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SOLUTION OF TIME-SPACE FRACTIONAL BLACK-SCHOLES
EUROPEAN OPTION PRICING PROBLEM THROUGH
FRACTIONAL REDUCED DIFFERENTIAL TRANSFORM METHOD

MANZOOR AHMAD ", RAJSHREE MISHRA AND RENU JAIN

Abstract. Mathematical model introduced by Black and Scholes express financial derivatives
more significantly. This model with fractional derivatives resulting in fractional Black-Scholes
(B-S) equation express financial problems in a better way. In this paper, we introduce the frac-
tional reduced differential transform method (FRDTM) to solve the time-space fractional Black-
Scholes equation executing European options. This method is a modified version of the original
differential transform method (DTM). This method proves to be valid for solving time-space
Black-Scholes equation as it reduces the computational work to a greater extent. Moreover, this
method helps in finding the solution without linearization or discretization. The efficiency of the
method is tested by solving certain examples. The proposed mathematical representation can
be useful to understand and solve time-space fractional differential equations arising in financial
mathematics and other related fields.
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