresponding fractional discrete model of the continuous
fractional model (2) is obtained as

Xn+1 = Xn +
sα

αΓ(α)

(
Xn

(
r(1− Xn +Yn

K
)−λYn

))
,
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Yn+1 = Yn +
sα

αΓ(α)

(
Yn

(
λXn− mZn

(a+Xn)
− μ

))
,

Zn+1 = Zn +
sα

αΓ(α)

(
Zn

(
θYn

(a+Yn)
−d

))
. (3)

For α = 1, one obtains the so called Euler forward discrete model as a special case of
this generalized discrete model.

2.1. Existence and stability of fixed points

In the following, we investigate the dynamics of the discretized fractional order
model (3). At the fixed point, we have Xn+1 = Xn , Yn+1 = Yn and Zn+1 = Zn . One
can then easily compute that (3) has the same fixed points as in the integer and frac-
tional order systems (1) and (2). The system (3) has four equilibrium points [23, 47],
viz. E0 = (0,0,0) as the trivial equilibrium, E1 = (K,0,0) as the axial equilibrium,

E2 = (X1,Y1,0) as the planar equilibrium, where X1 = μ
λ and Y1 = r(λK−μ)

λ (r+λK) and E∗ =
(X∗,Y ∗,Z∗) as the interior equilibrium, where

X∗ = K−
(

1+
λK
r

)
Y ∗, Y ∗ =

ad
θ −d

, Z∗ =
(a+Y∗)(λX∗ − μ)

m
. (4)

Note that the equilibria E0 and E1 always exist. The planar equilibrium point E2 exists
if R0 > 1, where R0 = λK

μ . The interior equilibrium E∗ exists if (i) R0 > 1 and (ii)

θ > θ1 , where θ1 = d + λad(r+λK)
r(λK−μ) .

The Jacobian matrix of system (3) at any arbitrary fixed point (X ,Y,Z) reads

J(X ,Y,Z) =

⎛
⎝a11 a12 0

a21 a22 a23

0 a32 a33

⎞
⎠ , (5)

where

a11 = 1+
sα

αΓ(α)

(
r(1− 2X +Y

K
)−λY

)
,

a12 = − sα

αΓ(α)

(
X(λ +

r
K

)
)

,

a21 =
sα

αΓ(α)
λY,

a22 = 1+
sα

αΓ(α)

(
λX − mZ

a+Y
− μ

)
+

sα

αΓ(α)
mYZ

(a+Y)2 ,

a23 = − sα

αΓ(α)
mY

a+Y
,

a32 =
sα

αΓ(α)
aθZ

(a+Y)2 ,
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a33 = 1+
sα

αΓ(α)

(
θY

a+Y
−d

)
.

Let ξ1 , ξ2 and ξ3 be the eigenvalues of the Jacobian matrix (5). Then we have the
following definition and lemma.

DEFINITION 1. [37, 45] A fixed point (X ,Y,Z) of system (3) is called a sink
which is locally asymptotically stable if | ξi |< 1 (i = 1,2,3) for all i . It is called a
source which is unstable if | ξi |> 1 (i = 1,2,3) for all i . It is called a saddle if any
two eigenvalues follow opposite inequality, and a non-hyperbolic fixed point if | ξi |= 1
(i = 1,2,3) for at least one i .

LEMMA 1. [48] Suppose the characteristic polynomial F(ξ ) of a second order
Jacobian matrix is given by F(ξ ) = ξ 2 −a1ξ +a2 . Then the solutions ξi, i = 1,2, of
F(ξ ) = 0 satisfy | ξi |< 1 for i = 1,2, if the following conditions hold:

(i) a2 < 1, (ii) 1+a2 >| a1 | .

LEMMA 2. [48] Suppose the characteristic polynomial p(ξ ) of Jacobian matrix
(5) is given by p(ξ ) = ξ 3 + a1ξ 2 + a2ξ + a3 . Then the solutions ξi, i = 1,2,3, of
p(ξ ) = 0 satisfy | ξi |< 1 for i = 1,2,3 if the following conditions hold:
(i) p(1) = 1+a1 +a2 +a3 > 0, (ii) (−1)3p(−1) = 1−a1 +a2−a3 > 0, and (iii) 1−
(a3)2 >| a2−a3a1 | .

2.2. Main result

We now prove our main theorem in relation to the stability of the discrete fractional
order system (3).

THEOREM 1. (a) The fixed point E0 is always unstable for any feasible values of
α and s.

(b) The fixed point E1 is locally asymptotically stable for 0 < α � 1 if R0 = λK
μ < 1 ,

s < min{s2,s3,s4} , where s2 = α
√

2αΓ(α)
d , s3 = α

√
2αΓ(α)

r and s4 = α
√

2αΓ(α)
μ−λK . When

R0 > 1 , the fixed point E1 is always unstable for 0 < α � 1 for any step size s.

(c) The fixed point E2 is locally asymptotically stable for 0 < α � 1 if R0 = λK
μ >

1 , s5 < s < min{s6,s7} with d > d1 , where s5 = α
√

αΓ(α)
λK−μ , s6 = α

√
2αΓ(α)
d−d1

, s7 =

2α
√

λK(αΓ(α))2
μr(λK−μ) and d1 = θr(λK−μ)

aλ (λK+r)+r(λK−μ) . When d < d1 , the fixed point E2 is al-
ways unstable for 0 < α � 1 .

(d) The fixed point E∗ is locally asymptotically stable for 0 < α � 1 if R0 > 1 , 0 < s <

min{s8,s9} with θ > θ1 , where s8 = α
√

2KαΓ(α)
rX∗ , θ1 = d + λad(r+λK)

r(λK−μ) and s9 is such
that (8) holds.
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Proof. At the fixed point E0 , the Jacobian matrix J(E0) can be obtained from (5)
and it is given by

J(E0) =

⎛
⎜⎝

1+ sα

αΓ(α) r 0 0

0 1− sα

αΓ(α) μ 0

0 0 1− sα

αΓ(α)d

⎞
⎟⎠ .

The eigenvalues are ξ1 = 1 + sα

αΓ(α)r , ξ2 = 1− sα

αΓ(α) μ and ξ3 = 1− sα

αΓ(α)d . Since

|ξ1| > 1, E0 is always unstable for 0 < α � 1 and any s > 0.

The Jacobian matrix J(E1) at the fixed point E1 is evaluated as

J(E1) =

⎛
⎜⎝

1− sα

αΓ(α)r
sα

αΓ(α) (λK + r) 0

0 1+ sα

αΓ(α) (λK− μ) 0

0 0 1− sα

αΓ(α)d

⎞
⎟⎠ .

The eigenvalues of J(E1) are

ξ1 = 1− sα

αΓ(α)
r, ξ2 = 1+

sα

αΓ(α)
(λK− μ), ξ3 = 1− sα

αΓ(α)
d.

As 0 < α � 1, |ξ1,2,3| < 1 hold if

s < min

{
α

√
2αΓ(α)

r
,

α

√
2αΓ(α)

d
, α

√
2αΓ(α)
μ −λK

}
,μ > λk.

Therefore, E1 is locally asymptotically stable for 0 < α � 1 if R0 = λK
μ < 1, s <

min{s2,s3,s4} , where s2 = α
√

2αΓ(α)
d , s3 = α

√
2αΓ(α)

r and s4 = α
√

2αΓ(α)
μ−λK . However, if

R0 > 1 then |ξ2|> 1. So E1 is always unstable for all 0 < α � 1 and for any step size s .

At the fixed point E2 , the Jacobian matrix J(E2) takes the form

J(E2) =

⎛
⎜⎜⎜⎝

1− sα

αΓ(α)
rμ
λK − sα

αΓ(α)
μ(r+λK)

λK 0
r(λK−μ)
(λK+r)

sα

αΓ(α) 0 − mr(λK−μ)
aλ (λK+r)+r(λK−μ)

sα

αΓ(α)

0 0 1+ sα

αΓ(α)

(
θr(λK−μ)

aλ (λK+r)+r(λK−μ) −d

)
⎞
⎟⎟⎟⎠ .

After some mathematical manipulations, one can have the following characteristic equa-
tion (

1+
sα

αΓ(α)

(
θ r(λK− μ)

aλ (λK + r)+ r(λK− μ)
−d

)
− ξ

)
(ξ 2 +Aξ +B) = 0, (6)
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where A = sα

αΓ(α)
rμ
λK − 1 and B =

(
sα

αΓ(α)

)2
rμ(λK−μ)

λK . Therefore, one eigenvalue is

ξ1 = 1+ sα

αΓ(α) (d1 − d) , where d1 = θr(λK−μ)
aλ (λK+r)+r(λK−μ) and the other two eigenvalues

ξ2,3 are the roots of ξ 2 + Aξ + B = 0. Following Lemma 1, we observe | ξ2,3 |< 1

if α
√

αΓ(α)
λK−μ < s < 2α

√
λK(αΓ(α))2
μr(λK−μ) with R0 > 1. For ξ1 , we consider the following two

cases:

Case I: If d > d1 then ξ1 = 1− sα

αΓ(α) (d − d1) and | ξ1 |< 1 if 0 < s < α
√

2αΓ(α)
d−d1

.
Therefore, the equilibrium E2 is locally asymptotically stable for 0 < α � 1 if R0 =
λK
μ > 1, s5 < s < min{s6,s7} with d > d1 , where s5 = α

√
αΓ(α)
λK−μ , s6 = α

√
2αΓ(α)
d−d1

,

s7 = 2α
√

λK(αΓ(α))2
μr(λK−μ) and d1 = θr(λK−μ)

aλ (λK+r)+r(λK−μ) .

Case II: If d < d1 then ξ1 = 1+ sα

αΓ(α) (d1 −d) > 1. So E2 is always unstable for all
0 < α � 1 and for any step size s .

At the interior fixed point E∗ , the Jacobian matrix J(E∗) is evaluated as

J(E∗) =

⎛
⎜⎝

1− sα

αΓ(α)
rX∗
K − sα

αΓ(α)X
∗( r

K + λ ) 0
sα

αΓ(α)λY ∗ 1+ sα

αΓ(α)
mY ∗Z∗

(a+Y∗)2 − mY ∗
a+Y ∗ sα

αΓ(α)

0 sα

αΓ(α)
θaZ∗

(a+Y ∗)2 1

⎞
⎟⎠ .

After some algebraic manipulation, the characteristic equation of J(E∗) can be ex-
pressed as

p(ξ ) = ξ 3 +A1ξ 2 +A2ξ +A3 = 0, (7)

where

A1 =
sα

αΓ(α)
rX∗

K
− sα

αΓ(α)
mY ∗Z∗

(a+Y∗)2 −3,

A2 = 3+
2sα

αΓ(α)

(
mY ∗Z∗

(a+Y∗)2 −
rX∗

K

)
+

(
sα

αΓ(α)

)2( amdZ∗

(a+Y∗)2 − rmX∗Y ∗Z∗

K(a+Y)2

)

+
(

sα

αΓ(α)

)2

X∗Y ∗
(

rλ
K

+ λ 2
)

,

A3 = 1+
sα

αΓ(α)

(
mY ∗Z∗

(a+Y∗)2 −
rX∗

K

)
+

(
sα

αΓ(α)

)2 amdZ∗

(a+Y∗)2

(
1− sα

αΓ(α)
rX∗

K

)

+
(

sα

αΓ(α)

)2( rmX∗Y ∗Z∗

K(a+Y∗)2 +X∗Y ∗
(

rλ
K

+ λ 2
))

.

We already know that the interior equilibrium E∗ exists if (i) R0 > 1 and (ii) θ > θ1 ,

where θ1 = d + λad(r+λK)
r(λK−μ) . Using these conditions, we prove the conditions of Lemma

2:
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(i)

p(1) = 1+A1 +A2 +A3 =
(

sα

αΓ(α)

)3( adrmX∗Z∗

K(a+Y∗)2

)
> 0 for any s.

(ii)

(−1)3p(−1)
=1−A1 +A2−A3

=4

(
2− sα

αΓ(α)
rX∗

K

)
+

sα

αΓ(α)
mZ∗

(a+I∗)2

(
sα

αΓ(α)
ad+2Y∗

)(
2− sα

αΓ(α)
rX∗

K

)

+
(

sα

αΓ(α)

)2

2X∗Y ∗
(

rλ
K

+ λ 2
)

> 0, if s <
α

√
2KαΓ(α)

rX∗ .

(iii)

(1−A2
3)− | A2−A3A1 |

=
[
1−

{(
1+

sα

αΓ(α)
mZ∗

(a+Y∗)2

(
sα

αΓ(α)
ad +Y ∗

))(
1− sα

αΓ(α)
rX∗

K

)

+
(

sα

αΓ(α)

)2

X∗Y ∗
(

rλ
K

+ λ 2
)}2]

−
∣∣∣∣∣
{

3+
2sα

αΓ(α)

(
mY ∗Z∗

(a+Y ∗)2 −
rX∗

K

)
+

(
sα

αΓ(α)

)2( amdZ∗

(a+Y ∗)2 −
rmX∗Y ∗Z∗

K(a+Y ∗)2

)

+
(

sα

αΓ(α)

)2

X∗Y ∗
(

rλ
K

+ λ 2
)}

−
(

sα

αΓ(α)
rX∗

K
− sα

αΓ(α)
mY ∗Z∗

(a+Y∗)2 −3

)
{(

1+
sα

αΓ(α)
mZ∗

(a+Y∗)2

(
sα

αΓ(α)
ad +Y∗

))(
1− sα

αΓ(α)
rX∗

K

)
+

(
sα

αΓ(α)

)2

X∗Y ∗
(

rλ
K

+ λ 2
)}∣∣∣∣∣ .

Due to the complexity of mathematical expression, it is difficult to find a restriction on
the step-size s in terms of other system parameters so that (1−A2

3)− | A2−A3A1 |> 0.
However, in the numerical section, we show that there exists a value s9 (say) of s such
that

(1−A2
3)− | A2−A3A1 |> 0, ∀s < s9. (8)

Thus, following Jury criteria, the fixed point E∗ is locally asymptotically stable for

0 < α � 1 if R0 > 1, θ > θ1 and 0 < s < min{s8,s9} , where s8 = α
√

2KαΓ(α)
rX∗ , θ1 =

d + λad(r+λK)
r(λK−μ) and s9 is such that (8) holds. Hence the theorem.
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3. Numerical simulations

In this section, an extensive numerical simulations are performed for the fractional-
order discrete system (3) to validate our theoretical results for different fractional values
of α (0 < α < 1) . Stability of fixed points depends on the step-size s and fractional-
order α (see Theorem 1). To demonstrate the effect of fractional order α and step-size
s on the system dynamics, we cite different examples.

Table 3.1. Restrictions on the step-size, following Theorem 1(b,c), for the stability of
fixed points E1 and E2 for different fractional-orders α . For E1 , we consider K = 40,
λ = 0.005, θ = 0.189 and for E2 we consider K = 200, λ = 0.015, θ = 0.08. Fol-
lowing parameters are common for both the equilibrium points: r = 2.0, m = 0.52,
μ = 0.28, a = 15.0, d = 0.09.

E1 E2

Fractional order α Step-size s < min(s2,s3,s4) Step-size s5 < s < min(s6,s7)
α = 0.3 s2 = 21513 s5 = 0.0248

s3 = 0.6973 s6 = 1835600
s4 = 31857 s7 = 2.1578

α = 0.4 s2 = 1726.2 s5 = 0.0608
s3 = 0.7415 s6 = 48464
s4 = 2317.3 s7 = 1.7302

α = 0.6 s2 = 145.5959 s5 = 0.1564
s3 = 0.8289 s6 = 1344.9
s4 = 177.1754 s7 = 1.4582

α = 0.8 s2 = 44.1464 s5 = 0.2619
s3 = 0.9150 s6 = 233.9135
s4 = 51.1488 s7 = 1.3976

α = 0.95 s2 = 25.6082 s5 = 0.3414
s3 = 0.9788 s6 = 104.2794
s4 = 28.9884 s7 = 1.3984

EXAMPLE 1. We consider the following parameter values from [49]: r = 2.0,
K = 40.0, λ = 0.005, m = 0.52, μ = 0.28, a = 15.0, θ = 0.189, d = 0.09 and initial
point S(0) = 30, I(0) = 5,P(0) = 10. With these parameter values, we calculate dif-
ferent limits si on the step-size for the stability of fixed points E1 and E2 for different
values of fractional-order α . For example, we compute s2 = 44.1464, s3 = 0.9150 and
s4 = 51.1488 for α = 0.8. The equilibrium E1 will then be locally asymptotically sta-
ble, following Theorem 1(b), if s < min(44.1464,0.9150,51.1488)= 0.9150. It is un-
stable if s > 0.9150. Similarly, E2 will be locally asymptotically stable, following The-
orem 1(c), if 0.2619 < s < min(233.9135,1.3976)= 1.3976. Similar step-size restric-
tions for the stability of the above two equilibrium points for different fractional order
α are tabulated in Table 3.1. Considering s = 0.65(< 0.9150) and s = 0.95(> 0.9150)
corresponding to α = 0.8, the behavior of the solution trajectories of the system (2)
are plotted in Fig. 1. It shows that the predator-free equilibrium E1 is stable for the
step-size s = 0.65 and unstable for s = 0.95.
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Figure 1: Stable (Fig. a) and unstable (Fig. b) behavior of the fixed point E1 for the
step-size s = 0.65 and s = 0.95 corresponding to the fraction order α = 0.8. Parameter
values are r = 2.0, K = 40.0, λ = 0.005, m = 0.52, μ = 0.28, a = 15.0, θ = 0.189,
d = 0.09.
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Figure 2: Stable (Fig. a) and unstable (Fig. b) behavior of the fixed point E2 for the
step-size s = 0.85 and s = 1.45 corresponding to the fraction order α = 0.8. Parameter
values are λ = 0.005, K = 200, θ = 0.08. Other parameters and initial values are as
in Fig. 1.

Similarly, we observe (Figure 2) that the predator-free fixed point E2 of the system (2)
is stable for s = 0.85 and unstable for s = 1.45 corresponding to order α = 0.8 (see



DISCRETIZED FRACTIONAL-ORDER ECO-EPIDEMIOLOGICAL MODEL 121

Theorem 1(c) and Table 3.1.).
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Figure 3: Existence of the bound s9 such that the condition 1−A2
3 > | A2 −A3A1 |

is hold. The bound is obtained as s9 = 0.07798 for the parameter values r = 15.0,
K = 40.0, λ = 0.006, m = 14.5, μ = 0.0019, a = 16.0, θ = 11.1, d = 6.0 and
α = 0.8.

Table 3.2. Restriction on the step-size, following Theorem 1(d), for the stability of
fixed point E∗ for different fractional-order α . Parameter values are as in Fig. 3.

E∗
Fractional order α Step-size s < min(s8,s9)
α = 0.3 s8 = 0.0074

s9 = 0.00098
α = 0.4 s8 = 0.0245

s9 = 0.00538
α = 0.6 s8 = 0.0853

s9 = 0.03108
α = 0.8 s8 = 0.1662

s9 = 0.07798
α = 0.95 s8 = 0.2327

s9 = 0.1073

EXAMPLE 2. We consider another parameter set as in [47]: r = 15.0, K = 40.0,
λ = 0.006, m = 14.5, μ = 0.0019, a = 16.0, θ = 11.1, d = 6.0 and initial point
S(0)= 30, I(0)= 5,P(0)= 10. First we numerically determine the bound s9 = 0.07798
(Fig. 3) for the stability of the interior fixed point E∗ corresponding to a fractional order
α = 0.8 so that the condition 1−A2

3 >| A2 −A3A1 | is satisfied (see Theorem 1(d)).
As before, we construct Table 3.2 to show the bounds on step-size for the stability of
the interior fixed point E∗ for different values of fractional-order α . One can also
compute that R0 = 126.3158 > 1 and θ = 11.1 > θ1 = 8.4579 for α = 0.8. Following
Theorem 1(d), the fixed point E∗(20.8573,18.8235, 0.2962) is then stable (Fig. 4a) for
s = 0.05 < min(s8,s9) = 0.07798 (see Table 3.2) and unstable for s = 0.08(> 0.07798)
(Fig. 4b) for the fractional-order α = 0.8.
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Figure 4: Stable and unstable behavior of the fixed point E∗ , respectively, for the step-
sizes s = 0.05 (Fig. a) and s = 0.08 (Fig. b) when α = 0.8. Here all parameters are as
in Figure 3.
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Figure 5: Bifurcation diagram of X population of system (3) in the range [0.055,0.085]
with step-size s as the bifurcation parameter. System remains stable for s < s∗ and
becomes unstable for s > s∗ , where s∗ = 0.077. Here α = 0.8 and other parameters
are as in Figure 3.

Bifurcation diagram of X population (Fig. 5) shows that population is stable for s < s∗
and unstable for s > s∗ , where s∗ = 0.077. These results show that stability of the
discrete fractional order system (2) strongly depends on the step-size and the fractional
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order.

EXAMPLE 3. In [50], the authors showed that the continuous system may show
chaotic dynamics for some parameter values. Here we consider the same parameter set
and initial value for which the system (1) shows chaotic behavior: r = 22.0, K = 300.0,
λ = 0.06, m = 15.5, μ = 2.3, a = 15.0, θ = 10, d = 8.3 and (S(0), I(0),P(0)) =
(30,5,10) . As before, we determine the bound s9 = 0.0150 (see Fig. 6) for the stability
of fixed point E∗ when α = 0.85 and tabulate (see Table 3.3) the bounds on step-
size, following Theorem 1(d), for different values of fractional-order α . Table 3.3
shows that the critical value of the step-size, where the switching of stability occurs,
decreases as the order of the fractional derivative decreases. In Figure 7, we present the
stable (Fig. a) and unstable (Fig. b) behavior of the system around the interior fixed
point E∗ = (166.8449, 73.2353, 43.8939) for the step-sizes s = 0.01 and s = 0.04,
respectively, when α = 0.85.
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Figure 6: The bound s9 = 0.0150 is determined such that the condition 1−A2
3 >

| A2 −A3A1 | holds. The parameter values are r = 22.0, K = 300.0, λ = 0.06, m =
15.5, μ = 2.3, a = 15.0, θ = 10, d = 8.3 and α = 0.85.

Table 3.3. Restriction on the step-size for the stability of fixed point E∗ for different
fractional-orders α with the parameters of Fig. 6 .

E∗
Fractional order α Step-size s < min(s8,s9)
α = 0.95 s8 = 0.1455, s9 = 0.0242
α = 0.85 s8 = 0.1112, s9 = 0.0150
α = 0.6 s8 = 0.0405, s9 = 0.0023
α = 0.55 s8 = 0.0300 , s9 = 0.0013
α = 0.45 s8 = 0.0136, s9 = 0.0003
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Figure 7: Stable and unstable behavior of the fixed point E∗ = (166.8449, 73.2353,
43.8939) for the step-sizes s = 0.01 (Fig. a) and s = 0.04 (Fig. b) when α = 0.85.
Here all parameters are as in Fig. 6.

Figure 8: Bifurcation diagrams of X population of system (3) in the range [0.01,0.054]
with respect to the step-size s . System is stable for s < s∗ and unstable for s > s∗ . Ex-
change of stability occurs at s∗ = 0.015 (Fig. 8a). A magnified view of the bifurcation
diagram for 0.04 � s � 0.054 is presented in Fig. 8b. All parameters are as in Fig. 6
with α = 0.85.
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Bifurcation diagram of system populations (Fig. 8a) shows that population is stable
for s < s∗ and losts its stability for s > s∗ corresponding to fractional order α = 0.85,
where s∗ = 0.015. As the step-size is further increased, the system shows complex
dynamics like chaos. An enlarged view (Fig. 8b) of the bifurcation diagram for small
range of higher step-size is presented for visualisation of the chaotic dynamics. Exis-
tence of such chaotic dynamics (see Fig. 9) may be verified by computing the largest
Lyapunov exponent [38].

Figure 9: Largest Lyapunov exponent (LLE) drawn for two values of α . The left figure
shows that LLE becomes positive for s > s∗ , where s∗ = 0.015, α = 0.85 and other
parameters are as in Fig. 8. The right figure shows that LLE becomes positive for
s > s∗ , where s∗ = 0.077, α = 0.8 and other parameters are as in Fig. 5.

4. Summary

The application of fractional calculus in the study of biological systems is im-
portant because it considers past history of the state variables. On the other hand,
discretization of a continuous system is inevitable for numerical computations and for
population models, particularly where species generation does not overlap. It is earlier
shown that the stability of the discrete fractional-order system depends on its fractional-
order [33, 34, 35, 36, 37, 38]. It was shown for a simpler two-dimensional epidemic
model that the stability of a fractional-order discrete system also depends on the step-
size [46]. It is worth mentioning that the determination of explict bounds would be
difficult if the nonlinearity and dimension of the system are high. The novelty of this
work is that we determined the analytical bounds on the step-size for a highly nonlinear
three-dimensional system so that the stability of an equilibrium point is maintained. We
considered a highly nonlinear three-dimensional system of fractional-order differential
equations that represent the predator-prey interaction in the presence of infection. We
revealed the dynamics of the corresponding discrete fractional system. Discretization
of the fractional-order system was done with piecewise constant arguments and the cor-
responding dynamics were explored around different feasible fixed points. We used the
Jury criterion for local stability of the discrete fractional-order systems. It is observed
that stability of the system depends on both the step-size and fractional order. Different
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examples were cited to illustrate the stability of predator-free, infection-free, and coex-
istence equilibrium points. These simulation results perfectly agree with the analytical
results. More specifically, the critical value of the step-size, where the switching of sta-
bility occurs, decreases as the order of the fractional derivative decreases. Bifurcation
diagrams with respect to step size show that the system is stable and all populations co-
exist in the stable state if the step-size does not exceed some threshold value, which is
also dependent on the fractional order, and unstable if it exceeds. Our simulation result
also shows that the system may show chaotic dynamics, as shown in the continuous-
time case, if the step-size is large. This study thus reveals that the dynamics of a discrete
fractional order system strongly depends on the step-size and the fractional order.
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