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(Communicated by S. Varošanec)

Abstract. In this paper we analyze the error estimations of Opial-type inequalities for convex
functions. The error bounds of these inequalities are studied by using mean value theorems for
generalized kernels. Further applications of these results are obtained in fractional calculus by
letting appropriate kernels.

1. Introduction and preliminary results

Opial obtained the following integral inequality in 1960 [9].

THEOREM 1. Let g ∈ C1[0,h] be such that g(0) = g(h) = 0 and g(t) > 0 for
t ∈ (0,h) . Then we have

∫ h

0
|g(t)g

′
(t)|dt � h

4

∫ h

0
(g′(t))2dt.

Here
h
4

is a best possibility constant.

It is well known as Opial inequality and researchers have studied it’s generaliza-
tions, extensions and fractional versions. Agarwal and Pang dedicated a book [1] to
this inequality and its further consequences in a very nice way. They thoroughly stud-
ied year wise, its integral generalizations, extensions as well as discrete versions. Also
a whole chapter is dedicated to the applications of Opial and related inequalities in dif-
ferential equations. For a systematic and qualitative study of Opial inequalities readers
are suggested this book [1]. Anastassiou gave Opial inequalities involving fractional
derivatives of functions with applications to fractional differential equations [4, 5].

The aim of this research is to study the differences of generalized Opial type in-
equalities for convex functions. Moreover the findings are associated with fractional
integral and differential operators. In the following first we state Opial type inequalities
for convex functions, for this it is need to define some classes of functions [10]:
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Let U1(v,k) denotes the class of functions u : [a,b] → R having representation

u(x) =
∫ x

a
k(x,t)v(t)dt,

where v is a continuous function and k is an arbitrary nonnegative kernel such that
k(x,t) = 0 for t > x , v(t) > 0 implies u(t) > 0 for every x ∈ [a,b] . Let U2(v,k)
denotes the class of functions u : [a,b] → R having representation

u(x) =
∫ b

x
k(x,t)v(t)dt,

where v is a continuous function and k is an arbitrary nonnegative kernel such that
k(x,t) = 0 for t < x , v(t) > 0 implies u(t) > 0 for every x ∈ [a,b] .

Mitrinović and Pečarić in [8] gave the following Opial-type inequalities for convex
function.

THEOREM 2. Let φ : [0,∞) → R be a differentiable function such that for q > 1 ,

the function φ(x1/q) is convex and φ(0)= 0 . Let u∈U1(v,k) where (
∫ x
a (k(x, t))pdt)1/p

� M and 1
p + 1

q = 1 . Then

∫ b

a
|u(t)|1−qφ

′
(|u(t)|)|v(t)|qdt � q

Mq φ

(
M

(∫ b

a
|v(t)|qdt

)1/q
)

. (1)

If the function φ(x1/q) is concave, then the reverse inequality holds.

THEOREM 3. Let φ : [0,∞) → R be a differentiable function such that for q > 1 ,

the function φ(x1/q) is convex and φ(0)= 0 . Let u∈U1(v,k) where (
∫ x
a (k(x, t))pdt)1/p

� M and 1
p + 1

q = 1 . Then

∫ b

a
|u(t)|1−qφ

′
(|u(t)|)|v(t)|qdt � q

Mq(b−a)

∫ b

a
φ((b−a)1/qM|v(t)|)dt. (2)

If the function φ(x1/q) is concave, then the reverse inequality holds.

Recently, Farid et al. gave the following generalized Opial type inequality [6]:

THEOREM 4. Let φ , g : [0,∞)→ R be differentiable convex and increasing func-
tions with φ(g(0)) = 0 . Also let u ∈ U1(g ◦ v,k) and |k(x,t)| � M, where M is a
constant. Then the following inequality holds

∫ b

a
φ

′
(g(|u(t)|))g′

(|u(t)|)|g ◦ v(t)|dt � 1
M

φ
(

g

(
M
∫ b

a
|g ◦ v(t)|dt

))

� 1
M(b−a)

∫ b

a
φ(g(M(b−a)|g ◦ v(t)|))dt. (3)



MEAN VALUE THEOREMS ASSOCIATED TO THE DIFFERENCES 215

The aim of this paper is to study the nonnegative differences of Opial-type in-
equalities stated in aforementioned theorems. Further these differences are studied
for fractional integral operators. Therefore, we define fractional calculus operators:
Riemann-Liouville fractional integral, Caputo and Canavati fractional derivatives and
their compositions identities as follows:

DEFINITION 1. [7] Let f ∈L1[a,b] . Then the left-sided and right-sidedRiemann-
Liouville fractional integrals of order α > 0 with a � 0 are defined as:

Iα
a+ f (x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (x)dt, x > a,

and

Iα
b− f (x) =

1
Γ(α)

∫ b

x
(t − x)α−1 f (x)dt, x < b,

where Γ(.) is the Gamma function.

The following lemma summarizes conditions in the composition identity for the
left-sided Riemann-Liouville fractional derivative.

LEMMA 1. [3] Let β > α � 0 , m = [β ]+1 , n = [α]+1 . Then the composition
identity

Dα
a+ f (x) =

1
Γ(β −α)

∫ x

a
(x− t)β−α−1Dβ

a+ f (x)dt, x ∈ [a,b] (4)

is valid if one of the following conditions holds:

(i) f ∈ Iβ
a+(L1[a,b]) = { f : f = Iβ

a+ϕ ,ϕ ∈ L1[a,b]}.
(ii) Im−β

a+ f ∈ ACm[a,b] and Dβ−k
a+ f (a) = 0 for k = 1, . . . ,m.

(iii) Dβ−1
a+ f ∈ AC[a,b] , Dβ−k

a+ f ∈C[a,b] and Dβ−k
a+ f (a) = 0 for k = 1, . . . ,m.

(iv) f ∈ ACm[a,b],Dβ
a+ f ,Dα

a+ f ∈ L1[a,b],β −α /∈ N,Dβ−k
a+ f (a) = 0 for k = 1, . . . ,m

and Dα−k
a+ f (a) = 0 for k = 1, . . . ,n.

(v) f ∈ACm[a,b],Dβ
a+ f ,Dα

a+ f ∈L1[a,b],β −α = l ∈N,Dβ−k
a+ f (a)= 0 for k = 1, . . . , l.

(vi) f ∈ ACm[a,b],Dβ
a+ f ,Dα

a+ f ∈ L1[a,b] and f k(a) = 0 for k = 0, . . . ,m−2.

(vii) f ∈ ACm[a,b],Dβ
a+ f ,Dα

a+ f ∈ L1[a,b],β /∈ N and Dβ−1
a+ f is bounded in a neigh-

borhood of a.

DEFINITION 2. Let α > 0 and α /∈ {1,2,3, . . .} , n = [α] + 1, f ∈ ACn[a,b] .
Then left-sided and right-sided Caputo fractional derivatives of order α are defined as
follows:

(CDα
a+ f
)
(x) =

1
Γ(n−α)

∫ x

a

f (n)(x)
(x− t)α−n+1dt, x > a,



216 A. U. REHMAN, G. FARID AND Y. MEHBOOB

and (
CDα

b− f
)

(x) =
(−1)n

Γ(n−α)

∫ b

x

f (n)(x)
(t− x)α−n+1 dt, x < b.

In the following lemmas composition identities for the Caputo fractional deriva-
tives are given, [2].

LEMMA 2. Let β > α � 0 , m = [β ]+1 and n = [α]+1 , for α,β /∈ N0 ; n = [α]
and m = [β ] , for α,β ∈ N0 . Let f ∈ ACm[a,b] be such that f (i)(a) = 0 , for i =
n,n+1, . . . ,m−1. Let CDβ

a+ f ,C Dβ
α+ f ∈ L1[a,b] . Then

CDα
a+ f (x) =

1
Γ(β −α)

∫ x

a
(x− t)β−α−1 CDβ

a+ f (x)dt, x ∈ [a,b].

LEMMA 3. Let β > α � 0 , m = [β ]+1 and n = [α]+1 , for α,β /∈ N0 ; n = [α]
and m = [β ] , for α,β ∈ N0 . Let f ∈ ACm[a,b] be such that f (i)(b) = 0 for i =
n,n+1, . . . ,m−1. Let CDβ

b− f ,C Dβ
b− f ∈ L1[a,b] . Then

CDα
b− f (x) =

1
Γ(β −α)

∫ b

x
(t− x)β−α−1 CDβ

b− f (x)dt, x ∈ [a,b].

Next we consider the subspace Cα
a+[a,b] , which is defined by

Cα
a+[a,b] = { f ∈Cn−1[a,b] : Jn−α

a+ f (n−1) ∈C1[a,b]}.
DEFINITION 3. [7] Let f ∈ Cα

a+[a,b] . Then the left-sided Canavati fractional
derivative is given by

C̃Dα
a+ f (x) =

1
Γ(n−α)

d
dt

∫ x

a
(x− t)n−α−1 f (n−1)(x)dt =

d
dt

In−α
a+ f (n−1)(x).

The following lemma is useful to give mean value theorems for differences of
Opial-type inequalities.

LEMMA 4. Let φ ∈C2(I) , where I ⊆ (0,∞) , and

m1 � φ ′′(y) � M1 f or all y ∈ I. (5)

Then the functions φ1 , φ2 defined as

φ1(t) =
M1t2

2
−φ(t), φ2(t) = φ(t)− m1t2

2
, (6)

are convex functions. Further if m1 � φ ′(t)
t � M1 , then φi, i = 1,2 are increasing.

Rest of the paper is organized as follows:
In Section 2, nonnegative differences of generalized Opial-type inequalities for

arbitrary kernels via convex functions given in Theorem 4 are analyzed. By using these
differences mean value theorems are obtained. Furthermore, these mean value theorems
are investigated for different specific kernels and results for various fractional integral
and derivative operators are achieved.
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2. Main results

We define linear functionals gF
φ
i (u,v;M) for i = 1,2, from nonnegative differ-

ences of Opial-type inequalities for convex functions given in Theorem 4 as follows:

gF
φ
1 (u,v;M) = φ

(
g

(
M
∫ b

a
|g ◦ v(t)|dt

))
−M

∫ b

a
φ

′
(g(|u(t)|))g′

(|u(t)|)|g ◦ v(t)|dt,

gF
φ
2 (u,v;M) =

∫ b

a
φ(g(M(b−a)|g ◦ v(t)|))dt

−M(b−a)
∫ b

a
φ

′
(g(|u(t)|))g′

(|u(t)|)|g ◦ v(t)|dt.

REMARK 1. Under the assumptions of Theorem 4 it is clear that gF
φ
i (u,v;M) � 0

for i = 1,2.

The following results consist mean value theorems for linear functionals gF
φ
i (u,v;M) ,

i = 1,2.

THEOREM 5. Let φ , g : [0,∞) → R be functions with assumptions of Theorem

4. If φ ∈ C2(I) , where I ⊆ (0,∞) is compact interval and m1 � φ ′(t)
t � M1 , where

inf
x∈I

φ ′′(t) = m1 and sup
x∈I

φ ′′(t) = M1 , then there exists an ξi ∈ I, i = 1,2 , such that the

following equation holds:

gF
φ
i (u,v;M) =

φ ′′(ξi)
2 gF

x2

i (u,v;M), i = 1,2. (7)

Proof. By using φ1 from Lemma 4 instead of φ in (3), the following inequality
holds:∫ b

a

(
M1(g(|u(t)|))−φ

′
(g(|u(t)|))

)
g
′
(|u(t)|)|g ◦ v(t)|dt (8)

� 1
M

(
M1

2

(
g

(
M
∫ b

a
|g ◦ v(t)|dt

))2

−φ
(

g

(
M
∫ b

a
|g ◦ v(t)|dt

)))

� 1
M(b−a)

(
M1

2

(∫ b

a
(g(M(b−a)|g ◦ v|))

)2

dt−
∫ b

a
φ(g(M(b−a)|g ◦ v(t)|))dt

)
.

From first inequality after simplification one can obtain

gF
φ
1 (u,v;M)

gF
x2

1 (u,v;M)
� M1

2
. (9)

Similarly using φ2 from Lemma 4 instead of φ in (3) one can obtain

gF
φ
1 (u,v;M)

gF
x2

1 (u,v;M)
� m1

2
. (10)
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By combining inequalities (9) and (10), the following inequalities are obtained:

m1 �
2
(

gF
φ
1 (u,v;M)

)
gF

x2

1 (u,v;M)
� M1.

Therefore, there exists an ξ1 ∈ I such that the following equation is valid:

φ ′′(ξ1) =
2
(

gF
φ
1 (u,v;M)

)
gF

x2

1 (u,v;M)
,

which gives

gF
φ
1 (u,v;M) =

φ ′′(ξ1)
2 gF

x2

1 (u,v;M). (11)

Similarly from (8) one can obtain the following inequality for second functional:

m1 �
2
(

gF
φ
2 (u,v;M)

)
gF

x2

2 (u,v;M)
� M1. (12)

Therefore, there exists an ξ2 ∈ I such that the following equation holds:

φ ′′(ξ2) =
2
(

gF
φ
2 (u,v;M)

)
gF

x2

2 (u,v;M)
,

which gives

gF
φ
2 (u,v;M) =

φ ′′(ξ2)
2 gF

x2

2 (u,v;M). (13)

Hence (7) holds simultaneously.

THEOREM 6. Let φ1,φ2 and g be the functions with assumptions of Theorem

4. If φ1,φ2 ∈ C2(I), where I ⊆ (0,∞) is compact interval, gF
φ2
i (u,v;M)φ (n)

1 (t) �
gF

φ1
i (u,v;M)φ (n)

2 (t), n = 1,2, t ∈ I and gF
x2

i (u,v;M) �= 0 , i = 1,2 , then there exists an
ξi ∈ I , i = 1,2, such that we have

gF
φ1
i (u,v;M)

gF
φ2
i (u,v;M)

=
φ ′′

1 (ξi)
φ ′′

2 (ξi)
, i = 1,2.

Provided denominators are not equal to zero.

Proof. Let a function h ∈C2(I) be defined as h = aφ1−bφ2 , where a and b are
defined by

a = gF
φ2
i (u,v;M), i = 1,2.

b = gF
φ1
i (u,v;M), i = 1,2.
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The function h will be increasing and convex, by using Theorem 5 with φ = h we have

0 =
(
aφ ′′

1 (ξ )−bφ ′′
2 (ξ )

)
gF

x2

i (u,v;M), i = 1,2.

As gF
x2

i (u,v;M) �= 0, i = 1,2, therefore we have

b
a

=
φ ′′

1 (ξi)
φ ′′

2 (ξi)
.

Hence the required equation is achieved.
In the upcoming section nonnegative differences of generalized Opial-type integral

inequalities are studied in fractional calculus by defining particular kernels.

3. Fractional versions of differences of generalized integral
Opial-type inequalities

Here nonnegative differences are presented for Riemann-Liouville fractional inte-
grals, Caputo and Canavati fractional derivatives. Also their compositions identities are
used to get further formations.

THEOREM 7. Let φ , g : [0,∞) → R be functions with assumptions of Theorem
4. If φ ∈C2(I) , where I ⊆ R+ is compact interval and let v ∈ L1[a,b] has Riemann-
Liouville fractional integral of order α and α > 1 , then there exists an ξi ∈ I , i = 1,2,
such that the following result holds

gF
φ
i (Iα

a+v,v;M) =
φ ′′(ξi)

2 gF
x2

i (Iα
a+v,v;M), i = 1,2, (14)

where M =
(b−a)α−1

Γ(α)
.

Proof. Let us define for x ∈ [a,b] , the kernel k(x,t) as follows:

k(x,t) =
{ 1

Γ(α) (x− t)α−1, a � t � x,

0, x < t � b.

Also if u is defined by

u(x) = Iα
a+v(x) =

1
Γ(α)

∫ x

a
(x− t)α−1v(x)dt. (15)

Then we have

|k(x,t)| � (x−a)α−1

Γ(α)
.

For α > 1, (x−a)α−1 is increasing on [a,b] , therefore we have

|k(x,t)| � (b−a)α−1

Γ(α)
= M.

Applying Theorem 5 for this particular kernel (14) can be achieved.
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THEOREM 8. Let φ1,φ2 and g be the functions with assumptions of Theorem 4.
If φ1,φ2 ∈C2(I), where I ⊆ R+ is compact interval and let v ∈ L[a,b] has Riemann-

Liouville fractional integral of order α . If α > 1 and gF
x2

i (Iα
a+v,v;M) �= 0 , i = 1,2 ,

then there exists an ξi ∈ I , i = 1,2, such that we have

gF
φ1
i (Iα

a+v,v;M)

gF
φ2
i (Iα

a+v,v;M)
=

φ ′′
1 (ξi)

φ ′′
2 (ξi)

, i = 1,2, (16)

where M =
(b−a)α−1

Γ(α)
. Provided the denominators are not equal to zero.

Proof. It can easily be proved by using the kernel just defined in proof of afore-
mentioned theorem, function defined in (15), and Theorem 6.

THEOREM 9. Let φ , g : [0,∞) → R be functions with assumptions of Theorem
4. If φ ∈ C2(I) , where I ⊆ R+ is compact interval and let v ∈ ACn[a,b] has Caputo
fractional derivative of order α . If α � n−1 , then there exists an ξi ∈ I , i = 1,2, such
that the following result holds

gF
φ
i (CDα

a+v,vn;M) =
φ ′′(ξi)

2 gF
x2

i (CDα
a+v,vn;M), i = 1,2, (17)

where M =
(b−a)n−α−1

Γ(n−α)
.

Proof. Let us define the kernel k(x,t) for x ∈ [a,b] as follows:

k(x,t) =
{ 1

Γ(n−α) (x− t)n−α−1, a � t � x,

0, x < t � b.

Also the function u is defined by

u(x) = CDα
a+v(x) =

1
Γ(n−α)

∫ x

a
(x− t)n−α−1v(n)(x)dt. (18)

Then we have

|k(x,t)| � (x−a)n−α−1

Γ(n−α)
.

It is easy to see that for n > α +1, (x− t)n−α−1 is increasing on [a,b] , therefore

|k(x,t)| � (b−a)n−α−1

Γ(n−α)
= M.

Using the function defined in (18) and value of M , Theorem 5 gives required result.
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THEOREM 10. Let φ1,φ2 and g be the functions with assumptions of Theorem 4.
If φ1,φ2 ∈C2(I), where I ⊆ R+ is compact interval and let v ∈ ACn[a,b] has Caputo

fractional derivative of order α . If α � n− 1 and gF
x2

i (CDα
a+v,vn;M) �= 0 , i = 1,2 ,

then there exists an ξi ∈ I , i = 1,2, such that we have

gF
φ1
i (CDα

a+v,vn;M)

gF
φ2
i (CDα

a+v,vn;M)
=

φ ′′
1 (ξi)

φ ′′
2 (ξi)

, i = 1,2, (19)

where M =
(b−a)n−α−1

Γ(n−α)
. Provided the denominators are not equal to zero.

Proof. It is easy to prove by using Theorem 6.

THEOREM 11. Let φ , g : [0,∞) → R be functions with assumptions of Theorem
4. Also let m = [β ] + 1 and n = [α] + 1 , for α,β /∈ N0 ; n = [α] and m = [β ] , for
α,β ∈ N0 and v ∈ ACm[a,b] such that f (i)(a) = 0 for i = n,n + 1, . . . ,m− 1 . Let
CDβ

a+v ∈ Lq[a,b] and CDα
a+v ∈ L1[a,b] . Then the following result holds for α � β −1

gF
φ
j (

CDα
a+v, CDβ

a+v;M) =
φ ′′(ξ j)

2 gF
x2

j (CDα
a+v, CDβ

a+v;M), j = 1,2, (20)

where M =
(b−a)β−α−1

Γ(β −α)
.

Proof. Let us define the kernel k(x,t) for x ∈ [a,b] as follows:

k(x,t) =

{
1

Γ(β−α) (x− t)β−α−1, a � t � x,

0, x < t � b.

Also let us define the function u by

u(x) = CDα
a+v(x) =

1
Γ(β −α)

∫ x

a
(x− t)β−α−1 CDβ

a+v(x)dt. (21)

Then we have

|k(x,t)| � (x−a)β−α−1

Γ(β −α)
.

For β � α +1, (x−a)β−α−1 is increasing on [a,b] , therefore

|k(x,t)| � (b−a)β−α−1

Γ(β −α)
= M.

Using function defined in (21) and value of M in Theorem 5, we get required result.
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THEOREM 12. Let φ1,φ2 and g be the functions with assumptions of Theorem
4. If φ1,φ2 ∈ C2(I), where I ⊆ R+ is compact interval. Also let m = [β ] + 1 and
n = [α] + 1 , for α,β /∈ N0 ; n = [α] and m = [β ] , for α,β ∈ N0 and v ∈ ACm[a,b]
such that f (i)(a)= 0 for i = n,n+1, . . . ,m−1 . Let CDβ

a+v∈Lq[a,b] , CDα
a+v∈ L1[a,b] ,

α � β − 1 and gF
x2

j (CDα
a+v, CDβ

a+v;M) �= 0 , j = 1,2 . Then there exists an ξ j ∈ I ,
j = 1,2, such that we have

gF
φ1
j (CDα

a+v, CDβ
a+v;M)

gF
φ2
j (CDα

a+v, CDβ
a+v;M)

=
φ ′′

1 (ξ j)
φ ′′

2 (ξ j)
, j = 1,2, (22)

where M =
(b−a)β−α−1

Γ(β −α)
. Provided the denominators are not equal to zero.

Proof. It is easy to prove by using function defined in (21) and using Theorem 6.

THEOREM 13. Let φ , g : [0,∞) → R be functions with assumptions of Theorem

4. Also let α > 1 , m = [β ]+1 and n = [α]+1 . Let v ∈Cβ
a+[a,b] such that f (i)(a) = 0

for i = n− 1,n, . . . ,m− 2 . Let C̃Dβ
a+v ∈ Lq[a,b] . Then for α � β − 1 the following

result holds:

gF
φ
j (

C̃Dα
a+v, C̃Dβ

a+v;M) =
φ ′′(ξ j)

2 gF
x2

j (C̃Dα
a+v, C̃Dβ

a+v;M), j = 1,2,

where M =
(b−a)β−α−1

Γ(β −α)
.

Proof. Let us define the kernel k(x,t) for x ∈ [a,b] as

k(x,t) =

{
1

Γ(β−α) (x− t)β−α−1, a � t � x,

0, x < t � b.

Also let us define the function u by

u(x) = C̃Dα
a+v(x) =

1
Γ(β −α)

∫ x

a
(x− t)β−α−1 C̃Dβ

a+v(x)dt. (23)

Then we have

|k(x,t)| � (x−a)β−α−1

Γ(β −α)
.

For β � α +1, (x−a)β−α−1 is increasing on [a,b] , therefore

|k(x,t)| � (b−a)β−α−1

Γ(β −α)
= M.

Using function defined in (23) and value of M in Theorem 5, we get required result.
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THEOREM 14. Let φ1,φ2 and g be the functions with assumptions of Theorem
4. If φ1,φ2 ∈ C2(I), where I ⊆ R+ is compact interval. Also let α > 1 , m = [β ]+ 1

and n = [α] + 1 . Let v ∈ Cβ
a+[a,b] such that f (i)(a) = 0 for i = n− 1,n, . . . ,m− 2 .

Let C̃Dβ
a+v ∈ Lq[a,b] and gF

x2

j (C̃Dα
a+v, C̃Dβ

a+v;M) �= 0, j = 1,2 . Then there exists an
ξ j ∈ I , j = 1,2, such that for α � β −1 we have

gF
φ1
j (C̃Dα

a+v, C̃Dβ
a+v;M)

gF
φ2
j (C̃Dα

a+v, C̃Dβ
a+v;M)

=
φ ′′

1 (ξ j)
φ ′′

2 (ξ j)
, j = 1,2, (24)

where M =
(b−a)β−α−1

Γ(β −α)
. Provided the denominators are not equal to zero.

Proof. It is easy to prove by using function defined in (23) and Theorem 6.

THEOREM 15. Let φ , g : [0,∞) → R be functions with assumptions of Theorem
4. Also let α > 1 , m = [β ] + 1 and n = [α] + 1 . Suppose that one of the following

conditions (i)–(vii) in Lemma 1 hold for {β ,α,v} and let Dβ
a+v ∈ Lq[a,b] . Then there

exists an ξi ∈ I , i = 1,2, such that the following result holds

gF
φ
i (Dα

a+v,Dβ
a+v;M) =

φ ′′(ξi)
2 gF

x2

i (Dα
a+v,Dβ

a+v;M), i = 1,2. (25)

Proof. The proof is similar to the proof of Theorem 11. Also the value of M is
same as in Theorem 11.

THEOREM 16. Let φ1,φ2 and g be the functions with assumptions of Theorem 4.
If φ1,φ2 ∈C2(I), where I ⊆ R+ is compact interval. Also let α > 1 , m = [β ]+1 and
n = [α]+1 . Suppose that one of the following conditions (i)–(vii) in Lemma 1 hold for

{β ,α,v} . If Dβ
a+v ∈ Lq[a,b] and gF

x2

i (Dα
a+v,Dβ

a+v;M) �= 0, i = 1,2 , then there exists
an ξi ∈ I , i = 1,2, such that we have

gF
φ1
i (Dα

a+v,Dβ
a+v;M)

gF
φ2
i (Dα

a+v,Dβ
a+v;M)

=
φ ′′

1 (ξi)
φ ′′

2 (ξi)
, i = 1,2. (26)

Provided the denominators are not equal to zero. The value of M is same as in Theorem
11.
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[10] J. PEČARIĆ , F. PROSCHAN AND Y. C. TONG, Convex Functions, Partial Orderings and Statistical

Applications, Academic Press, Inc., 1992.

(Received February 20, 2020) Atiq Ur Rehman
Department of Mathematics

COMSATS University Islamabad
Attock Campus, Pakistan

Ghulam Farid
Department of Mathematics

COMSATS University Islamabad
Attock Campus, Pakistan

e-mail: faridphdsms@hotmail.com

Yasir Mehboob
Department of Mathematics

COMSATS University Islamabad
Attock Campus, Pakistan

Fractional Differential Calculus
www.ele-math.com
fdc@ele-math.com


