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N
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Abstract. An initial-boundary value problem for a subdiffusion equation with an elliptic oper-
ator A(D) in R

N is considered. The existence and uniqueness theorems for a solution of this
problem are proved by the Fourier method. Considering the order of the Caputo time-fractional
derivative as an unknown parameter, the corresponding inverse problem of determining this order
is studied. It is proved, that the Fourier transform of the solution û(ξ ,t) at a fixed time instance
recovers uniquely the unknown parameter. Further, a similar initial-boundary value problem is
investigated in the case when operator A(D) is replaced by its power Aσ . Finally, the existence
and uniqueness theorems for a solution of the inverse problem of determining both the orders of
fractional derivatives with respect to time and the degree σ are proved. We also note that when
solving the inverse problems, a decrease in the parameter ρ of the Mittag-Leffler functions Eρ
has been proved.
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