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SUCCESSIVE APPROXIMATIONS OF SOLUTIONS TO

THE CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS

M. PALANI AND A. USACHEV ∗

Abstract. We consider an initial value problem involving a single term Caputo differential equa-
tion of fractional order strictly greater than one. For those with right hand sides that satisfy an
Osgood type condition, we show that there exist successive approximations which converge to
the solution at an exponential rate. As an application of this result, we study the Ulam-Hyers
stability of these problems.
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