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Abstract. This article deals with existence of positive solutions to the fractional boundary value
problem {

Dα u(t)+ f (t,u(t),Dβ u(t)) = 0, t > 0

u(0) = Dα−2u(0) = limt→∞ Dα−1u(t) = 0

where α ∈ (2,3) , β ∈ (0,α −2] , Dα is the standard Riemann-Liouville fractional derivative
and the function f : (0,+∞)3 → R is continuous semipositone and may exhibit singular at u = 0
and at Dβ u = 0 The main existence result is obtained by means of Guo-Krasnoselskii’s version
of expansion and compression of a cone principal in a Banach space.

1. Introduction

In the last few decades, fractional differential equations have gained a considerable
interest and importance, since they arise from many physical applications. Physical
experimentation showed that the integral and derivative operators of fractional order
do share some of the characteristics exhibited by the processes associated with com-
plex systems having long-memory in time and fractional calculus provide an excellent
framework to describe the hereditary properties of various materials and processes. For
recent developments in the theory of fractional calculus and its applications, we refer
to [1, 4, 8, 9, 12, 13, 14, 15, 16].

Often, for physical considerations, the positivity of the solution is required. This
why existence of positive solutions for various classes of boundary value problems as-
sociated with fractional differential equations has been the subject of many papers, see,
[2, 6, 7, 10, 11, 17, 18] and references therein. Because of a lack of compactness, the
case where such bvps are posed on unbounded intervals and having a singular depen-
dence on the variable space, is somewhat complicated, and to the best of our knowledge,
there are no works considering existence of positive solutions for such a case. Thus, the
purpose of this paper is to fill in the gap in this area.
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We are concerned in this paper with existence of positive solutions to the fractional
boundary value problem (fbvp for short),{

Dαu(t)+ f (t,u(t),Dβu(t)) = 0, t ∈ I

u(0) = Dα−2u(0) = limt→∞ Dα−1u(t) = 0
(1.1)

where I = (0,+∞) , α ∈ (2,3] , β ∈ (0,α −2] , for ν = α or β , Dν is the standard
Riemann-Liouville fractional derivative and f : I

3 → R is a continuous function.
Throughout, we assume that the nonlinearity f satisfies the following hypotheses:⎧⎨⎩

There exists q : R
+ −→ R

+ continuous such that
f (t,u,v)+q(t) > 0 for all t,u,v ∈ I

and
∫+∞
0 sq(s)ds < ∞,

(1.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

for all ρ > 0 there exists two functions ωρ : I → I

and Ψρ : I
2 → I such that Ψρ is nondecreasing

with respect to its variables,∣∣∣ f (t,(1+ t)α−1 w,(1+ t)α−β−1 z)
∣∣∣� ωρ (t)Ψρ (w,z)

for all t > 0 and w,z > 0 with |(w,z)| � ρ and∫ +∞
0 ωρ (t)Ψρ

(
rγ̃α (t),rγ̃α−β (t)

)
dt < ∞ for all r ∈ (0,ρ ] ,

(1.3)

where for θ � 2

γ̃θ (t) =
γθ (t)

(1+ t)θ−1 and γθ (t) = min

(
tθ−1,

tθ−2

θ −1

)
.

Notice that the nonlinearity f may exhibit singular at the solution and at its deriva-
tive. It is well known that the bvp (1.1) is called positone if q(t) = 0 for all t ∈ I , and
semipositone if q(t0) > 0 for some t0 ∈ I .

Our approach in this work is based on a fixed point formulation of the fbvp (1.1)
and the main existence result in this work is then proved by the Guo-Krasnoselskii’s
version of expansion and compression of a cone principal in a Banach space.

The paper is organized as follows: Section 2 is devoted for preliminaries and in
Section 3 we provide a fixed point formultion for the fbvp (1.1). In Section 4, we
present the main result and its proof and we end the paper by an illustrative example.

2. Preliminaries

2.1. Abstract background

In this subsection we recall the Guo-Krasnoselskii’s version of expansion and com-
pression of a cone principal in a Banach space and the related absract background. Let
(E, ||.||) be a real Banach space. A nonempty closed convex subset C in E is said to
be a cone in E, if C∩ (−C) = {0E} and tC ⊂C for all t � 0.

Let Ω be a nonempty subset in E, a mapping A : Ω → E is said to be compact if
it is continuous and A(Ω) is relatively compact in E.
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THEOREM 2.1. (Theorem 2.3.4 in [5]) Let P be a cone in E and let Ω1, Ω2 be
open bounded subsets of E such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. If T : P∩(Ω2 � Ω1

)→ P is
a compact operator such that, either

1. ‖Tu‖ � ‖u‖ for u ∈ P∩∂Ω1, and ‖Tu‖ � ‖u‖ for u ∈ P∩∂Ω2 , or

2. ‖Tu‖ � ‖u‖ for u ∈ P∩∂Ω1, and ‖Tu‖ � ‖u‖ for u ∈ P∩∂Ω2.

Then T has a fixed point in P∩ (Ω2\Ω1
)
.

2.2. Riemann-Liouville fractional derivative

In this subsection we recall some basic facts related to Riemann-Liouville frac-
tional derivative. Let β be a positive real number, the Riemann-Liouville fractional
integral of order β of a function f : (0,+∞) → R is defined by

Iβ
0+ f (t) =

1
Γ(β )

∫ t

0
(t− s)β−1 f (s)ds,

where Γ(β ) is the gamma function, provided that the right side is pointwise defined on

(0,+∞) . For example, we have for any real σ > −1, Iβ
0+tσ = Γ(σ+1)

Γ(σ+β+1)t
σ+β .

The Riemann-Liouville fractional derivative of order β , of a continuous function
f : (0,+∞) → R is given by

Dβ
0+ f (t) =

1
Γ(n−β )

(
d
dt

)n ∫ t

0

f (s)
(t − s)β−n+1

ds,

where n = [β ]+1, [β ] denotes the integer part of the number β , provided that the right
side is pointwise defined on R

+ .
As a basic example, we quote for σ > β − 1, Dβ

0+tσ = Γ(σ+1)
Γ(σ−β+1)t

σ−β . Thus, if

u ∈C (0,+∞)∩L
1 (0,+∞) , then

Dβ Iαu(t) =
{

Iα−β u(t) if α > β ,
u(t) if α = β

Iβ
0+Dβ

0+u(t) = u(t)+ ∑i=[β ]+1
i=1 citβ−i, ci ∈ R.

In particular, the fractional differential equation Dβ
0+u(t)= 0 has u(t)= ∑i=[β ]+1

i=1 citβ−i ,
ci ∈ R , as unique solution.

For a detailed presentation on fractional differential calculus, see [8] or [13].

3. Fixed point formulation

Firstly, we introduce the necessary framework for the fixed point formulation of
the fbvp (1.1). Throughout, we let E be the linear space defined by

E =

{
u ∈C

(
R

+) : Dβ u ∈ BC
(
R

+) , and lim
t→∞

u(t)

(1+ t)α−1 = lim
t→∞

Dβ u(t)

(1+ t)α−1−β = 0

}
.
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Equipped with the norm ‖·‖ where for all u ∈ E,

‖u‖ = max(‖u‖1 ,‖u‖2) ,
‖u‖1 = supt>0

|u(t)|
(1+t)α−1 ,

‖u‖2 = supt>0
|Dβ u(t)|

(1+t)α−1−β ,

E becomes a Banach space.
In all what follows P is the cone of E defined by

P =
{

u ∈ E : u(t) � γα(t)‖u‖1 and Dβ u(t) � γα−β (t)‖u‖2 for all t � 0
}

.

Let for θ > 1, Gθ : R
+ ×R

+ → R be the function given by

Gθ (t,s) =
1

Γ(θ )

{
tθ−1− (t− s)θ−1 0 � s � t < ∞
tθ−1 0 � t � s < ∞.

LEMMA 3.1. For all θ � 2 , the function Gθ is continuous and has the following
properties:

Gθ (0,s) = 0 for all s � 0, (3.1)

0 < Gθ (t,s) � tθ−1

Γ(θ )
for all t,s � 0, (3.2)

lim
t→0

Gθ (t,s)
tθ−1 =

1
Γ(θ )

, lim
t→+∞

Gθ (t,s)
tθ−1 = 0 for all s � 0, (3.3)

∂G
∂ t

(t,s) > 0 for all t,s > 0, (3.4)

Gθ (t,s) � γθ (t)
Gθ (τ,s)

(1+ τ)θ−1 for all t,τ,s � 0. (3.5)

Proof. Properties (3.1)–(3.4) are easy to check, so let us prove (3.5). Set for η >
0 and s ∈ (0,η) , ϕη (s) = ηθ−1 − (η − s)θ−1 . The function ϕη has the following
properties:

ϕ ′
η (s) > 0 for all s ∈ (0,η) ,

lim
s→0

ϕη (s)
s

= (θ −1)ηθ−2 and lim
s→η

ϕη (s)
s

= ηθ−2,

(1+ η)α−1 � ϕη (s) for all s ∈ (0,η) , (3.6)

if η < ξ then ϕη (s) < ϕξ (s) for all s ∈ (0,η) .

Moreover, we have (
ϕη (s)

s

)′
=

hη (s)
s2 for all s ∈ (0,η) ,
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where
hη (s) = (η − s)θ−2 (η +(θ −2)s)−ηθ−1

hη (0) = 0, hη (η) = −ηθ−1 and
h′η (s) = −(θ −1)(θ −2)s(η − s)θ−3 � 0.

Therefore, we have (
ϕη (s)

s

)′
< 0 for all s ∈ (0,η) .

Notice that

Gθ (t,s) =
1

Γ(α)

{
ϕt (s) if 0 � s � t < ∞
ϕt (t) if 0 � t � s < ∞.

(3.7)

and we obtain from the above properties of the function ϕη that for all t,τ,s > 0,

Gθ (t,s)
Gθ (τ,s)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕt (t)
ϕτ(τ)

� tθ−1

(τ +1)θ−1 � γθ (t)

(1+ τ)θ−1 if τ,t � s

ϕt (s)
ϕτ(s)

=
ϕt (s)/s
ϕτ(s)/s

� tθ−2

(θ −1)τθ−2 � γθ (t)

(1+ τ)θ−1 if s � t,τ

ϕt (t)
ϕτ(s)

� tα−1

(1+ τ)α−1 � γθ (t)

(1+ τ)α−1 if t � s � τ

ϕt (s)
ϕτ(τ)

� (ϕt (s)/s)s
τα−1 � tθ−2s

τα−1 � γθ (t)
τα−2 � γθ (t)

(1+ τ)α−1 if τ � s � t.

Ending the proof. �

LEMMA 3.2. Assume that Hypothesis (1.2) holds and let φ be the function de-
fined by φ(t) =

∫ +∞
0 G(t,s)q(s)ds. Then

φ∗ = max

(
sup
t>0

(φ(t)/γα (t)) ,sup
t>0

(
Dβ φ(t)/γα−β (t)

))
< ∞.

Proof. Set for θ = α or α −β ,

φθ =
{

φ if θ = α,

Dβ φ if θ = α −β .

Properties (1.1) and (3.3) combined with Lebesgue dominated convergence theorem
lead to

lim
t→0

φθ (t)
γθ (t)

= lim
t→0

φθ (t)
tθ−1 = lim

t→0

∫ +∞

0

Gθ (t,s)
tθ−1 q(s)ds =

1
Γ(θ )

∫ +∞

0
q(s)ds,

For t large and θ = α or α −β , we have by the mean value theorem

(θ −1)Γ(θ )φθ (t)
γθ (t)

=
Γ(θ )φθ (t)

tθ−2

=
∫ t

0

tθ−1− (t− s)θ−1

tθ−1 q(s)ds+ t
∫ +∞

t
q(s)ds

� (θ −1)
∫ t

0
sq(s)ds+

∫ +∞

t
sq(s)ds < ∞.
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The proof is complete. �
The following lemma is an adapted version to the case of the space E of Cor-

duneanu’s compactness criterion ([3], p. 62). It will be used in this work to prove that
some operator is compact.

LEMMA 3.3. A nonempty subset M of E is relatively compact if the following
conditions hold:

(a) M is bounded in E,

(b) the sets

{
u : u(t) =

x(t)

(1+ t)α−1 , x ∈ M

}
and

{
u : u(t) =

x(t)

(1+ t)α−β−1
, x ∈ M

}
are locally equicontinuous on [0,+∞) and

(c) the sets

{
u : u(t) =

x(t)

(1+ t)α−1 , x ∈ M

}
and

{
u : u(t) =

x(t)

(1+ t)α−β−1
, x ∈ M

}
are equiconvergent at +∞.

LEMMA 3.4. Assume that Hypotheses (1.2) and (1.3) hold. Then for all r,R ∈ I

with R > r > φ∗ there exists a compact operator Tr,R : P∩ (B(0,R)�B(0,r)
)→ P

such that if v is a fixed point of Tr,R then u = v− φ is a positive solution to the bvp
(1.1).

Proof. Let r,R > 0 be such that R > r > φ∗ and set Ω = P∩(B(0,R)�B(0,r)
)
.

In all this proof, we denote by Φ the function defined by

Φ(s) = ωR (s)ΨR
(
(r−φ∗) γ̃α(s),(r−φ∗) γ̃α−β (s)

)
+q(s),

where ωR and ΨR are the functions given by Hypothesis (1.3) for ρ = R and φ∗ is the
constant given by Lemma 3.2. The proof is divided into four steps.

Step 1. In this step we prove the existence of the operator Tr,R . We have from the
definition of the cone P and Lemma 3.2 that, for all v ∈ Ω and all t > 0,

v(t)−φ (t) � (‖v‖1 −φ∗)γα (t) � (r−φ∗)γα (t) > 0 and
Dβ v(t)−Dβ φ (t) � (‖v‖2−φ∗)γα−β (t) � (r−φ∗)γα−β (t) > 0.

Therefore, for all v ∈ Ω the expression

fr,Rv(t) = f
(
t,v(t)−φ (t) ,Dβ v(t)−Dβ φ (t)

)
+q(t) (3.8)

is well defined.
Let u ∈ Ω, for all s > 0 we have

fr,Ru(s) = f

(
s,(1+ s)α−1 v(s)−φ (s)

(1+ s)α−1 ,(1+ s)α−β−1 Dβ v(s)−Dβ φ (s)

(1+ s)α−β−1

)
+q(s)

� Φ(s),
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leading to∫ +∞

0
Gα(t,s) fr,Rv(t)ds � tα−1

Γ(α)

∫ +∞

0
fr,Rv(s)ds � tα−1

Γ(α)

∫ +∞

0
Φ(s)ds < ∞

and∫ +∞

0
Gα−β (t,s) fr,Rv(t)ds � tα−β−1

Γ(α −β )

∫ +∞

0
fr,Rv(s)ds � tα−β−1

Γ(α −β )

∫ +∞

0
Φ(s)ds < ∞.

Let v and w be the functions defined by

v(t) =
∫ +∞

0
Gα(t,s) fr,Ru(s)ds and w(t) =

∫ +∞

0
Gα−β (t,s) fr,Ru(s)ds.

Clearly, v and w are continuous and for all t � 0, we have from (1.1)

v(t)

(1+ t)α−1 =
∫ +∞

0

Gα(t,s)

(1+ t)α−1 fr,Ru(s)ds � 1
Γ(α)

tα−1

(1+ t)α−1

(∫ +∞

0
Φ(s)ds

)
� 1

Γ(α)

∫ +∞

0
Φ(s)ds < ∞,

w(t)

(1+ t)α−β−1
=
∫ +∞

0

Gα−β (t,s)

(1+ t)α−β−1
fr,Ru(s)ds

� 1
Γ(α −β )

tα−β−1

(1+ t)α−β−1

(∫ +∞

0
Φ(s)ds

)
� 1

Γ(α −β )

∫ +∞

0
Φ(s)ds < ∞

and

Dβ v(t) = −Dβ Iα fr,Ru+Dβ tα−1

Γ(α)

∫ +∞

0
fr,Ru(s)ds

= −Iα−β fr,Ru+
Γ(α)

Γ(α −β )
tα−β−1

Γ(α)

∫ +∞

0
fr,Ru(s)ds

=
∫ +∞

0
Gα−β (t,s) fr,Ru(s)ds = w(t).

Moreover, it follows from (3.4) that for all t,τ � 0

v(t) =
∫ +∞

0
Gα(t,s) fr,Ru(s)ds

� γα (t)
(1+ τ)α−1

∫ +∞

0
Gα(τ,s) f (s,u(s))ds

= γα (t)
v(τ)

(1+ τ)α−1
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and

Dβ v(t) = w(t) =
∫ +∞

0
Gα−β (t,s) fr,Ru(s)ds

�
γα−β (t)

(1+ τ)α−1

∫ +∞

0
Gα−β fr,Ru(s)ds

= γα−β (t)
v(τ)

(1+ τ)α−1 .

Passing to the supremum on τ , we obtain

v(t) � γα (t)‖v‖1 and Dβ v(t) � γα−β (t)‖v‖2 for all t � 0,

that is v ∈ P.
Thus, we have proved that the oerator T : Ω −→ P , where for u ∈ Ω and t � 0

Tu(t) =
∫ +∞

0
G(t,s) fr,Ru(s)ds,

is well defined.

Step 2. In this step we prove that the operator Tr,R is continuous. Let (un) be a
sequence in Ω such that limn→∞ un = u in E . For all n � 1, we have

‖Tr,Rvn −Tr,Rv‖1 = sup
t>0

(
|Tr,Run (t)−Tu(t)|

(1+ t)α−1

)

� 1
Γ(α)

∫ +∞

0
| fr,Run(s)− fr,Ru(s)|ds

and

‖Tr,Rvn −Tr,Rv‖2 = sup
t>0

(∣∣Dβ Tr,Run (t)−DβTu(t)
∣∣

(1+ t)α−β−1

)

� 1
Γ(α −β )

∫ +∞

0
| fr,Run(s)− fr,Ru(s)|ds.

Because of
| fr,Rvn(s)− fr,Rv(s)| → 0, as n → +∞

for all s > 0 and

| fr,Rvn(s)− fr,Rv(s)| � 2Φ(s) with
∫ +∞

0
Φ(s)ds < ∞,

the Lebesgue dominated convergence theorem guarantees that limn→∞ ‖Tr,Rvn −Tr,Rv‖1 =
limn→∞ ‖Tr,Rvn−Tr,Rv‖2 = 0. Hence, we have proved that T is continuous.
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Step 3. In this step, we prove that Tr,R is compact. For all u ∈ Ω , we have

‖Tr,Ru‖1 = sup
t>0

|Tr,Ru(t)|
(1+ t)α−1 � 1

Γ(α)

∫ +∞

0

Gα(t,s)
(1+ t)α−1 fr,Ru(s)ds

� 1
Γ(α)

∫ +∞

0
Φ(s)ds < ∞

and

‖Tr,Ru‖2 = sup
t>0

∣∣Dβ Tr,Ru(t)
∣∣

(1+ t)α−β−1
� 1

Γ(α −β )

∫ +∞

0

Gα−β (t,s)

(1+ t)α−1 fr,Ru(s)ds

� 1
Γ(α −β )

∫ +∞

0
Φ(s)ds < ∞.

The above estimates show the condition (a) in Lemma 3.3 is satisfied.
Let [ξ ,η ] be an interval of R

+. For all u ∈ Ω and all t1,t2 ∈ [ξ ,η ] with 0 <
t2− t1 < 1, We have∣∣∣∣∣ Tr,Ru(t2)

(1+ t2)
α−1 −

Tr,Ru(t1)

(1+ t1)
α−1

∣∣∣∣∣
� 1

Γ(α)

∫ t1

0

∣∣∣∣∣
(

t2− s
1+ t2

)α−1

−
(

t1− s
1+ t1

)α−1
∣∣∣∣∣Φ(s)ds

+
(

t2− t1
1+ t2

)α−1

|Φ|α +

∣∣∣∣∣
(

t2
1+ t2

)α−1

−
(

t1
1+ t1

)α−1
∣∣∣∣∣ |Φ|α ,

and ∣∣∣∣∣Dβ Tr,Ru(t2)

(1+ t2)
α−1 − Dβ Tr,Ru(t1)

(1+ t1)
α−1

∣∣∣∣∣
� 1

Γ(α −β )

∫ t1

0

∣∣∣∣∣
(

t2− s
1+ t2

)α−β−1

−
(

t1− s
1+ t1

)α−β−1
∣∣∣∣∣Φ(s)ds

+
(

t2− t1
1+ t2

)α−1

|Φ|α−β +

∣∣∣∣∣
(

t2
1+ t2

)α−1

−
(

t1
1+ t1

)α−1
∣∣∣∣∣ |Φ|α−β ,

where for θ = α or α −β , |Φ|θ = 1
Γ(θ)

∫+∞
0 Φ(s)ds.

For θ = α or α −β , we have by the mean value theorem:∣∣∣∣∣
(

t2− s
1+ t2

)θ−1

−
(

t1− s
1+ t1

)θ−1
∣∣∣∣∣

� (θ −1)
(

η
1+ η

)θ−2 ∣∣∣∣ t2 − s
1+ t2

− t1− s
1+ t1

∣∣∣∣� (θ −1)
(

η
1+ η

)θ−2 (t2− t1)(1+ s)
(1+ t2) (1+ t1)

� (θ −1)
(

η
1+ η

)θ−2

(t2 − t1)
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and ∣∣∣∣∣
(

t2
1+ t2

)θ−1

−
(

t1
1+ t1

)θ−1
∣∣∣∣∣ � (θ −1)

(
η

1+ η

)θ−2( t2
1+ t2

− t1
1+ t1

)

� (θ −1)
(

η
1+ η

)θ−2

(t2 − t1) .

The above calculations lead to∣∣∣∣∣ Tr,Ru(t2)

(1+ t2)
α−1 −

Tr,Ru(t1)

(1+ t1)
α−1

∣∣∣∣∣
� 2(α −1)

(
η

1+ η

)α−2

|Φ|α (t2 − t1)+
(

t2− t1
1+ t2

)α−1

|Φ|α

�
(

2(α −1)
(

η
1+ η

)α−2

+1

)
|Φ|α (t2− t1)

and ∣∣∣∣∣ Dβ Tr,Ru(t2)

(1+ t2)
α−β−1

− Dβ Tr,Ru(t1)

(1+ t1)
α−β−1

∣∣∣∣∣
� 2(α −β −1)

(
η

1+ η

)α−β−2

|Φ|α−β (t2 − t1)+
(

t2 − t1
1+ t2

)α−β−1

|Φ|α−β

�
(

2(α −β −1)
(

η
1+ η

)α−β−2

+1

)
|Φ|α−β (t2− t1) .

Thus, Condition (b) in Lemma 3.3 is satisfied.
We have for any u in Ω and t � 0∣∣∣∣∣ Tr,Ru(t)

(1+ t)α−1

∣∣∣∣∣ �
∫ +∞

0

Gα(t,s)

(1+ t)α−1 | fr,Ru(s)|ds

�
∫ +∞

0

Gα(t,s)
(1+ t)α−1 Φ(s)ds = H1(t)

and ∣∣∣∣∣ Dβ Tr,Ru(t)

(1+ t)α−β−1

∣∣∣∣∣ �
∫ +∞

0

Gα−β (t,s)

(1+ t)α−β−1
| fr,Ru(s)|ds

�
∫ +∞

0

Gα−β (t,s)

(1+ t)α−β−1
Φ(s)ds = H2(t)

Property (3.3) of the function Gθ and the dominated convergence theorem lead to
limt→∞ H1(t) = limt→∞ H2(t) = 0, proving the equiconvergence. In view of Lemma
3.3 TΩ is relatively compact in E.
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Step 4. In this step, we prove that if v ∈ Ω is a fixed point of Tr,R then u = v−φ
is a positive solution to the fbvp (1.1) . Hence, we have

u(t) =
∫ +∞

0
Gα(t,s)

(
f (s,u(s),Dβ u(s))+q(s)

)
ds+ φ(t)

= −Iα f (s,u(s),Dβ u(s))+
tα−1

Γ(α)

∫ ∞

0
f (s,u(s),Dβ u(s))ds,

leading to

Dα−2u(t) = Dα−2u(t) = −
∫ t

0
(t− s) f (s,u(s),Dβ u(s))ds+ t

∫ +∞

0
f (s,u(s),Dβ u(s))ds.

Dα−1u(t) = −
∫ t

0
f (s,u(s),Dβ u(s))ds+

∫ +∞

0
f (s,u(s),Dβ u(s))ds

=
∫ +∞

t
f (s,u(s),Dβ u(s))ds.

Dαu(t) = − f (t,u(t),Dβ u(s)),
Dα−2u(0) = lim

t→+∞
Dα−1u(t) = 0

and we obtain from (3.1), u(0) =
∫ +∞
0 G(0,s) f (s,u(s))ds = 0.

These show that u is a positive solution to the fbvp (1.1), ending the proof. �

4. Main result

The main result of this paper needs to introduce the following notations. For m ∈
L1 (I) with m(t) � 0 a.e. t > 0 and σ > 1, we let

Λ(m) = max

(
supt>0

(∫ +∞
0

Gα (t,s)
(1+t)α−1 m(s) ds

)
,supt>0

(∫ +∞
0

Gα−β (t,s)

(1+t)α−β−1 m(s) ds

))
,

Δ(m,σ) = min

(
supt>0

(∫ σ
1/σ

Gα (t,s)
(1+t)α−1 m(s) ds

)
,supt>0

(∫ σ
1/σ

Gα−β (t,s)

(1+t)α−β−1 m(s) ds

))
.

THEOREM 4.1. Suppose that Hypotheses (1.2) and (1.3) hold,

(a) there exist a function a ∈ L1 (I) and R1 > max(φ∗,Λ(a)) such that

f (t,(1+ t)α−1 u,(1+ t)α−β−1 v)+q(t) � a(t)

for a.e. t ∈ I and all u,v ∈ I with |(u,v)| � R1,

(b) there exist σ > 1, a function b ∈ L1 (I) and a constant R2 ∈ (φ∗,Δ(b,σ)) with
R2 	= R1 such that

f (t,(1+ t)α−1 u,(1+ t)α−β−1 v)+q(t) � b(t) ,

for a.e. t ∈ [1/σ ,σ ] , all u∈ [γα ,σ (R2−φ∗) ,R2] , and all v∈ [γα ,β ,σ (R2−φ∗) ,R2
]
,

where γα ,σ = mins∈[1/σ ,σ ] (γ̃α (s)) and γα ,β ,σ = mins∈[1/σ ,σ ]
(
γ̃α−β (s)

)
.
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Then, the fbvp (1.1) admits a positive solution u such that for all γ ∈ [0,α −2) ,
limt→+∞

u(t)+φ(t)
tγ = +∞ . Moreover,

i) if for all ρ > 0∫ +∞

0
tωρ (t)Ψρ

(
rγ̃α (t),rγ̃α−β (t)

)
dt < ∞ for all r ∈ (0,ρ ]

then

lim
t→+∞

u(t)+ φ(t)
tα−2 = l ∈ (0,+∞) ,

{
0 if δ ∈ (0,1) ,
if δ = 1,

ii) if there is δ ∈ (0,1) such that for all ρ > 0 and all r ∈ (0,ρ ]

lim
t→+∞

tδ+1ωρ (t)Ψρ
(
rγ̃α(t),rγ̃α−β (t)

)
= 0∫ +∞

0
tδ ωρ (t)Ψρ

(
rγ̃α(t),rγ̃α−β (t)

)
dt < ∞

then

lim
t→+∞

u(t)+ φ(t)
tα−1−δ = 0.

Proof. Without loss of generality, assume that R1 < R2 and let T = TR1,R2 be the
operator given by Lemma 3.4 and for all v ∈ P∩ (B(0,R2)�B(0,R1)

)
fR1,R2v(s) = f (s,v(s)−φ(s),Dβ v(s)−Dβ φ(s))+q(s).

For all v ∈ P∩∂B(0,R1) and all t ∈ I, the following estimates hold,

Tv(t)

(1+ t)α−1 =
∫ +∞

0

Gα(t,s)

(1+ t)α−1 fR1,R2v(s)ds

� sup
t>0

(∫ +∞

0

Gα(t,s)
(1+ t)α−1 a(s) ds

)
and

Dβ Tv(t)

(1+ t)α−β−1
=
∫ +∞

0

Gα−β (t,s)

(1+ t)α−β−1
fR1,R2v(s)ds

� sup
t>0

(∫ +∞

0

Gα−β (t,s)

(1+ t)α−β−1
a(s) ds

)
.

Passing to the supremum in the above estimates, we get

‖Tv‖1 � supt>0

(∫ +∞
0

Gα (t,s)
(1+t)α−1 a(s) ds

)
and

‖Tv‖2 � supt>0

(∫+∞
0

Gα−β (t,s)

(1+t)α−β−1 a(s) ds

)
,

(4.1)
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leadig to
‖Tv‖ � Λ(a) � R1 = ‖v‖.

For all v ∈ P∩∂B(0,R2) and s ∈ [1/σ ,σ ],

R2 � v(s)−φ(s)
(1+ s)α−1 � (R2−φ∗) γ̃α(s) = (R2−φ∗)γα ,σ

R2 � Dβ v(t)−Dβ φ(s)

(1+ s)α−β−1
� (R2−φ∗) γ̃α−β (s) = (R2−φ∗)γα ,β ,σ .

(4.2)

Assumption (b) and (4.2) lead to the following estimates

‖Tv‖1 � sup
t>0

(∫ σ

1/σ

Gα(t,s)

(1+ s)α−1 fR1,R2v(s)ds

)

� sup
t>0

(∫ σ

1/σ

Gα(t,s)
(1+ s)α−1 b(s) ds

)
and

‖Tv‖2 � sup
t>0

(∫ σ

1/σ

Gα−β (t,s)

(1+ s)α−β−1
fR1,R2v(s)ds

)

� sup
t>0

(∫ σ

1/σ

Gα−β (t,s)

(1+ s)α−β−1
b(s) ds

)
.

From the above estimates, we obtain

‖Tv‖ = max(‖Tv‖2,‖Tv‖2) � Δ(b,σ) � R2 = ‖v‖.
Thus, it follows from Assertion 1 in Theorem 2.1 that TR1,R2 admits a fixed point

v such that R1 � ‖v‖� R2 . Then by Lemma 3.4, u = v−φ is a positive solution to the
bvp (1.1).

Now, v = u+ φ satisfies

v(t)
tγ = tε

(
v(t)
tγ+ε

)
= tε

∫ +∞

0

Gα (t,s)
tγ fR1,R2v(s)ds

� tε
∫ +∞

0
G̃α−γ (t,s) fR1,R2v(s)ds = tεw(t),

where ε ∈ (0,α − γ −2) and

G̃α−γ (t,s) =
1

Γ(α)

{
tα−γ−1− (t− s)α−γ−1 s � t
tα−γ−1 t � s.

Since α − γ −2 > 0 and

w′(t) =
α − γ −1

Γ(α)

∫ t

0

(
tα−γ−2− (t− s)α−γ−2) fR1,R2v(s)ds

+tα−γ−2
∫ +∞

t
fR1,R2v(s)ds > 0,



250 A. BENMEZAÏ

we have that limt→+∞ w(t) = l ∈ (0,+∞] , leading to

lim
t→+∞

v(t)
tγ = lim

t→+∞
(tεw(t)) = +∞.

At this stage suppose that the condition in Assertion i) hold, then

u(t)+ φ(t)
tα−2 =

v(t)
tα−2 =

∫ +∞

0

Gα (t,s)
tα−2 fR1,R2v(s)ds

=
1

Γ(α)

∫ t

0

tα−1− (t− s)α−1

tα−2 fR1,R2v(s)ds+
t

Γ(α)

∫ +∞

t
fR1,R2v(s)ds

� 1
Γ(α)

∫ t

0

tα−1− (t− s)α−1

tα−2 fR1,R2v(s)ds+
1

Γ(α)

∫ +∞

t
s fR1,R2v(s)ds.

Clearly, limt→+∞
∫ +∞
t s fR1,R2v(s)ds = 0 and we have by the mean value theorem

(α −1)s
(

t− s
t

)α−2

� tα−1− (t− s)α−1

tα−2 � (α −1)s.

proving that for all s > 0

lim
t→+∞

tα−1− (t− s)α−1

tα−2 = (α −1)s.

This with Lebesgue dominated convergence theorem lead to

lim
t→+∞

u(t)+ φ(t)
tα−2 =

(α −1)
Γ(α)

∫ t

0
s fR1,R2v(s)ds.

At the end, suppose that the condition in ii) is satisfied, then

u(t)+ φ(t)
tα−δ−1

=
v(t)

tα−δ−1
=
∫ +∞

0

Gα (t,s)
tα−δ−1

fR1,R2v(s)ds

=
1

Γ(α)

∫ t

0

tα−1− (t− s)α−1

tα−δ−1
fR1,R2v(s)ds+

tδ

Γ(α)

∫ +∞

t
fR1,R2v(s)ds

� 1
Γ(α)

∫ t

0

tα−1− (t− s)α−1

tα−δ−1
fR1,R2v(s)ds+

1
Γ(α)

∫ +∞

t
sδ fR1,R2v(s)ds.

Clearly, limt→+∞
∫ +∞
t sδ fR1,R2v(s)ds = 0 and we have by L’Hopital’s rule

lim
t→+∞

u(t)+ φ(t)
tα−δ−1

=
1

Γ(α)
lim

t→+∞

∫ t

0

(
tα−1− (t− s)α−1

)
tα−δ−1

fR1,R2v(s)ds

� 1
Γ(α)

lim
t→+∞

∫ t

0

(α −1)stα−2

tα−δ−1
fR1,R2v(s)ds

=
(α −1)
Γ(α)

lim
t→+∞

∫ t

0

( s
t

)1−δ
sδ fR1,R2v(s)ds.
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Thus, we conclude by Lebesgue dominated convergence theorem that

lim
t→+∞

u(t)+ φ(t)
tα−δ−1

= 0.

The proof is complete. �
Set for σ > 1

fσ = liminf
|(w,z)|→+∞

(
min

t∈[1/σ ,σ ]

f (t,(1+ t)α−1w,(1+ t)α−β−1z)
w+ z

)
.

We obtain from Theorem 4.1 the following corollary:

COROLLARY 4.1. Suppose that Hypotheses (1.2) and (1.3) hold,

(c) there exists R1 > φ∗ such that Λ(a1) < R1 where

a1 (s) = ωR1 (s)ΨR1

(
(R1−φ∗) γ̃α(s),(R1−φ∗) γ̃α−β (s)

)
+q(s),

(d) there exists σ > 1, such that fσ Δ(b0,σ) > 1 , where b0(s) = inf
(
γ̃α (s) , γ̃α−β (s)

)
.

Then, all the conclusions in Theorem 4.1 hold.

Proof. Clearly, Condition (a) in Theorem 4.1 is satisfied for a = a1. We have to
prove that Condition (b) is also satisfied. Let ε > 0 be such that ( fσ −ε)Δ(b0,σ) > 1.
There exists R∞ such that

f (t,(1+ t)α−1w,(1+ t)α−β−1z) > ( fσ − ε)(w+ z)

for all t ∈ [1/σ ,σ ] and all w,z with |(w,z)| � R∞. Let

R2 = 1+ sup

(
R1,φ∗ +

R∞

γσ
,

φ∗ ( fσ − ε)Δ(b0,σ)
( fσ − ε)Δ(b0,σ)−1

)
and

b(t) = ( fσ − ε)(R2−φ∗) γ̃α (s)+q(s).

where γσ = min
(
γα ,σ ,γα ,β ,σ

)
and notice that

( fσ − ε)Δ(b0,σ) (R2−φ∗) > R2.

We have then

Δ(b,σ) = min
(
supt>0

(∫ σ
1/σ

Gα (t,s)
(1+t)α−1 (( fσ − ε)(R2 −φ∗) γ̃α (s)+q(s))ds

)
,

supt>0

(∫ σ
1/σ

Gα−β (t,s)
(1+t)α−β−1 (( fσ − ε)(R2−φ∗) γ̃α (s)+q(s))ds

))
� ( fσ − ε)Δ(b0,σ) (R2−φ∗) > R2.

The proof is complete. �
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5. Example

In this example we consider the case of the fbvp (1.1) where

f (t,u,v) = e−t (g(t,u,v))p + ce−t g(t,u,v)
1+g(t,u,v)

− e−2t (5.1)

with
g(t,u,v) =

u

(1+ t)α−1 +
v

(1+ t)α−β−1
, p < 0 and c ∈ I.

We obtain from Theorem 4.1 the following corollary:

COROLLARY 5.1. Assume that p(α −β −1) > −1 and cΔ(b0,σ) > 1+ φ∗ for
some σ > 1 and

b0(t) =
min

(
γ̃α (t) , γ̃α−β (t)

)
1+min

(
γ̃α (t) , γ̃α−β (t)

)
where φ∗ is that in Lemma 3.2 . Then the fbvp (1.1) within f given in (5.1), has a

positive solution u such that limt→+∞
u(t)+ φ (t)

tα−1 ∈ (0,+∞) .

Proof. We have to show that all assumptions of Theorem 4.1 are satisfied. Clearly,
Hypothesis (1.2) is satisfied for q(t) = e−2t and we have

f (t,(1+ t)α−1 w,(1+ t)α−β−1 z) = e−t
(

(w+ z)p +
c(w+ z)

1+(w+ z)
− e−t

)
,

leading to ∣∣∣ f (t,ektw,ekt z)
∣∣∣ =

∣∣e−t ((w+ z)p− e−t)∣∣
� e−t ((w+ z)p + c+1).

Set for all ρ > 0

ωρ (t) = e−t and Ψρ (w,z) = (w+ z)p + c+1.

Then
ωρ (s)ψρ

(
ργ̃α (s) ,ργ̃α−β (s)

)
= e−s (1+ c+ ρ pθ (s))

where θ (s) =
(
γ̃α (s)+ γ̃α−β (s)

)p satisfies

θ (s) 
 s(α−β−1)p at 0 and θ (s) 
 s(2−α)p

(α −1)
at + ∞.

Since (α −β −1) p > −1, we have∫ +∞

0
ωρ (s)ψρ

(
ργ̃α (s) ,ργ̃α−β (s)

)
ds < ∞.
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The above calculations show that Hypothesis (1.3) is fulfilled.
Now, for

a1(t) = e−t ((R−φ∗)p θ (t)+ c+1)+ e−2t

straightforward computations lead to

Λ(a1) � Λ(R) = λ0 (R−φ∗)p + c+
3
2
,

where λ0 =
∫+∞
0 e−sθ (s)ds.

For R1 large, we have

Λ(R1 + φ∗) = λ0R
p
1 + c+

3
2

< R1

and Condition (a) in Theorem 4.1 is satisfied.
At this stage, for all u ∈ P with R = ‖u‖ > φ∗ and t ∈ [1/σ ,σ ] we have

f (t,u(t)−φ(t),Dβ u(t)−Dβ φ(t))+q(t)

� ce−t g
(
t,u(t)−φ(t),Dβ u(t)−Dβ φ(t)

)
1+g

(
t,u(t)−φ(t),Dβ u(t)−Dβ φ(t)

)
� ce−t (‖u‖−φ∗)min

(
γ̃α (t) , γ̃α−β (t)

)
1+(‖u‖−φ∗)min

(
γ̃α (t) , γ̃α−β (t)

)
and set

b1(t) = ce−t min
(
γ̃α (t) , γ̃α−β (t)

)
1+min

(
γ̃α (t) , γ̃α−β (t)

) = cb0(t).

Therefore, we have for R = 1+ φ∗

Δ(b1,σ) = cΔ(b0,σ) > 1+ φ∗ = R

and Condition (b) in Theorem 4.1 is satisfied.
At the end, for all ρ > 0 and all r ∈ (0,ρ ] we have∫ +∞

0
sωρ (s)ψρ

(
rγ̃α (s) ,rγ̃α−β (s)

)
ds =

∫ +∞

0
se−s (1+ c+ rpθ (s))ds < ∞.

We conclude from Assertion i) in Theorem 4.1 that

lim
t→+∞

u(t)+ φ(t)
tα−2 = l ∈ (0,+∞) . �
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