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Abstract. In this paper, we prove the existence and uniqueness of a mild solution to a class of
semilinear fractional differential equation in an infinite Banach space with Caputo derivative
order 0 < α � 1 . Furthermore, we establish the stability conditions and then prove that the
considered initial value problem is exponentially stabilizable when the stabilizer acts linearly on
the control system.

1. Introduction

Let b > 0 and A the infinitesimal generator of a semigroup of uniformly bounded
operators (T (t))t�0 defined on an infinite dimensional Banach space (X,‖·‖) . We
consider the following system of fractional differential equations:{

C
0 Dα

t x(t) = Ax(t)+ f (t,x(t)), t ∈ [0,b]

x(0) = x0,
(1)

where C
0 Dα

t is the Caputo fractional derivative of order 0 < α � 1, x0 ∈X and f : [0,b]×
X −→ X is a nonlinear function. We denote by C = C ([0,b],X) the Banach space of
all continuous functions from [0,b] into X endowed with the topology of uniform con-
vergence

‖u‖C = sup
t∈[0,b]

‖u(t)‖ (2)

and let
(
B(X),‖·‖B(X)

)
be the Banach space of all linear and bounded operators from

X to X .

REMARK 1. Since (T (t))t�o is uniformly bounded, there exists M > 0 such that
M = sup

t∈[0,∞)
‖T (t)‖ < ∞ .
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Fractional derivatives provide more accurate models of real-world behaviour than
standard derivatives because of their non-local nature, an intrinsic property of many
complex systems. This is why in recent decades, more and more scientific researchers
have become interested in using fractional differential equations to model phenom-
ena in various branches of science. Many authors have worked on the existence of
solution to initial value problems with fractional derivatives in finite and infinite di-
mensional space. In finte dimensional case, the existence and uniqueness of solutions
to problems of type (1) are widely studied in [14] by mean of Schauder’s fixed point
theorem and Weissinger’s fixed point theorem. Mouffack Benchohra et al. used the
Banach fixed point theorem and the nonlinear alternative of Leray-Schauder type in [3]
to prove the existence of solutions for fractional order functional and neutral functional
differential equations with infinite delay whereas in [23], Gisèle Mophou and Gaston
M. N’Guérékata investigated the existence and uniqueness of the mild solution for a
semilinear fractional differential equation of neutral type with infinite delay. For more
results on the existence of solutions we refer to [4, 5, 6, 7, 16, 22, 24, 25, 26] and the
references therein.

Given the fact that fractional differential equations describes better the dynamics
of complex systems, it became very important to study their stability and stabiliza-
tion, as they arise in many scientific and engineering processes such as physics, eco-
nomics, control theory, finance, etc . . . This justifies the interest of several researchers
in this area. For instance, in [17, 18] Yan Li et al. studied the Mittag-Leffler stabil-
ity of fractional-order nonlinear dynamic system and investigated the Lyapunov direct
method. In order to apply the fractional-order extension of Lyapunov direct method,
Aguila-Camacho Norelys et al. also proposed in [1] a new lemma for the stability
of fractional differential equations with Caputo derivative order 0 < α < 1. Mean-
while, Mihailo Lazarević used Gronwall inequality and Bellman-Gronwall inequality to
present in [15] sufficient conditions for finite time stability and stabilization for nonlin-
ear perturbated fractional order time delay systems. In [29], Roberto Triggiani proved
that studying the stabilization of a general infinite dimensional system in term of its
controllability need not be as informative and as general as a procedure for the finite
dimensional case. More specifically, he considered the stabilizability problem of ex-
pressing the control through a bounded operator acting on the state as to make the
resulting feedback system globally asymptotically stable. In both finite and infinite di-
mensional cases, more results can be found in [6, 8, 13, 19, 20, 27, 28, 30, 31, 32] and
the references therein.

The main purpose of this paper is a generalization of [13] in an infinite Banach
space. In the latter paper, Badawi Hamza Elbadawi Ibrahim et al. recently studied
based on the properties of Mittag-Leffler functions, the stability and stabilization of
the semilinear system (1) in a finite dimensional space, f : [0,∞)×R

n �−→ R
n being

considered as a nonlinear vector field in the n -dimensional vector space, and A ∈ R
n×n

a constant matrix.
The rest of this paper is organized as follows: Section 2 is devoted to some pre-

liminary results that are useful in the sequel. In Section 3, we prove by means of the
Banach contraction principle that there exists a unique mild solution to the Cauchy
problem (1) whereas in Sections 4 and 5, we respectively establish conditions for expo-



STABILIZATION OF DIFFERENTIAL EQUATIONS IN BANACH SPACES 269

nential stability and study the stabilization of the latter system. An illustrative example
for the existence and uniqueness of mild solution in an infinite Banach space is given
in Section 6, as well as its stability. The last section concludes this work.

2. Preliminaries

In this section, we present recall definitions and properties of fractional calculus
and semigroup theory to be used throughout this paper.

DEFINITION 2.1. The Euler’s Gamma function is given by:

Γ(σ) =
∫ ∞

0
tσ−1e−t dt for σ > 0.

Furthermore, Γ(1) = 1 and Γ(σ +1) = σΓ(σ) for any σ > 0.

DEFINITION 2.2. The Laplace transform of a function f is denoted and defined
by:

L { f (t)}(s) = F(s) =
∫ ∞

0
f (t)e−stdt for s > 0.

In addition, if F(s) = L { f (t)}(s) and G(s) = L {g(t)}(s) , then

L

{∫ t

0
f (t − τ)g(τ)dτ

}
(s) = F(s)G(s). (3)

DEFINITION 2.3. The left-sided Riemann-Liouville fractional integral of order α
is defined and denoted by:

aI
α
t x(t) = aD

−α
t x(t) =

1
Γ(α)

∫ t

a
(t− τ)α−1x(τ)dτ for Re(α) > 0. (4)

Note that α could be real, integer, fraction or complex.

DEFINITION 2.4. The left-sided Riemann-Liouville fractional derivative of order
α is denoted and defined as follow:

aD
α
t x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Γ(n−α)

(
d
dt

)n ∫ t

a
(t − τ)n−α−1x(τ)dτ if n−1 < α < n,(

d
dt

)n−1

x(t) if α = n−1.

(5)

If x(t) = c = constant, then

aD
α
t x(t) =

c
Γ(1−α)

(t −a)−α , α �= 1,2, · · · (6)

Symbolically,

Dn
aD

−(n−α)
t = aD

α
t (7)
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is the left-sided Rieman Liouville fractional derivative of order α and

D−n
aD

α
t = aD

−(n−α)
t (8)

represent the fractional integral operator.

DEFINITION 2.5. The left-sided Caputo fractional derivative of order α is de-
noted and defined as follow:

C
a Dα

t x(t) =

⎧⎨
⎩

1
Γ(n−α)

∫ t

a
(t− τ)n−α−1x(n)(τ)dτ if n−1 < α < n

x(n−1)(t) if α = n−1
(9)

where x(n)(t) is the nth integer order derivative of x with respect to t .
If x(t) is a constant, then

C
a Dα

t x(t) = 0. (10)

REMARK 2. For Re(α) � 0, the left-sided Caputo fractional derivative C
a Dα

t x(t)
and the left-sided Riemann-Liouville fractional derivative aDα

t x(t) are connected by
the following relation (see [14], p. 91):

C
a Dα

t x(t) = aD
α
t x(t)−

n−1

∑
k=0

x(k)(a)
Γ(k−α +1)

(t −a)k−α (n = [Re(α)]+1) . (11)

REMARK 3. For any t ∈ [a,b] , if g(t) ∈ L1(a,b) then the equality

aI
α
t aD

α
t g(t) = g(t)−

n

∑
j=1

(
aI

1−α
t g

)(n− j)
(a)

Γ(α − j +1)
(t−a)α− j (12)

holds almost everywhere on [a,b] (see [14], p. 75).

REMARK 4. (See [14], p. 91) If 0 < α � 1, then the left-sided Caputo fractional
derivative of a function g coincides with the left-sided Riemann-Liouville derivative if
g(a) = 0. That is,

C
a Dα

t g(t) = aD
α
t g(t) if g(a) = 0. (13)

REMARK 5. The Laplace transform of the one-sided stable probability density

ρα(η) =
1
π

∞

∑
n=1

(−1)n−1η−αn−1 Γ(αn+1)
n!

sin(nπα), η ∈ (0,∞)

is given by ∫ ∞

0
e−sηρα(η)dη = e−sα

, where 0 < α � 1 and s > 0. (14)

Furthermore, for any 0 � δ � 1, we have (see [9]):

∫ ∞

0

1

ηδ ρα(η)dη =
Γ(1+

δ
α

)

Γ(1+ δ )
. (15)

For more details on the above preliminaries, we refer to [10, 21].
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3. Existence and uniqueness of the mild solution to the Cauchy problem (1)

We first of all introduce the Banach contraction principle, which we further use to
prove the existence and uniqueness result.

LEMMA 3.1. Assume (U,d) to be a non-empty complete metric space, let 0 �
K < 1 and let the mapping F : U −→U satisfy the inequality

d(Fu,Fv) � Kd(u,v) for every u,v ∈U.

Then, F has a uniquely determined fixed point u∗ . Furthermore, for any u0 ∈U , the
sequence

(
F ju0

)∞
j=1 converges to this fixed point u∗ .

Proof. The proof of this lemma can be found in [12]. �

LEMMA 3.2. The Cauchy problem (1) is equivalent to the volterra integral equa-
tion

x(t) = x0 +
A

Γ(α)

∫ t

0
(t−τ)α−1x(τ)dτ +

1
Γ(α)

∫ t

0
(t−τ)α−1 f (τ,x(τ))dτ, for t ∈ [0,b].

(16)

Proof. Let us assume that x ∈ C satisfies the Cauchy problem (1) and prove that
(16) holds.

Applying the operator 0Iα
t to both sides of the first equation of (1), we have:

0I
α
t

C
0 Dα

t x(t) = A 0I
α
t x(t)+ 0I

α
t f (t,x(t)). (17)

In order to evaluate the left hand side of (17), we note from (11) that

C
0 Dα

t x(t) = 0D
α
t x(t)− x(0)

Γ(1−α)
t−α

= D1
aD

−(1−α)
t x(t)− x0

Γ(1−α)
t−α

=
d
dt 0I

1−α
t x(t)− x0

Γ(1−α)
t−α . (18)

We have also:

0I
1−α
t x0 = x0 0I

1−α
t 1

=
x0

Γ(1−α)

∫ t

0
(t− τ)−αdτ

=
x0

(1−α)Γ(1−α)
t1−α

and then,
d
dt 0I

1−α
t x0 =

x0

Γ(1−α)
t−α .
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Equation (18) becomes:

C
0 Dα

t x(t) =
d
dt 0I

1−α
t x(t)− d

dt 0I
1−α
t x0

= 0D
α
t (x(t)− x0). (19)

If we set g(t) = x(t)− x0 , then we obtain from (12) the following:

0I
α
t 0D

α
t x(t) = x(t)− x0. (20)

In addition,

0I
α
t x(t) =

1
Γ(α)

∫ t

0
(t − τ)α−1x(τ)dτ (21)

and

0I
α
t f (t,x(t)) =

1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ,x(τ))dτ. (22)

Substituting (20), (21) and (22) into (17), we obtain the Volterra integral equation (16).
Conversely, let us assume that x ∈ C satisfies the Volterra integral equation (16)

and prove that the Cauchy problem (1) holds.
Equation (16) can also be written as

x(t) = x0 +A 0I
α
t x(t)+ 0I

α
t f (t,x(t)). (23)

Applying the operator C
0 Dα

t on both sides of the equality (23) while taking into account
(10), we have:

C
0 Dα

t x(t) = A C
0 Dα

t 0I
α
t x(t) + C

0 Dα
t 0I

α
t f (t,x(t)). (24)

Now let us evaluate the right hand side. We have the following estimate:

‖0I
α
t x(t)‖ =

∣∣∣∣
∣∣∣∣ 1
Γ(α)

∫ t

0
(t− τ)α−1x(τ)dτ

∣∣∣∣
∣∣∣∣

� 1
Γ(α)

∫ ∞

0
(t− τ)α−1‖x(τ)‖dτ

� 1
Γ(α)

sup
τ∈[0,b]

‖x(τ)‖
∫ ∞

0
(t− τ)α−1dτ

=
1

Γ(α)
‖x‖C

[
− 1

α
(t− τ)α

]t
τ=0

=
‖x‖C

αΓ(α)
tα

Therefore,

(0I
α
t x) (0) = 0. (25)
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Taking into account (25), if we set g(t) = 0Iα
t x(t) in Remark 4, we have:

C
0 Dα

t 0I
α
t x(t) = 0D

α
t 0I

α
t x(t)

= 0D
α
t 0D

−α
t x(t)

= x(t) (26)

We have also:

‖0I
α
t f (t,x(t))‖ =

∣∣∣∣
∣∣∣∣ 1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ,x(τ))dτ

∣∣∣∣
∣∣∣∣

� 1
Γ(α)

∫ ∞

0
(t − τ)α−1‖ f (τ,x(τ))‖dτ

� 1
Γ(α)

sup
τ∈[0,b]

‖ f (τ,x(τ))‖
∫ ∞

0
(t− τ)α−1dτ

=
1

Γ(α)
‖ f (·,x(·))‖C

[
− 1

α
(t− τ)α

]t

τ=0

=
‖ f (·,x(·))‖C

αΓ(α)
tα

Therefore,
(0I

α
t f (t,x(t))) (0) = 0. (27)

Taking into account (27), if we set g(t) = 0Iα
t f (t,x(t)) in Remark 4, we have:

C
0 Dα

t 0I
α
t f (t,x(t)) = 0D

α
t 0I

α
t f (t,x(t))

= 0D
α
t 0D

−α
t f (t,x(t))

= f (t,x(t)) (28)

Hence substituting (26) and (28) into (24), we deduce that

C
0 Dα

t x(t) = Ax(t)+ f (t,x(t)). (29)

In addition, for t = 0 in (23), considering (25) and (27), we obtain:

x(0) = x0. (30)

Combining (29) and (30), we conclude that if x ∈C satisfies the Volterra integral equa-
tion (16), then x is solution to the Cauchy problem (1). This ends the proof of Lemma
3.2. �

LEMMA 3.3. If (16) holds, then we have the following integral equation:

x(t) = Q(t)x0 +
∫ t

0
(t− τ)α−1R(t− τ) f (τ,x(τ))dτ for t ∈ [0,b],

where the operators {Q(t)}t∈[0,b] and {R(t)}t∈[0,b] are defined by

Q(t)x =
∫ ∞

0
ζα(η)T (tα η)xdη ∀ x ∈ X (31)
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and

R(t)x = α
∫ ∞

0
ηζα(η)T (tα η)xdη ∀ x ∈ X, (32)

where

ζα(η) =
1
α

η− 1
α −1ρα

(
η− 1

α
)

(33)

is the probability density function defined on (0,∞) , that is, ζα(η) � 0 for η ∈ (0,∞)

and
∫ ∞

0
ζα(η)dη = 1 .

Proof. Let s > 0. Applying the Laplace transform on both sides of (16), we have:

L {x(t)}(s) = x0L {1}(s)+
A

Γ(α)
L

{∫ t

0
(t− τ)α−1x(τ)dτ

}
(s)

+
1

Γ(α)
L

{∫ t

0
(t− τ)α−1 f (τ,x(τ))dτ

}
(s)

which is equivalent to

X(s) =
1
s
x0 +

A
Γ(α)

(α −1)!
sα X(s)+

1
Γ(α)

(α −1)!
sα F(s), (34)

where X(s) = L {x(t)}(s) and F(s) = L { f (t,x(t))} (s) .
Equation (34) is equivalent to

X(s)
(

sα I−A
sα

)
=

1
s
x0 +

1
sα F(s)

which implies that

X(s) = (sα I−A)−1sα−1x0 +(sαI−A)−1F(s)
= sα−1L {T (τ)}(sα )x0 +L {T (τ)} (sα)F(s)

= sα−1
∫ ∞

0
e−sα τT (τ)x0dτ +

∫ ∞

0
e−sα τT (τ)F(s)dτ. (35)

Now we consider the following change of variable: τ = tα .
Equation (35) becomes:

X(s) = sα−1
∫ ∞

0
αtα−1e−(st)α

T (tα)x0dt +
∫ ∞

0
αtα−1e−(st)α

T (tα)F(s)dt

=
∫ ∞

0
α(st)α−1e−(st)α

T (tα)x0dt

+
∫ ∞

0
αtα−1e−(st)α

T (tα)
(∫ ∞

0
e−sτ f (τ,x(τ))dτ

)
dt

=
∫ ∞

0
− 1

s
T (tα)x0

d
dt

(
e−(st)α

)
dt

+
∫ ∞

0

∫ ∞

0
αtα−1e−(st)α

T (tα)e−sτ f (τ,x(τ))dτdt. (36)
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Taking into account (14), equation (36) becomes:

X(s) =
∫ ∞

0
− 1

s
T (tα)x0

(∫ ∞

0

d
dt

(
e−stσ)ρα(σ)dσ

)
dt

+
∫ ∞

0

∫ ∞

0
αtα−1

(∫ ∞

0
e−stσ ρα(σ)dσ

)
T (tα)e−sτ f (τ,x(τ))dτdt

=
∫ ∞

0

∫ ∞

0
σT (tα)x0e

−stσ ρα(σ)dσdt

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
αtα−1e−stσ ρα(σ)T (tα)e−sτ f (τ,x(τ))dσdτdt. (37)

Now we consider the change of variable tσ = θ =⇒ dt =
1
σ

dθ .

(37) becomes

X(s) =
∫ ∞

0

∫ ∞

0
T

(
θ α

σα

)
x0e

−sθ ρα(σ)dσdθ

+
∫ ∞

0

∫ ∞

0

∫ ∞

0
α

θ α−1

σα e−s(θ+τ)ρα(σ)T
(

θ α

σα

)
f (τ,x(τ))dσdτdθ .

(38)

Considering the new change of variable θ + τ = t , we have:{
θ → 0 =⇒ t → τ
θ → ∞ =⇒ t → ∞ ,

{
0 < τ < ∞
τ < t < ∞ =⇒ 0 < τ < t

and {
0 < τ < ∞
τ < t < ∞ =⇒ 0 < t < ∞

Then, (38) becomes:

X(s) =
∫ ∞

0
e−sθ

(∫ ∞

0
T

(
θ α

σα

)
ρα(σ)x0dσ

)
dθ

+
∫ ∞

t=0
e−st

(∫ ∞

σ=0

∫ t

τ=0
α

(t− τ)α−1

σα ρα(σ)T
(

(t− τ)α

σα

)
f (τ,x(τ))dτdσ

)
dt.

=
∫ ∞

t=0
e−st

{∫ ∞

σ=0
T

(
tα

σα

)
ρα(σ)x0dσ

+α
∫ ∞

σ=0

∫ t

τ=0

(t− τ)α−1

σα ρα(σ)T
(

(t − τ)α

σα

)
f (τ,x(τ))dτdσ

}
dt. (39)

Applying the inverse Laplace transform on (39), we deduce that

x(t) =
∫ ∞

0
T

(
tα

σα

)
ρα(σ)x0dσ

+α
∫ ∞

0

∫ t

0

(t − τ)α−1

σα ρα(σ)T
(

(t− τ)α

σα

)
f (τ,x(τ))dτdσ . (40)
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Now we consider the following change of variable:

1
σα = η =⇒ σ = η− 1

α and dσ = − 1
α

η− 1
α −1dη .

Equation (40) becomes

x(t) =
∫ ∞

0
T (tαη)

(
1
α

η− 1
α −1ρα

(
η− 1

α
))

x0dη

+α
∫ ∞

0

∫ t

0
η(t − τ)α−1T ((t− τ)α η)

(
1
α

η− 1
α −1ρα

(
η− 1

α
))

f (τ,x(τ))dτdη

=
∫ ∞

0
T (tαη)ζα (η)x0dη

+α
∫ ∞

0

∫ t

0
η(t − τ)α−1T ((t− τ)α η)ζα(η) f (τ,x(τ))dτdη ,

where

ζα(η) =
1
α

η− 1
α −1ρα

(
η− 1

α
)

, η ∈ (0,∞).

Therefore,

x(t) = Q(t)x0 +
∫ t

0
(t− τ)α−1R(t− τ) f (τ,x(τ))dτ for t ∈ [0,b], (41)

where the operators {Q(t)}t∈[0,b] and {R(t)}t∈[0,b] are defined by (31) and (32) and the
proof of Lemma 3.3 is complete. �

Motivated by Lemma 3.3, we give the following definition of the mild solution of
the Cauchy problem (1).

DEFINITION 3.1. A function x ∈ C is said to be a mild solution to the initial
value problem (1) if x satisfies

x(t) = Q(t)x0 +
∫ t

0
(t− τ)α−1R(t− τ) f (τ,x(τ))dτ, for t ∈ [0,b], (42)

where the operators {Q(t)}t∈[0,b] and {R(t)}t∈[0,b] are defined by (31) and (32) respec-
tively.

LEMMA 3.4. For any fixed t ∈ [0,b] , Q(t) and R(t) are linear bounded opera-
tors.

Proof. For any fixed t ∈ [0,b] , since T (t) is a linear operator, we can easily see
that Q(t) and R(t) are also linear operators.

Furthermore, for any 0 � δ � 1 we have the following:∫ ∞

0
ηδ ζα(η)dη =

∫ ∞

0
ηδ 1

α
η− 1

α −1ρα

(
η− 1

α
)

dη

=
∫ ∞

0

1
α

η− 1
α −1+δ ρα

(
η− 1

α
)

dη . (43)
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Now we consider the following change of variable:

σ = η− 1
α =⇒ η = σ−α =⇒ dη = −ασ−α−1dσ .

So, equation (43) becomes:∫ ∞

0
ηδ ζα(η)dη =

∫ ∞

0
σ−αδ ρα(σ)dσ

=
∫ ∞

0

1

σαδ ρα(σ)dσ . (44)

But

{
0 � δ � 1
0 < α � 1

=⇒ 0 � αδ � 1.

Then, from (15), we deduce that∫ ∞

0
ηδ ζα(η)dη =

Γ(1+ δ )
Γ(1+ αδ )

.

In particular, for δ = 1, we deduce the following:∫ ∞

0
ηζα(η)dη =

1
Γ(α +1)

. (45)

For any x ∈ X , we have:

||Q(t)x|| =
∣∣∣∣
∣∣∣∣∫ ∞

0
ζα(η)T (tα η)xdη

∣∣∣∣
∣∣∣∣

� sup
τ∈[0,∞)

‖T (τ)‖
︸ ︷︷ ︸

=M

‖x‖
∫ ∞

0
ζα(η)dη︸ ︷︷ ︸

=1

= M‖x‖
=⇒ ||Q(t)x||

‖x‖ � M

which implies that
‖Q(t)‖B(X) � M. (46)

In addition, we have for any x ∈ X the following:

||R(t)x|| =
∣∣∣∣
∣∣∣∣α∫ ∞

0
ηζα(η)T (tα η)xdη

∣∣∣∣
∣∣∣∣

� α sup
τ∈[0,∞)

‖T (τ)‖
︸ ︷︷ ︸

=M

‖x‖
∫ ∞

0
ηζα (η)dη︸ ︷︷ ︸

=
1

Γ(α +1)

=
αM

Γ(α +1)
‖x‖

=⇒ ||R(t)x||
‖x‖ � αM

Γ(α +1)
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which implies that

‖R(t)‖B(X) � αM
Γ(α +1)

. (47)

From inequalities (46) and (47), we deduce that the operators {Q(t)}t∈[0,b] and
{R(t)}t∈[0,b] are linear and bounded. �

We assume that

H1 : f (t,x) is of Caratheodory; that is, for any x ∈ X, f (t,x) is strongly
measurable with respect to t ∈ [0,b] and for any t ∈ [0,b], f (t,x) is
continuous with respect to x ∈ X,

H2 : ∃ L > 0 : ‖ f (t,x)− f (t,y)‖ � L‖x− y‖ ∀ x,y ∈ X, ∀ t ∈ [0,b].

Let us consider the operator G from C to C defined by:

Gx(t) = Q(t)x0 +
∫ t

0
(t− τ)α−1R(t− τ) f (τ,x(τ))dτ for t ∈ [0,b]. (48)

By Lemma 3.4, our hypothesis H1 and the fact that a function f is strongly measurable
if ‖ f‖ is Lebesgue integrable, we deduce that G is well defined on C .

THEOREM 3.1. Under the assumptions (H1)− (H2) , the Cauchy problem (1) has
a unique mild solution provided that the constant

Ωα =
MLbα

Γ(α +1)

satisfies

0 � Ωα < 1. (49)

Proof. Consider x,y ∈ C and let t ∈ [0,b] . We have:

‖Gx(t)−Gy(t)‖
=
∣∣∣∣
∣∣∣∣∫ t

0
(t− τ)α−1R(t − τ) f (τ,x(τ))dτ −

∫ t

0
(t− τ)α−1R(t− τ) f (τ,y(τ))dτ

∣∣∣∣
∣∣∣∣

�
∫ t

0
(t− τ)α−1‖R(t− τ)‖B(X)‖ f (τ,x(τ))− f (τ,y(τ))‖dτ

�
∫ t

0
(t− τ)α−1‖R(t− τ)‖B(X)‖x(τ)− y(τ)‖dτ
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which implies from Lemma 3.4 that

‖Gx(t)−Gy(t)‖ � αML
Γ(α +1)

sup
τ∈[0,b]

‖x(τ)− y(τ)‖
∫ t

0
(t− τ)α−1dτ

=
αML

Γ(α +1)
sup

τ∈[0,b]
‖x(τ)− y(τ)‖

[
− 1

α
(t − τ)α

]t

τ=0

=
αML

Γ(α +1)
‖x− y‖C

tα

α

� MLbα

Γ(α +1)
‖x− y‖C

= Ωα‖x− y‖C

which implies that
sup

t∈[0,b]
‖Gx(t)−Gy(t)‖ � Ωα‖x− y‖C ;

that is,
‖Gx−Gy‖C � Ωα‖x− y‖C . (50)

Hence, taking into account the condition (49) and the inequality (50), we deduce by the
Banach’s contraction principle (Lemma 3.1) that C has a unique fixed point x ∈ C ,
and

x(t) = Q(t)x0 +
∫ t

0
(t− τ)α−1R(t− τ) f (τ,x(τ))dτ for t ∈ [0,b], (51)

which is the mild solution of (1). �

4. Stability

So far we have been concerned with the existence and uniqueness of the mild
solution to the Cauchy problem (1), and we have quoted one theorem which guarantees
that there exists a unique solution for any t ∈ [0,b] and all initial states within X . In
this section, we aim to find the conditions under which the system (1) is stable.

We begin by giving the definition of exponential stability and introducing a Lemma
which will be used thereafter.

DEFINITION 4.1. System (1) is said to be exponentially stable if for every initial
state x0 ∈ X , there exist two constants K > 0 and ω > 0 such that

‖x(t)‖ � Ke−ωt‖x0‖ ∀ t ∈ [0,b].

LEMMA 4.1. Let u(t) be a continuous function which, for t > t0 , satisfies the
inequality

0 < u(t) < k+
∫ t

t0
(l + βu(t))dt,



280 R. G. FOKO TIOMELA, F. NOROUZI, G. M. N’GUÉRÉKATA AND G. MOPHOU

where k , l and β are constants such that k, l � 0 and β > 0 . Then the following
inequality holds

u(t) <
l
β

(
eβ (t−t0) −1

)
+ keβ (t−t0) ∀ t > t0.

Proof. The proof of this lemma can be found in [2], p. 16. �
From Section 3, we easily deduce that the Cauchy operator of the equation

C
0 Dα

t x(t) = Ax(t) (52)

subject to the initial condition
x(0) = x0 (53)

is given by:

Q(t)x =
∫ ∞

0
ζα(η)T (tα η)xdη ∀ x ∈ X. (54)

Let us suppose that the inequality

‖T (tαη)‖ � M̃ e−μ̃t ∀ t ∈ [0,b], ∀ η ∈ (0,∞) (55)

holds, where μ̃ and M̃ are strictly positive constants.
We have from (54) and (55), the following:

‖Q(t)‖B(X) �
∫ ∞

0
ζα(η)‖T (tαη)‖dη

�
∫ ∞

0
ζα(η)M̃ e−μ̃t dη

= M̃ e−μ̃t
∫ ∞

0
ζα(η)dη︸ ︷︷ ︸

=1

= M̃ e−μ̃t .

So,
‖Q(t)‖B(X) � M̃ e−μ̃t ∀ t ∈ [0,b]. (56)

The following theorem establishes the stability of the solution to system (1), with re-
spect to the first approximation, as relation (56) is the condition for exponential stability
of the solution to (52)–(53).

THEOREM 4.1. If (55) and the Lipschitz condition (H2 ) are fulfilled, and if in
addition the constants μ̃ , M̃ and L satisfy the inequality

μ̃ − LM̃ bα−1

Γ(α)
> 0, (57)

then the solution of the Cauchy problem (1) is exponentially stable.
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Proof. We have proven in the previous section that if a function x ∈ C satisfies
(1), then x can be written as follow:

x(t) = Q(t)x0 +
∫ t

0
(t− τ)α−1R(t− τ) f (τ,x(τ))dτ for t ∈ [0,b]. (58)

From (32) and (55), we have:

‖R(t)‖B(X) � α
∫ ∞

0
ηζα(η)‖T (tα η)‖dη

� α
∫ ∞

0
ηζα(η)M̃ e−μ̃t dη

= αM̃ e−μ̃t
∫ ∞

0
ηζα(η)dη︸ ︷︷ ︸

=
1

Γ(α +1)

=
M̃

Γ(α)
e−μ̃t .

So,

‖R(t)‖B(X) � M̃

Γ(α)
e−μ̃t ∀ t ∈ [0,b]. (59)

In addition, the Lipschitz condition (H2 ) with y = 0 gives for any x ∈ X and any
t ∈ [0,b] , the following:

‖ f (t,x)‖ � L‖x‖ (60)

Then, by (56), (59) and (60), we obtain from (58) the estimate:

‖x(t)‖ � M̃ e−μ̃t‖x0‖+
LM̃

Γ(α)

∫ t

0
(t− τ)α−1‖x(τ)‖e−μ̃(t−τ)dτ

� M̃ e−μ̃t‖x0‖+
LM̃

Γ(α)
sup

τ∈[0,b]
|t− τ|α−1

∫ t

0
e−μ̃(t−τ)‖x(τ)‖dτ,

since

0 � τ � t =⇒ − t � −τ � 0 =⇒ 0 � t− τ � t � b =⇒ (t− τ)α−1 � bα−1;

we deduce:

‖x(t)‖ � M̃ e−μ̃t‖x0‖+
LM̃ bα−1

Γ(α)

∫ t

0
e−μ̃(t−τ)‖x(τ)‖dτ. (61)

Now, let us consider the function ψ below defined on [0,b] .

ψ(t) = eμ̃t‖x(t)‖. (62)
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We obtain from the inequality (61), the following:

ψ(t) � M̃ ‖x0‖+
LM̃ bα−1

Γ(α)

∫ t

0
ψ(τ)dτ. (63)

By construction, the function ψ(t) is continuous on [0,b] . So, taking into account
Lemma 4.1 we deduce from (63) that

ψ(t) � M̃ e

(
LM̃ bα−1

Γ(α)

)
t‖x0‖ ∀ t ∈ [0,b]

which, by (62) implies

‖x(t)‖ � M̃ e

(
LM̃bα−1

Γ(α) −μ̃
)
t‖x0‖ ∀ t ∈ [0,b]. (64)

Therefore, according to (57) we conclude that the solution of the Cauchy problem (1)
is exponentially stable. �

5. Stabilization

Let U (control space) be a separable reflexive Banach space. Under conditions of
Problem (1), we consider the semilinear control system:{

C
0 Dα

t x(t) = Ax(t)+ f (t,x(t))+Bu(t), t ∈ [0,b]

x(0) = x0,
(65)

where B : U −→ X is a bounded linear operator and u ∈U .
As we have seen previously, the mild solution of (65) is well defined for every

integrable control u(t), t ∈ [0,b] and is given by:

x(t) = Q(t)x0 +
∫ t

0
(t − τ)α−1R(t− τ) f (τ,x(τ))dτ

+
∫ t

0
(t− τ)α−1R(t− τ)Bu(τ)dτ ∀ t ∈ [0,b].

(66)

Let us assume that our stabilizer (u ) acts linearly on (65); that is u = Vx , where
V : X −→U is a bounded linear operator. Then, (66) becomes:

x(t) = Q(t)x0 +
∫ t

0
(t− τ)α−1R(t− τ) f (τ,x(τ))dτ

+
∫ t

0
(t − τ)α−1R(t− τ)BVx(τ)dτ ∀ t ∈ [0,b].

(67)

DEFINITION 5.1. The Cauchy problem (1) is said to be stabilizable if there exists
a bounded linear operator V : X −→U satisfying u(t) = Vx(t) for any t ∈ [0,b] such
that the control system (65) is stable.

The following lemma will be useful for the rest of this paper.
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LEMMA 5.1. Let β � 0 be a constant and b > 0 . If v,k : [0,b] −→ [0,∞) are
two bounded nonnegatives continuous functions satisfying

v(t) � β +
∫ t

0
k(τ)v(τ)dτ ∀ t ∈ [0,b],

then
v(t) � β e

∫ t
0 k(τ)dτ ∀ t ∈ [0,b]

Proof. The proof of this lemma can be found in [11], p. 371. �

THEOREM 5.1. If the constants μ̃ , L , M̃ and the bounded linear operators B,
V satisfy the inequality

μ̃ −
(

L+
‖BV‖B(X)

Γ(α)

)
M̃ bα−1 > 0 (68)

and
αη � 1 (69)

for η ∈ (0,∞) , then the Cauchy problem (1) is exponentially stabilizable.

Proof. Let us consider the following operator, for x0 ∈ X :

Z(t)x0 = Q(t)x0 +
∫ t

0
(t− τ)α−1R(t− τ)BVZ(τ)x0dτ ∀ t ∈ [0,b]. (70)

By construction, {Z(t)}t∈[0,b] is a linear bounded operator.
Similarly to the estimation (61) in the previous section, we can easily find that:

‖Z(t)‖B(X) � M̃ e−μ̃t +
‖BV‖B(X)M̃ bα−1

Γ(α)

∫ t

0
e−μ̃(t−τ)‖Z(τ)‖dτ

and then, proceed the same way as on pages 15–16 to deduce that

‖Z(t)‖B(X) � M̃ e

(
‖BV‖B(X)M̃ bα−1

Γ(α) −μ̃

)
t

∀ t ∈ [0,b]. (71)

Furthermore, for any t ∈ [0,b] we have:

x(t) = Q(t)x0 +
∫ t

0
(t− τ)α−1R(t− τ) f (τ,x(τ))dτ

+
∫ t

0
(t − τ)α−1R(t− τ)BVx(τ)dτ +Z(t)x0−Z(t)x0

+
∫ t

0
(t − τ)α−1Z(t− τ) f (τ,x(τ))dτ −

∫ t

0
(t− τ)α−1Z(t − τ) f (τ,x(τ))dτ
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=
∫ t

0
(t− τ)α−1Z(t − τ) f (τ,x(τ))dτ +Z(t)x0

+
∫ t

0
(t − τ)α−1R(t− τ)BV [x(τ)−Z(τ)x0]dτ

+
∫ t

0
(t − τ)α−1[R(t− τ)−Z(t− τ)] f (τ,x(τ))dτ

=
∫ t

0
(t− τ)α−1Z(t − τ) f (τ,x(τ))dτ +Z(t)x0

+
∫ t

0
(t − τ)α−1R(t− τ)BV [x(τ)−Z(τ)x0]dτ

+
∫ t

0
(t − τ)α−1[R(t− τ)−Q(t− τ)] f (τ,x(τ))dτ

−
∫ t

0
(t − τ)α−1

[∫ t−τ

0
(t− (τ + r))α−1R(t− (τ + r))BVZ(r)dr

]
f (τ,x(τ))dτ

Considering the change of variable θ = τ + r , we obtain:

x(t) =
∫ t

0
(t − τ)α−1Z(t − τ) f (τ,x(τ))dτ +Z(t)x0

+
∫ t

0
(t− τ)α−1R(t− τ)BV [x(τ)−Z(τ)x0]dτ

+
∫ t

0
(t− τ)α−1

[∫ ∞

0
(αη −1)ζα(η)T ((t − τ)αη)dη

]
f (τ,x(τ))dτ

−
∫ t

0
(t− τ)α−1

[∫ t

τ
(t−θ )α−1R(t−θ )BVZ(θ − τ)dθ

]
f (τ,x(τ))dτ

�
∫ t

0
(t − τ)α−1Z(t − τ) f (τ,x(τ))dτ +Z(t)x0

+
∫ t

0
(t− τ)α−1R(t− τ)BV [x(τ)−Z(τ)x0]dτ

−
∫ t

0
(t− τ)α−1

[∫ t

τ
(t−θ )α−1R(t−θ )BVZ(θ − τ)dθ

]
f (τ,x(τ))dτ

But we know that {
τ � θ � t
0 � τ � t

=⇒ 0 � τ � θ

and {
τ � θ � t
0 � τ � t

=⇒ 0 � θ � t.
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So,

x(t) �
∫ t

0
(t− τ)α−1Z(t − τ) f (τ,x(τ))dτ +Z(t)x0

+
∫ t

0
(t − τ)α−1R(t− τ)BV [x(τ)−Z(τ)x0]dτ

−
∫ t

0
(t −θ )α−1R(t−θ )BV

[∫ θ

0
(θ − τ)α−1Z(θ − τ) f (τ,x(τ))dτ

]
dθ

which can also be written as:

x(t) �
∫ t

0
(t− τ)α−1Z(t − τ) f (τ,x(τ))dτ +Z(t)x0

+
∫ t

0
(t −θ )α−1R(t−θ )BV [ x(θ )−Z(θ )x0

−
∫ θ

0
(θ − τ)α−1Z(θ − τ) f (τ,x(τ))dτ

]
dθ

(72)

Let us define the function Φ on [0,b] as follow:

Φ(t) = x(t)−Z(t)x0−
∫ t

0
(t− τ)α−1Z(t − τ) f (τ,x(τ))dτ. (73)

Then, (72) is equivalent to:

Φ(t) �
∫ t

0
(t −θ )α−1R(t −θ )BVΦ(θ )dθ

which by (47) implies that

‖Φ(t)‖ �
∫ t

0

M‖BV‖B(X)

Γ(α)
(t−θ )α−1‖Φ(θ )‖dθ . (74)

By Lemma 5.1, we deduce that

Φ(t) = 0 ∀ t ∈ [0,b];

that is,

x(t) = Z(t)x0 +
∫ t

0
(t− τ)α−1Z(t − τ) f (τ,x(τ))dτ. (75)

Taking into account (60) and (71), we have the following estimate:

‖x(t)‖ � M̃ e

(
‖BV‖B(X)M̃bα−1

Γ(α) −μ̃

)
t

‖x0‖

+LM̃ bα−1
∫ t

0
e

(
‖BV‖B(X)M̃ bα−1

Γ(α) −μ̃

)
(t−τ)

‖x(τ)‖dτ.
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Now, let us consider the function Ψ below, defined on [0,b]:

Ψ(t) = e

(
μ̃−‖BV‖B(X)M̃bα−1

Γ(α)

)
t

‖x(t)‖. (76)

From (75), we obtain:

Ψ(t) � M̃ ‖x0‖+LM̃bα−1
∫ t

0
Ψ(τ)dτ. (77)

By construction, the function t �−→ Ψ(t) is continuous on [0,b] . So, using Lemma 4.1
we deduce from (76) that

Ψ(t) � M̃ eLM̃ bα−1t‖x0‖ ∀ t ∈ [0,b]

which, by (76) implies:

‖x(t)‖ � M̃ e

(
LM̃ bα−1+

‖BV‖B(X)M̃bα−1

Γ(α) −μ̃

)
t

‖x0‖ ∀ t ∈ [0,b];

that is,

‖x(t)‖ � M̃ e

([
L+

‖BV‖B(X)
Γ(α)

]
M̃ bα−1−μ̃

)
t‖x0‖ ∀ t ∈ [0,b]. (78)

By (68) we conclude that the initial value problem (1) is exponentially stabilizable. �

6. Example

We consider the following semilinear Cauchy problem:⎧⎪⎨
⎪⎩

C
0 D

9
10
t x(t) = Ax(t)+ f (t,x(t)), t ∈ [0,1], x ∈ l∞(N)

x(0) = x0,

(79)

where X = l∞(N) is the space of bounded sequences with the norm

‖(x1,x2,x3, · · ·)‖∞ = sup
i∈N

|xi|, (80)

A = (ai j)∞
i, j=1 is an infinite matrix defined from l∞(N) to itself by (Ax)i =

∞

∑
j=1

ai jx j

such that for any x ∈ l∞(N) ,

∞

∑
j=1

|ai j| < ∞ ∀ i ∈ N (81)

and

sup
i∈N

{
∞

∑
j=1

|ai j|
}

< ∞, (82)
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f is a nonlinear function defined on [0,1]× l∞(N) by

f (t,x) =
sin(‖x‖∞)

3et2
. (83)

From (81) and (82), A is a bounded linear operator on l∞(N) and its norm is given by:

‖A‖∞ = sup
i∈N

{
∞

∑
j=1

|ai j|
}

.

Let us define T by:

T (t) = etA =
∞

∑
k=0

(tA)k

k!
∀ t � 0 (84)

such that

‖T (t)‖∞ � 5
2
e−t ∀ t � 0. (85)

Then, A is clearly a generator of the C0 -semigroup {T (t)}t�0 .
Furthermore, 0 � t � 1 =⇒ 1 � et2 � e and we have:

‖ f (t,x)‖∞ � 1
3
|sin(‖x‖∞)|

=
1
3
|sin(‖x‖∞)− sin(0)|

By Mean Value Theorem, there exists m ∈ (0,‖x‖∞) such that:

|sin(‖x‖∞)− sin(0)| � |cos(m)|‖x‖∞.

So,

‖ f (t,x)‖∞ � 1
3
‖x‖∞. (86)

In addition, we have for all x,y ∈ l∞(N) ,

‖ f (t,x)− f (t,y)‖∞ � 1
3
|sin(‖x‖∞)− sin(‖y‖∞)|.

By Mean Value Theorem, there exists r ∈ (‖x‖∞,‖y‖∞) such that

|sin(‖x‖∞)− sin(‖y‖∞)| � |cos(r)||‖x‖∞ −‖y‖∞|

which by reverse triangular inequality gives:

‖ f (t,x)− f (t,y)‖∞ � 1
3
‖x− y‖∞. (87)

From (86) and (87) we deduce that the hypothesis H1 and H2 are satisfied with L =
1
3

.
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We have also the following:

0 � t � 1 =⇒−1 � −t � 0 =⇒ e−1 � e−t � 1.

So, from (85) we deduce

‖T (t)‖∞ � 5
2

= M (88)

and therefore,

Ω 9
10

=
5

3×2× 9
10

Γ(
9
10

)
≈ 0.8665 < 1.

We then conclude by Theorem 3.1 that the initial value problem (79) has a unique mild
solution on [0,1] .

Furthermore, from (85) we have μ̃ = 1 and M̃ =
5
2

. So,

1− 5

3×2×Γ(
9
10

)
≈ 0.2205 > 0.

Hence, according to Theorem 4.1, the solution to problem (79) is exponentially stable.

7. Conclusion

We used the Banach contraction principle to prove the existence and uniqueness of
mild solution (which we constructed based on the Laplace transform) to the semilinear
fractional differential equation (1) in an infinite Banach space with Caputo derivative
order α ∈ (0,1] . By means of the Gronwall lemma, we have also proven under some
conditions which we clearly specified that the latter system is exponentially stable, and
also exponentially stabilizable when the control acts linearly on the system. Finally, we
have provided an example to illustrate our approach.
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some semilinear functional differential and integro-differential equations with infinite delay in Banach
spaces, Journal of the Franklin Institute, Elsevier, vol. 349 (1), pp. 1–24 (2012).
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[23] G. MOPHOU AND G. M. N’GUÉRÉKATA, A note on a semilinear fractional differential equation of
neutral type with infinite delay, Advances in Difference Equations, Springer, vol. 2010 (2010).
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