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ON NONLINEAR VOLTERRA–FREDHOLM TYPE

DISCRETE FRACTIONAL SUM INEQUALITIES

SUBHASH KENDRE ∗ AND NAGESH KALE

(Communicated by F. Atici)

Abstract. In the current paper, we establish some new forms of the discrete fractional sum in-
equalities of the Volterra-Fredholm type. These inequalities can serve as a powerful tool in the
analysis of boundedness and uniqueness of the solutions of certain Volterra-Fredholm fractional
sum-difference equations and their variants. Some applications are also given to convey the
importance of our results.

1. Introduction

It is widely familiar that in the theory of difference, differential, integral and frac-
tional differential equations, Gronwall-Bellman type inequalities, and their various ex-
tensions and generalizations have attained a huge scale celebration. In recent years, sev-
eral mathematicians have taken appreciable efforts to produce the theory of fractional
calculus for the real functions, which have diverse applications in many physical pro-
cesses. Today Riemann-Liouville and Caputo derivatives are used commonly, though
this theory has passed through various stages of a variety of definitions of fractional
derivatives (for example, see [28]).

It is noteworthy that an immense development in the theory of difference, integral,
and differential equations have taken place as a consequence of the number of inequali-
ties established to solve and analyze these mentioned classes of equations (for example,
see [1, 5, 6, 7, 8, 9, 10, 11, 16]). Similarly, the theory of discrete fractional calculus
is heading towards the peak of development in the past few decades (for example, see
[2, 3, 4, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] and references cited
therein).

Recently, F. M. Atici (see [12, 13, 14, 15]) developed various theoretical advance-
ments of the fractional difference, before which several definitions were initiated by
Diaz and Olser [26], Gray and Zhang [27], Miller and Ross [24]. These advancements
have given rise to various interesting discrete fractional sum inequalities applicable to
several problems in the discrete fractional calculus.
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In this paper, we extend and generalize some of the discrete fractional sum inequal-
ities of the Volterra-Fredholm type developed by Liu and Meng [2]. We also provide
some applications to show the importance of our results.

In subsequent discussion, we consider Nω = {ω ,ω +1,ω +2, . . .} and for m,M ∈
Nω , Im = [m,M] ∩Nω . We denote the collection of all continuously differentiable
functions from X to Y by C(X ,Y ) and F+(U ) stands for the set of all nonnegative
real valued functions on U . In usual notations, we let, R+ = [0,∞) and for t < s ,
t
∑

n=s
a(n) = 0 and

t
∏
n=s

a(n) = 1.

DEFINITION 1. (F. M. Atici [12]) Let a be any real number, ω be any positive
real number, and σ(s) = s+1. Let f : Na → R, then ω -th fractional sum (ω -sum) of
f is defined by

Δ−ω
a f (t) =

1
Γ(ω)

t−ω

∑
s=a

(t −σ(s))(ω−1) f (s),

where Δ−ω
a f is a map which assigns to each function defined on Na , a function defined

on Na+ω , and the falling factorial t(ω) is defined as t(ω) = Γ(t+1)
Γ(t−ω+1) .

DEFINITION 2. (F. M. Atici [12]) The μ -th fractional difference is defined as

Δμx(t) = Δm−vx(t) = Δm
(

Δ−vx(t)
)
,

where μ > 0 and m−1 < μ < m , where m denotes a positive integer, and −v = μ−m.

THEOREM 1. (Haidong Liu and Fanwei Meng [2]) Assume that 0 < α � 1 is
a constant, u : Nα−1 → R+, f ,g : N0 → R+ are functions, c � 0 is a constant, and
p > q > 0 are constants. Suppose that u satisfies

up(n) �c+ Δ−α
0 [ f (n)uq(n+ α −1)]

+
1

Γ(α)

T−α

∑
s=0

(T − s−1)(α−1)g(s)up(s+ α −1), n ∈ Iα−1.

If

λ = 2
q

p−q

T−α

∑
s=0

G(s,T ) < 1,

then

u(n) �
[
A

p−q
p (T )+

p−q
p

n

∑
s=α

f (s−α)
] 1

p−q

, n ∈ Iα−1,
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where

A(T ) =
1

1−λ

⎧⎨
⎩k+2

q
p−q

T−α

∑
s=0

G(s,T )

[
p−q

p

s+α−1

∑
τ=α

f (τ −α)

] p
p−q

⎫⎬
⎭ ,

G(s,n) =
1

Γ(α)
(n− s−1)(α−1)g(s).

LEMMA 1. If a � 0,b � 0 and ν � 1 , then

(a+b)ν � 2ν−1(aν +bν).

2. Main results

THEOREM 2. Suppose 0 < ω � 1, c ∈ R+ are constants and let x ∈ F+(Nω−1) ,
f1, f2 ∈ F+(N0) be any functions. Let M ∈ Nω−1 be a constant. Let h ∈ C(R+,R+)
be continuous nondecreasing function such that h(m) > 0 for m > 0 . If, for p > q > 0,

xp(t) � c+h

(
1

Γ(ω)

t−ω

∑
n=0

(t−n−1)(ω−1) f1(s)xq(n+ ω −1)

+
1

Γ(ω)

M−ω

∑
n=0

(M−n−1)(ω−1) f2(s)xq(n+ ω −1)
)

, t ∈ Iω−1, (1)

then

x(t) �
{

c+h

(
Φ−1

[
Φ

(
S −1

[
M

∑
n=ω

f (n−ω)

])
+

t

∑
n=ω

f (n−ω)

])} 1
p

, t ∈ Iω−1,

(2)

where f ∈ F+(N0) is such that it is greater than or equal to both f1 and f2 , Φ(r) =
r∫

r0

ds

(c+h(s))
q
p

, r � r0 > 0 , S (r) = Φ(2r)−Φ(r) is strictly increasing function and Φ−1 ,

S −1 are inverse functions of Φ,S respectively.

Proof. Consider the case, c > 0. Making use of suppositions on f1 , f2 in (1), we
get

xp(t) � c+h

(
1

Γ(ω)

t−ω

∑
n=0

(t−n−1)(ω−1) f (s)xq(n+ ω −1)

+
1

Γ(ω)

M−ω

∑
n=0

(M−n−1)(ω−1) f (s)xq(n+ ω −1)
)

= c+h

(t−ω

∑
n=0

J(n,t)xq(n+ ω −1)+
M−ω

∑
n=0

J(n,M)xq(n+ ω −1)
)

, t ∈ Iω−1, (3)
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where

J(n,t) =
1

Γ(ω)
(t −n−1)(ω−1) f (s).

Let

y(t) =
t−ω

∑
n=0

J(n,t)xq(n+ ω −1)+
M−ω

∑
n=0

J(n,M)xq(n+ ω −1), t ∈ Iω−1. (4)

It is easy to observe that y(t) � 0 is nondecreasing. Further

y(ω −1) =
M−ω

∑
n=0

J(n,M)xq(n+ ω −1), (5)

and

xp(t) � c+h(y(t)), t ∈ Iω−1. (6)

We can easily see that J(n,t) is decreasing function in t for fixed n in N0 , hence for
t ∈ Iω ,

Δy(t−1) = y(t)− y(t−1)

= J(t −ω ,t)xq(t−1)+
t−ω−1

∑
n=0

(J(n,t)− J(n,t−1))xq(n+ ω −1)

� J(t−ω ,t)xq(t −1)

� J(t−ω ,t)
(
c+h(y(t−1))

) q
p

= f (t −ω)
(
c+h(y(t−1))

) q
p
. (7)

Further, since h,y(t) are nondecreasing in nature and q
p > 1, we have

(
c+h(y(t−1))

) q
p �
(
c+h(y(ω −1))

) q
p

> 0, t ∈ Iω . (8)

Thus

Δy(t−1)(
c+h(y(t−1))

) q
p

� f (t −ω). (9)

Now, from the definition of Φ , we get

Φ(y(t))−Φ(y(t−1)) =

y(t)∫
y(t−1)

ds

(c+h(s))
q
p

� Δy(t−1)(
c+h(y(t−1))

) q
p

� f (t −ω). (10)
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Set t = n in (10) and sum it over n from ω to t −1 to get

Φ(y(t −1)) � Φ(y(ω −1))+
t−1

∑
n=ω

f (n−ω), t ∈ Iω . (11)

As Φ is an increasing function, from (11), we obtain

y(t −1) � Φ−1

[
Φ(y(ω −1))+

t−1

∑
n=ω

f (n−ω)

]
, t ∈ Iω . (12)

The inequality (12) can be restructured as

y(t) � Φ−1
[

Φ(y(ω −1))+
t

∑
n=ω

f (n−ω)
]
, t ∈ Iω−1. (13)

From (5) and the definition of y(t) , we conclude that

2y(ω −1) = y(M) � Φ−1

[
Φ(y(ω −1))+

M

∑
n=ω

f (n−ω)

]
. (14)

This gives us

Φ
(
2y(ω −1)

)
−Φ(y(ω −1)) �

M

∑
n=ω

f (n−ω). (15)

But since S (t) = Φ(2t)−Φ(t) is a strictly increasing function, we have

y(ω −1) � S −1

[
M

∑
n=ω

f (n−ω)

]
. (16)

Using (16) in (13), we arrive to the conclusion that

y(t) � Φ−1

[
Φ

(
S −1

[
M

∑
n=ω

f (n−ω)

])
+

t

∑
n=ω

f (n−ω)

]
, t ∈ Iω−1. (17)

A simple substitution of the bound obtained in (17) in inequality (6) gives us the re-
quired result in (2). The case of c = 0 can be handled in a parallel way by taking
c + ε, ε > 0, followed by limit as ε → 0. This completes the proof of our theo-
rem. �

THEOREM 3. Suppose that ω ,x, p,M and q are as defined in Theorem 2 and
assume that 1 � c̃ ∈ R+, f , f̃ ,g, g̃ ∈ F+(N0) . If

xp(t) � c̃+
1

Γ(ω)

t−ω

∑
n=0

(t −n−1)(ω−1)
[
f (n)xq(n+ ω −1)+ f̃ (n)

]

+
1

Γ(ω)

M−ω

∑
n=0

(M−n−1)(ω−1)
[
g(n)xp(n+ ω −1)+ g̃(n)

]
, t ∈ Iω−1, (18)
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then

x(t) �
{

H
p−q
p (M)+

p−q
p

t

∑
n=ω

(
f (n−ω)+ f̃ (n−ω)

)} 1
p−q

, t ∈ Iω−1, (19)

where

H (M) =
1

1− μ

{
c̃+

M−ω

∑
n=0

J(n,M)

[
g(s)2

q
p−q

{
p−q

p

n+ω−1

∑
m=ω

(
f (m−ω)+ f̃ (m−ω)

)} p
p−q

+ g̃(s)

]}
,

and

μ =
M−ω

∑
n=0

J(n,M)g(s)2
q

p−q < 1.

Proof. If we let

Ĵ(n,t) =
1

Γ(ω)
(t−n−1)(ω−1), (20)

then inequality (18) can be rewritten as

xp(t) � c̃+
t−ω

∑
n=0

Ĵ(n,t)
[
f (n)xq(n+ ω −1)+ f̃ (n)

]

+
M−ω

∑
n=0

Ĵ(n,M)
[
g(n)xp(n+ ω −1)+ g̃(n)

]
, t ∈ Iω−1. (21)

Define a function y(t) as

y(t) = c̃+
t−ω

∑
n=0

Ĵ(n,t)
[
f (n)xq(n+ ω −1)+ f̃ (n)

]

+
M−ω

∑
n=0

Ĵ(n,M)
[
g(n)xp(n+ ω −1)+ g̃(n)

]
, t ∈ Iω−1. (22)

It is obvious that y(t) � 1 and it is a nondecreasing function. Thus from (18), we have

xp(t) � y(t), t ∈ Iω−1, (23)

and

y(ω −1) = c̃+
M−ω

∑
n=0

Ĵ(n,M)
[
g(s)y(n+ ω −1)+ g̃(s)

]
. (24)
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Using the definition of t(ω) , we can easily conclude that Ĵ(n,t) is a decreasing function
in t for each n in N0 . Hence, by simple calculations along with the fact 1 � y(t), we
have for t ∈ Iω ,

Δy(t−1) = y(t)− y(t−1)

= Ĵ(t−ω ,t)
[
f (t −ω)xq(t −1)+ f̃ (t−ω)

]

+
t−ω−1

∑
n=0

{
Ĵ(n,t)− Ĵ(n,t−1)

}[
f (n)xq(n+ ω −1)+ f̃ (n)

]

� Ĵ(t −ω ,t)
[
f (t −ω)xq(t−1)+ f̃ (t −ω)

]
� Ĵ(t −ω ,t)

[
f (t −ω)y

q
p (t−1)+ f̃ (t−ω)

]
= f (t −ω)y

q
p (t −1)+ f̃ (t−ω)

�
[
f (t −ω)+ f̃ (t −ω)

]
y

q
p (t −1). (25)

Further, it is easy to notice that y
q
p (t−1) � y

q
p (ω −1) > 0, so we get

Δy(t−1)

y
q
p (t −1)

� f (t −ω)+ f̃ (t −ω). (26)

An application of mean value theorem provides us

p
p−q

Δ(y
p−q
p (t−1)) =

p
p−q

(
y

p−q
p (t)− y

p−q
p (t−1)

)

=
Δy(t−1)

η
q
p

, (27)

for some η ∈ [y(t−1),y(t)] . Thus from (25) and (27), we have

p
p−q

Δ(y
p−q
p (t−1)) � Δy(t−1)

y
q
p (t −1)

� f (t −ω)+ f̃ (t −ω), t ∈ Iω . (28)

If we let t = n in (28) and sum it from n = ω to n = t−1, then

y
p−q
p (t−1) � y

p−q
p (ω −1)+

p−q
p

t−1

∑
n=ω

(
f (n−ω)+ f̃ (n−ω)

)
, t ∈ Iω . (29)

The restatement of inequality (29) can be done as

y(t) �
{

y
p−q
p (ω −1)+

p−q
p

t

∑
n=ω

(
f (n−ω)+ f̃ (n−ω)

)} p
p−q

, t ∈ Iω−1. (30)
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Making use of (30) in (24), followed by applying lemma 1, the bound on y(t −ω) can
be expressed as

y(ω −1) � c̃+
M−ω

∑
n=0

Ĵ(n,M)

[
g(s)

{
y

p−q
p (ω −1)+

p−q
p

n+ω−1

∑
m=ω

(
f (m−ω)+ f̃ (m−ω)

)} p
p−q

+ g̃(s)

]

� c̃+
M−ω

∑
n=0

Ĵ(n,M)

[
g(s)2

q
p−q

{
y(ω −1)+

[
p−q

p

n+ω−1

∑
m=ω

(
f (m−ω)+ f̃ (m−ω)

)] p
p−q
}

+ g̃(s)

]
. (31)

After simplification, (31) gives us that

y(ω −1) � 1
1− μ

{
c̃+

M−ω

∑
n=0

Ĵ(n,M)

[
g(s)2

q
p−q

{
p−q

p

n+ω−1

∑
m=ω

(
f (m−ω)+ f̃ (m−ω)

)} p
p−q

+ g̃(s)

]}
, (32)

provided μ =
M−ω

∑
n=0

Ĵ(n,M)g(s)2
q

p−q < 1. Denote the right side of (32) by H (M), then

(30) can be viewed as

y(t) �
{

H
p−q
p (M)+

p−q
p

t

∑
n=ω

(
f (n−ω)+ f̃ (n−ω)

)} p
p−q

, t ∈ Iω−1. (33)

Substituting (33) in (23), we obtain the desired inequality in (19). This concludes the
proof of our theorem. �

THEOREM 4. Suppose that ω ,x,c, p,M and q are as defined in Theorem 2 and
assume that fi,gi ∈ F+(N0), 1 � i � k . If

xp(t) � c+
k

∑
i=1

t−ω

∑
n=0

(t −n−1)(ω−1)

Γ(ω)
fi(n)xq(n+ ω −1)

+
k

∑
i=1

M−ω

∑
n=0

(M−n−1)(ω−1)

Γ(ω)
gi(n)xp(n+ ω −1), t ∈ Iω−1, (34)

then

x(t) �
{

H
p−q
p (M)+

p−q
p

t

∑
n=ω

k

∑
i=1

fi(n−ω)

} 1
p−q

, t ∈ Iω−1, (35)
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where

H (M) =
1

1− μ

{
c+

k

∑
i=1

M−ω

∑
n=0

J̃i(n,M)2
q

p−q

[
p−q

p

n+ω−1

∑
m=ω

(
k

∑
i=1

fi(m−ω)

)] p
p−q
}

and

μ =
k

∑
i=1

M−ω

∑
n=0

J̃i(n,M)2
q

p−q < 1.

Proof. Let us assume that c > 0. If we consider

Ji(n, t) =
1

Γ(ω)
(t−n−1)(ω−1) fi(n) and J̃i(n,M) =

1
Γ(ω)

(M−n−1)(ω−1)gi(n),

(36)

then, we can restate the inequality (34) as

xp(t) � c+
k

∑
i=1

t−ω

∑
n=0

Ji(n,t)xq(n+ ω −1)

+
k

∑
i=1

M−ω

∑
n=0

J̃i(n,M)xp(n+ ω −1), t ∈ Iω−1. (37)

Let us define y(t) by the right side of the inequality (37). It can be easily seen that y(t)
is a nonnegative and nondecreasing function. This implies

xp(t) � y(t), t ∈ Iω−1, (38)

and further

y(ω −1) = c+
k

∑
i=1

M−ω

∑
n=0

J̃i(n,M)y(n+ ω −1). (39)

It is obvious to see that for each 1 � i � n, Ji(n,t) is a decreasing function in t for each
n in N0 , hence for t ∈ Iω , we have

Δy(t−1) = y(t)− y(t−1)

=
k

∑
i=1

Ji(t −ω ,t)xq(t −1)+
k

∑
i=1

t−ω−1

∑
n=0

{
Ji(n,t)− Ji(n,t−1)

}
xq(n+ ω −1)

�
(

k

∑
i=1

fi(t −ω)

)
y

q
p (t −1). (40)

Hereafter following the parallel steps as in the proof of Theorem 3 below the inequality
(25), we obtain the required result. This finishes the proof of our theorem. �

REMARK 1. If we assume the value of k = 1, then the inequality mentioned in
Theorem 1 can be achieved as a special case of this inequality.
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THEOREM 5. Suppose that ω ,x,M are as defined in Theorem 2. Let us assume
that 1 � c̃ ∈ R+, f1, f2,g1,g2 ∈ F+(N0) and ψ ,ϕ1,ϕ2 ∈ C(R+,R+) be such that ψ
is strictly increasing and ϕ1,ϕ2 are nondecreasing with ϕ1(x) > 0 and ϕ2(x) > 0 for
x > 0 with ϕ(1) = 1 = ψ(1) . If

ψ(x(t)) � c̃+h

(
1

Γ(ω)

t−ω

∑
n=0

(t −n−1)(ω−1)
[
f1(n)ϕ1(x(n+ ω −1))+g1(n)

]

+
1

Γ(ω)

M−ω

∑
n=0

(M−n−1)(ω−1)
[
f2(n)ϕ2(x(n+ ω −1))+g2(n)

])
, (41)

where t ∈ Iω−1, then

x(t) � ψ−1

(
c̃+h

{
Φ−1
[

Φ

(
S −1

[
M

∑
n=ω

[
f (n−ω)+g(n−ω)

]])

+
t

∑
n=ω

[
f (n−ω)+g(n−ω)

]]})
, (42)

for t ∈ Iω−1, where f ,g ∈ F+(N0),ϕ ∈ C(R+,R+) are such that both f1, f2 , both
g1,g2 and both ϕ1,ϕ2 are less than or equal to f ,g and ϕ respectively, Φ(r) =
r∫

r0

ds
ϕ(ψ−1[c̃+h(s)] , r � r0 > 0 , S (r) = Φ(2r)−Φ(r) is strictly increasing function and

Φ−1,S −1 are inverse functions of Φ,S respectively.

Proof. Making use of suppositions on f1, f2,g1,g2,ϕ1,ϕ2 and (41), we get

ψ(x(t)) � c̃+h

(
t−ω

∑
n=0

Ĵ(n,t)
[
f (n)ϕ(x(n+ ω −1))+g(n)

]

+
M−ω

∑
n=0

Ĵ(n,M)
[
f (n)ϕ(x(n+ ω −1))+g(n)

])
, (43)

where Ĵ(n, t) is as defined in (20). Let us assume that

y(t) =
t−ω

∑
n=0

Ĵ(n,t)
[
f (n)ϕ(x(n+ ω −1))+g(n)

]

+
M−ω

∑
n=0

Ĵ(n,M)
[
f (n)ϕ(x(n+ ω −1))+g(n)

]
, (44)

where t ∈ Iω−1. It is simple to check that y(t) is nonnegative and a nondecreasing
function. Thus inequality (43) takes the form

x(t) � ψ−1
(
c̃+h(y(t))

)
, t ∈ Iω−1, (45)
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and

y(ω −1) =
M−ω

∑
n=0

Ĵ(n,M)
[
f (n)ϕ(x(n+ ω −1))+g(n)

]
. (46)

Using the definition of t(ω) , we can easily conclude that Ĵ(n,t) is a decreasing function
in t for each n in N0 . Hence, the monotonicity of ϕ and ψ along with the fact that
ϕ(1) = 1 = ψ(1) gives us for t ∈ Iω ,

Δy(t−1) = y(t)− y(t−1)

= Ĵ(t−ω ,t)
[
f (t −ω)ϕ(x(t−1))+g(t−ω)

]

+
t−ω−1

∑
n=0

{
Ĵ(n,t)− Ĵ(n,t−1)

}[
f (n)ϕ(x(n+ ω −1))+g(n)

]

� Ĵ(t −ω ,t)
[
f (t −ω)ϕ(x(t−1))+g(t−ω)

]
�
[
f (t −ω)ϕ

(
ψ−1
[
c̃+h(y(t−1))

])
+g(t−ω)

]
�
[
f (t −ω)+g(t−ω)

]
ϕ
(

ψ−1
[
c̃+h(y(t−1))

])
. (47)

It can be simply deduced that

ϕ
(

ψ−1
[
c̃+h(y(t−1))

])
� ϕ
(

ψ−1
[
c̃+h(y(ω −1))

])
> 0, t ∈ Iω ,

which further concludes that

Δy(t−1)

ϕ
(

ψ−1
[
c̃+h(y(t−1))

]) �
[
f (t −ω)+g(t−ω)

]
. (48)

On the other side

Φ(y(t))−Φ(y(t−1)) =

y(t)∫
y(t−1)

ds

ϕ
(

ψ−1
[
c̃+h(s)

])
� Δy(t−1)

ϕ
(

ψ−1
[
c̃+h(y(t−1))

])
�
[
f (t −ω)+g(t−ω)

]
. (49)

Set t = n in (49), and take the summation over the range n = ω to n = t −1 to get

Φ(y(t −1)) � Φ(y(ω −1))+
t−1

∑
n=ω

[
f (n−ω)+g(n−ω)

]
, t ∈ Iω . (50)
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Using the steps as discussed in the Theorem 2 after (11), we can easily conclude that

y(t) � Φ−1

[
Φ

(
S −1

[
M

∑
n=ω

[
f (n−ω)+g(n−ω)

]])
+

t

∑
n=ω

[
f (n−ω)+g(n−ω)

]]
,

(51)

for t ∈ Iω−1 . A straightforward substitution of the bound obtained on y(t) in (51) in
the inequality (45) gives us the desired inequality in (42). This completes the proof of
our theorem. �

COROLLARY 1. Suppose that ω ,x,M, c̃, f1, f2,g1,g2, f ,g are as stated in Theo-
rem 5. If

xp(t) � c̃+h

(
1

Γ(ω)

t−ω

∑
n=0

(t −n−1)(ω−1)
[
f1(n)xq(n+ ω −1)+g1(n)

]

+
1

Γ(ω)

M−ω

∑
n=0

(M−n−1)(ω−1)
[
f2(n)xq(n+ ω −1)+g2(n)

])
, (52)

where p > q > 0, t ∈ Iω−1, then

x(t) �
(

c̃+h

{
Φ−1
[

Φ

(
S

−1

[
M

∑
n=ω

[
f (n−ω)+g(n−ω)

]])

+
t

∑
n=ω

[
f (n−ω)+g(n−ω)

]]}) 1
p

, (53)

for t ∈ Iω−1, where Φ(r) =
r∫

r0

ds

[c̃+h(s)]
q
p
, r � r0 > 0 , S (r) = Φ(2r)−Φ(r) is strictly

increasing function and Φ−1
,S

−1
are inverse functions of Φ,S respectively.

Proof. If we substitute ψ(x) = xp and ϕ1(x) = ϕ2(x) = xq, then the required
inequality (53) can be simply obatined by using (42). �

THEOREM 6. Suppose that ω ,x,M, fi,gi,c are as defined in Theorem 4 and h,ϕ ,
ϕ1,ϕ2,ψ ,Φ,S are as stated in Theorem 5. If gi � fi for each 1 � i � k and

ψ(x(t)) � c+h

(
k

∑
i=1

t−ω

∑
n=0

(t −n−1)(ω−1)

Γ(ω)
fi(n)ϕ1(x(n+ ω −1))

+
k

∑
i=1

M−ω

∑
n=0

(M−n−1)(ω−1)

Γ(ω)
gi(n)ϕ2(x(n+ ω −1))

)
, t ∈ Iω−1, (54)
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then

x(t) � ψ−1

(
c+h

{
Φ−1

[
Φ

(
S −1

[
k

∑
i=1

M

∑
n=ω

fi(n−ω)

])
+

k

∑
i=1

t

∑
n=ω

fi(n−ω)

]})
,

(55)

for t ∈ Iω−1.

Proof. We can easily finish the proof of this theorem by minutely following the
procedures of the proofs discussed in Theorems 5 and 4. We pass over the details
here. �

COROLLARY 2. Suppose that ω ,x,M, fi,gi,c,h,ϕ ,ϕ1,ϕ2,ψ are as stated in The-
orem 6. If

xp(t) � c+h

(
k

∑
i=1

t−ω

∑
n=0

(t−n−1)(ω−1)

Γ(ω)
fi(n)xq(n+ ω −1)

+
k

∑
i=1

M−ω

∑
n=0

(M−n−1)(ω−1)

Γ(ω)
gi(n)xq(n+ ω −1)

)
, t ∈ Iω−1, (56)

where p > q > 0, then

x(t) �
(

c+h

{
Φ−1

[
Φ

(
S

−1

[
k

∑
i=1

M

∑
n=ω

fi(n−ω)

])
+

k

∑
i=1

t

∑
n=ω

fi(n−ω)

]}) 1
p

,

(57)

for t ∈ Iω−1, where Φ and S are as defined in corollary 1.

Proof. If we follow the steps taken in the proof of corollary 1, then we can simply
achieve the desired inequality in (57). �

3. Applications

EXAMPLE 1. Consider the following Volterra-Fredholm fractional sum-difference
equation:

x2(t) = 1+
1

Γ(0.4)

t−0.4

∑
n=0

(t−n−1)(−0.6)
[
n x(n−0.6)+2n

]

+
1

Γ(0.4)

5

∑
n=0

(4.4−n)(−0.6)
[ 1
n+2

x2(n−0.6)+1
]
, t ∈ I−0.6. (58)
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If we consider ω = 0.4, M = 5.4, p = 2, q = 1, c̃ = 1, g(n) = 1
n+2 , g̃(n) = 1,

f (n) = n, and f̃ (n) = 2n, then by using the bound from Theorem 3 on equation (58),
we have the required bound as

x(t) �
{√

H (M)+
3
2

t

∑
n=0.4

(n−0.4)

}
, t ∈ I−0.6, (59)

where H (M) is as stated in Theorem 3. Further, we have

μ =
M−ω

∑
n=0

Γ(M−n)
Γ(ω)Γ(M−n−ω +1)

g(s)2
q

p−q

=
5

∑
n=0

Γ(5.4−n)
Γ(0.4)Γ(6−n)

2
n+2

= 0.937533 < 1. (60)

Additionally, using (60), we get

H (M) =
1

1− μ

{
c̃+

M−ω

∑
n=0

Γ(M−n)
Γ(ω)Γ(M−n−ω +1)

[
g(s)2

q
p−q

{
p−q

p

n+ω−1

∑
m=ω

(
f (m−ω)+ f̃ (m−ω)

)} p
p−q

+ g̃(s)

]}

=
1

0.062467

{
1+

5

∑
n=0

Γ(5.4−n)
Γ(0.4)Γ(6−n)

[
9

2n+4

{n−0.6

∑
m=0.4

(m−0.4)
}2

+1

]}

= 1294.57. (61)

Using the value obtained in (61) in (59), we get the explicit bound on solution x(t) of
(58) as

x(t) �
{

35.9801+
3
2

t

∑
n=0.4

(n−0.4)

}
, t ∈ I−0.6. (62)

EXAMPLE 2. Consider the following Volterra-Fredholm fractional sum-difference
equation:

x3(t) �
√

F(t), t ∈ I−0.3, (63)

where

F(t) =
1

Γ(0.7)

t−0.7

∑
n=0

(t−n−1)(−0.3)n2x2(n−0.3)

+
1

Γ(0.7)

6

∑
n=0

(5.7−n)(−0.3)n2x2(n−0.3).
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If we consider ω = 0.7, M = 6.7, p = 3, q = 2, c = 0, f1(n) = n2 = f2(n), and
h(s) =

√
s, then we can obtain the bound on the solution of (63) using the Theorem 2,

and the desired bound is

x(t) �

⎧⎨
⎩
√√√√Φ−1

[
Φ

(
S −1

[
6.7

∑
n=0.7

(n−0.7)2

])
+

t

∑
n=0.7

(n−0.7)2

]⎫⎬
⎭

1
3

, t ∈ I−0.3,

(64)

where Φ,S ,Φ−1,S −1 are as stated in Theorem 2. By computing them, we get for
r ∈ R+,

Φ(r) =
r∫

1

ds

(h(s))
q
p

=
r∫

1

ds
3
√

s
=

3(r
2
3 −1)
2

S (r) = Φ(2r)−Φ(r) = (0.8811)r
2
3

Φ−1(r) =

(
2r

3
+1

) 3
2

S −1(r) = [(1.135)r]
3
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

r > 1.

Using these estimates in (64), we obtain

x(t) �
{

103.285+
1
3

t

∑
n=0.7

(n−0.7)2

} 1
4

, t ∈ I−0.3. (65)

4. Conclusions

In this manuscript, we have developed some new Volterra-Fredholm type discrete
fractional sum inequalities, which extend and generalize some existing discrete frac-
tional sum inequalities of the Volterra-Fredholm type. These inequalities are developed
to solve a more general kind of the Volterra-Fredholm type fractional sum difference
equations, where the application of previous existing inequalities is not possible di-
rectly. However, in the theory of discrete fractional calculus, we have to deal with
more crucial Volterra-Fredholm fractional sum-difference equations that involve criti-
cal nonlinear terms. Hence, to overcome such situations, the above inequalities can be
further extended and generalized to study certain classes of fractional sum-difference
equations.
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