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Abstract. In this article, we investigate the existence of mild solution of a class of impulsive
fractional functional differential equations with infinite delay in a Banach space. By employing
fractional calculus and fixed point theorems, the results are obtained under the assumption that
the linear part of the equations generates a compact analytic semigroup.

1. Introduction

Study of evolution equations subjected to impulsive action, which starts abruptly
and stays active on a finite time interval, has been a subject of interest in the last few
years due to its applicability in practical problems. The pioneering work of such a
model, known as non-instantaneous impulsive differential equation, is reported in the
work of Hernández and O’Regan [8]. Thereafter, several researchers have carried out
the research in this field and some interesting results have been obtained [1, 2, 3, 4, 5,
7, 14, 15].

Many physical models pertaining to memory and hereditary properties have been
modeled more successfully with the help of fractional calculus compared to classical
settings. The investigation of qualitative as well quantitative properties of the solutions
of fractional differential equations is an active subject of research. For the theory and
recent development on fractional differential equations, one can refer to some mono-
graphs [10, 16, 21].

Integro evolution equations in abstract spaces generalize many partial differen-
tial equations and integro differential equations appearing in scientific and engineering
problems. So it is meaningful to discuss the nature of solution of this type equations in
qualitative ways.

Chang [3] discussed the controllability of a first order impulsive functional dif-
ferential systems with infinite delay in Banach spaces. Mophou and N’Guérékata [12]
established the existence of mild solution of some fractional differential equations with
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nonlocal conditions. Hu et al. [9] established the existence of mild solution of a class
of Riemann-Liouville fractional evolution equation with nonlocal conditions and infi-
nite delay in a Banach space, in which the linear part is the infinitesimal generator of
a compact analytic semigroup. Mahmudov and Zorlu [11] investigated the approxi-
mate controllability of fractional evolution equations with compact analytic semigroup.
The controllability of a impulsive neutral functional integro differential equation in a
Banach space was established in [17] . Motivated by above consideration, here we in-
vestigate the existence of mild solution of a class of fractional evolution equation with
infinite delay of the following form:

CDα
t x(t) = −Ax(t)+ f (t,xt,

∫ t

0
B(t,s,xs)ds), t ∈ Ji = (si,ti+1], i = 0,1, . . . ,N, (1)

x(t) = gi(t,xt), t ∈ Ii = (ti,si], i = 1,2, . . . , N, (2)

x(t) = φ(t), t ∈ (−∞,0], (3)

where x(.) takes values in a Banach space (X ,‖.‖) ; 0 < α < 1; −A : D(A) ⊂ X −→ X
the infinitesimal generator of a compact analytic semigroup Q(t) of uniformly bounded
linear operators on X ; 0 = s0 < t1 � s1 � t2 . . . � tN � sN < tN+1 = T is a partition of
the interval J = [0,T ] ; the functions gi ∈ C((ti,si]×P0,Xβ ) for each i = 1,2, . . . .N
and f : [0,T ]×P0×Xβ → Xβ suitable functions. Here P0 is a phase space and Xβ
is a fractional power space defined in the next section. For a function x defined on
(−∞,T ] and any t ∈ J, we denote xt(.) to represent the portion of the function from
−∞ to present time t , that is,

xt(θ ) = x(t + θ ), θ ∈ (−∞,0].

In section 2 we recall some definitions and preliminaries which are required to develop
the article. In section 3, we give sufficient conditions for the existence of mild solu-
tion of the system (1)–(3). At the end an example is presented to validate the results
obtained.

2. Preliminaries

The definition and the theorems related to analytic semigroup theory is taken from
te book by Pazy [13].

Let 0 ∈ ρ(A). Then for any 0 < β < 1, we can define A−β as a closed linear
operator on its domain D(A−β ) as follows:

A−β =
1

Γ(β )

∫ ∞

0
tβ−1Q(t)dt. (4)

The operator defined by (4) is a bounded linear operator and each A−β is an injective
continuous endomorphism of X . So it is possible to define Aβ , for 0 < β < 1, as a
closed linear operator on its domain D(Aβ ). The subspace D(Aβ ) is dense in X , and
the expression

‖u‖β = ‖Aβ u‖
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defines a norm on D(Aβ ) which makes it a Banach space. We denote Xβ = D(Aβ ).
For 0 < γ < β � 1, Xβ ↪→ Xγ and the embedding is compact whenever the resolvent
operator of A is compact.

LEMMA 1. Aβ and Q(t) have the following properties:

• There exists a constant M > 1 such that ‖Q(t)‖ � M.

• Q(t) : X → Xβ for each t > 0 and β � 0.

• Aβ Q(t)x = Q(t)Aβ x for each x ∈ Xβ and t � 0.

• For every t > 0, Aβ Q(t) is bounded in X and there exists Mβ > 0 such that

‖Aβ Q(t)‖ � Mβ t−β .

• A−β is a bounded linear operator in X with D(Aβ ) = Im(A−β ) .

LEMMA 2. [19] The restriction Qβ (t) of Q(t) to Xβ is exactly the part of Q(t) to
Xβ . Also {Q(t)}t�0 is a family of strongly continuous semigroup on Xβ and ‖Qβ (t)‖�
‖Q(t)‖ � M for all t � 0.

Now we introduce some definitions and fundamental results of fractional calculus
from the work by Wang and Zhou [21].

Let J = [a,b] , −∞ < a < b < ∞ be a finite interval on the real axis R.

DEFINITION 1. The Riemann-Liouville fractional integral aD−α
t f (t) of order α >

0 is defined by

Iα
a f (t) =a D−α

t f (t) =
1

Γ(α)

∫ t

a
(t− s)α−1 f (s)ds,

provided the right-hand side is point-wise defined on [a,b] .

DEFINITION 2. The Caputo fractional derivative of order α > 0 for a function
f ∈Cn

α , n ∈ N is defined as

C
a Dα

t f (t) =a D−(n−α)
t Dn f (t) =

1
Γ(n−α)

∫ t

a
(t − s)n−α−1 f n(s)ds, t > a, n = [α]+1.

If there is no confusion about the base point of both the operators defined above,
we simply remove it.

Finding the solution of a differential equation with infinite delay at any time not
only requires the knowledge of state at current time but also that of the state in past.
Thus the choice of the phase space is one of the most important characteristics in the
solution of such equations. In view of Hale and Kato [6], it is a usual practice to take
the phasespace as a semi-normed space satisfying some axioms. Here we define the
phase space in the following ways.
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DEFINITION 3. P0 is a linear space of functions from (−∞,0] to Xβ endowed
with a semi-norm ‖.‖P0 , which satisfies the following axioms:

(A1): If x : (−∞,T ] → X , T > 0 is such that x0 ∈ P0 and for every t ∈ [0,T ),
the following conditions hold:

• xt ∈ P0 ,

• ‖x(t)‖β � C‖xt‖P0 ,

• ‖xt‖P0 �C1(t)supt∈[0,T ]‖x(t)‖β +C2‖x0‖P0 , where C > 0 is a constant, C1,C2 :
[0,∞) → [0,∞) , C1 is continuous and C2 is locally bounded and C1,C2 are inde-
pendent of x(.).

(A2): For a function x(.) in (A1) , xt is a P0 -valued function for t ∈ [0,T ).
(A3): The space P0 is complete.

LEMMA 3. Let f1, f2 : J → R be positive real continuous functions. Assume that
there exist a constant c > 0 and a continuous nondecreasing function h : R → (0,∞)
such that

h(t) � c+
∫ t

a
f1(s)h( f2(s))ds, ∀t ∈ J.

Then

f2(t) � H−1(∫ t

a
f1(s)ds

)
, ∀t ∈ J

provided ∫ ∞

c

dy
h(y)

>
∫ b

a
f1(s)ds.

Here H−1 refers to the inverse of the function H(y) =
∫ y

c

dy
h(y)

for y � c.

LEMMA 4. (Burton-Kirk’s fixed point theorem) Let X be a Banach space and
F1 , F2 be two operators satisfying

(a) F1 is a contraction and
(b) F2 is completely continuous.
Then, either the operator equation x = F1(x)+F2(x) possesses a solution, or the

set E = {x ∈ X : λF1( x
λ )+ λF2(x) = x, for some 0 < λ < 1} is unbounded.

By PC(J,Xβ ) we denote the Banach space of piecewise continuous functions from
J into Xβ with the norm

‖x‖PC(Xβ ) = sup
t∈J

‖Aβ x(t)‖.

To deal with the impulsive as well delay conditions, we consider the space PT = {x :
(−∞,T ]→Xβ to be such that xk ∈C(Jk,Xβ ) , for k = 0,1,2, . . . ,N ; x(tk+),x(tk−) exist;
x(tk−) = x(tk) , k = 0,1,2, . . . ,N ; x0 = φ ∈ P0 and sup

t∈[0,T ]
‖x(t)‖β < ∞} endowed with

the norm
‖x‖PT = ‖x‖PC(Xβ ) +‖φ‖P0 .



NON-INSTANTANEOUS IMPULSIVE FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATION 39

If x∈PT , then for any i = 0,1,2, . . .N, the function x̃i ∈C([ti, ti+1],Xβ ) is constructed
as follows:

x̃i(t) =

{
x(t), for t ∈ (ti, ti+1],

x(t+i ), for t = ti.

For B ⊂ PC(J,Xβ ) , we denote B̃i = {x̃i : x ∈ B}.

LEMMA 5. [8] A set B ⊂ PC(J,Xβ ) is relatively compact in PC(J,Xβ ) if and
only if each set B̃i is relatively compact in C([ti,ti+1],Xβ ) .

DEFINITION 4. [22] Consider the fractional evolution equation

CDα
t x(t) = −Ax(t)+ f (t,xt), t ∈ J, 0 < α < 1, (5)

x(t) = φ ∈ P0. (6)

For f : J ×P0 → X and A generating an analytic semigroup {T (t)}t�0 , a continu-
ous function x : J → Xβ satisfying the integral equation x(t) = T (t)φ(0)+

∫ t
0 S (t −

s) f (s,xs)ds is called a mild solution of (5)–(6), where

T (t) =
∫ ∞

0
ξα(θ )T (tα θ )dθ ,S (t) = α

∫ ∞

0
θξα(θ )T (tα θ )dθ ,

ξα(θ ) =
1
α

(θ )−1− 1
α ωα(θ )−

1
α � 0,

ωα(θ ) =
1
π

∞

∑
n=1

(−1)n−1θ−αn−1 Γ(nα +1)
n!

sin(nπα), θ ∈ (0,∞),

with ξα as the probability density function defined on (0,∞) , that is,

ξα(θ ) � 0, θ ∈ (0,∞) and
∫ ∞

0
ξα(θ )dθ = 1.

LEMMA 6. [19] The operators T and S have the following properties:

1. For fixed t � 0 and any x ∈ Xβ , we have

‖T (t)x‖β � M‖x‖β ,‖S (t)x‖β � Mα
Γ(1+ α)

‖x‖β .

2. Tβ (t) and Sβ (t) , t > 0 are uniformly continuous, where

Tβ (t) =
∫ ∞

0
ξα(θ )Qβ (tα θ )dθ and Sβ (t) = α

∫ ∞

0
θξα(θ )Qβ (tα θ )dθ .
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3. Existence of PC-mild solution

In this section we first formulate the definition of PC-mild solution of our problem
and then prove the existence of solutions with infinite delay.

Motivated from the definition 4 and the work in [8], we define the mild solution as
follows:

DEFINITION 5. A function x ∈ PT is said to be PC-mild solution of the problem
(1)–(3) if

x(t)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ(t), t ∈ (−∞,0],

T (t)x0 +
∫ t
0 S (t− s) f (s,xs,

∫ s
0 B(s,τ,xτ )dτ)ds, t ∈ J1,

gi(t,xt), t ∈ t ∈ Ii, 1 � i � N,

T (t − si)gi(si,xsi)+
∫ t
si

S (t − s) f (s,xs,
∫ s
0 B(s,τ,xτ )dτ)ds, t ∈ Ji, 1 � i � N.

We introduce the following hypotheses:
(H1) f : J×P0 ×Xβ → Xβ is continuous and there exist α1 ∈ (0,α) and Ω ∈

L
1

α1 (J,R+) such that

‖ f (t,ψ1,u)− f (t,ψ2,v)‖β � Ω(t)[‖ψ1−ψ2‖P0 +‖u− v‖β ],

for all ψ1,ψ2 ∈ P0 , u,v ∈ Xβ , t ∈ Ji and i = 0,1, . . . ,N.
(H2) B : D := {(t,s) ∈ J × J : s � t}×P0 → Xβ is continuous and there exists

constant MB such that for all (t,s) ∈ D,x,y ∈ P0 ,

‖
∫ t

0
[B(t,s,ψ1)−B(t,s,ψ2)]ds‖β � MB‖ψ1−ψ2‖P0 .

(H3) There exist constants Lgi > 0, for all ψ1,ψ2 ∈ P0 , t ∈ Ji and i = 1, . . . ,N
such that

‖gi(t,ψ1)−gi(t,ψ2)‖β � Lgi‖ψ1−ψ2‖P0

and gi ∈C(Ji×P0,Xβ ), for all i = 1,2, . . . ,N.

THEOREM 1. Assume that the hypotheses (H1)–(H3) hold and φ ∈ Xβ . Then
the system of equations (1)–(2) has a unique PC-mild solution x ∈ PT , provided

Θ = max

{
M

Γ(α)
C̃1

t1(1+a)(1−α1)

(1+a)1−α1
‖Ω‖

L
1

α1 J1
,M

[
C̃1Lgi

+
C̃1(1+MB)

Γ(α)
(ti+1− si)

(1+a)(1−α1)

(1+a)1−α1
‖Ω‖

L
1

α1 Ji

]
, i = 1, . . . ,N

}
< 1. (7)
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Proof. We define the operator

F : PT −→ PT as

F (x)t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ (−∞,0],

T (t)φ(0)+
∫ t
0 (t− s)α−1S (t− s) f (s,xs,

∫ s
0 B(s,τ,xτ )dτ)ds, t ∈ [0,t1],

gi(t,xt), t ∈ (ti,si],

T (t− si)gi(si,xsi)+
∫ t
si

(t− s)α−1S (t− s) f (s,xs,
∫ s
0 B(s,τ,xτ )dτ)ds,

t ∈ Ji, 1 � i � N.

Consider the extension Φ of φ ∈ P0 as

Φ(t) =

⎧⎪⎪⎨⎪⎪⎩
φ(t), t ∈ (−∞,0],

T (t)φ(0), t ∈ [0,t1],

0, t ∈ (t1,T ].

Then Φ ∈ PT .
Let x(t) = z(t)+ Φ(t) , −∞ < t � T. If x satisfies the integral equation (3) , then

z0 = 0, xt = zt + Φt , for every t ∈ J and the function z(t) satisfies

z(t)=

⎧⎪⎪⎨⎪⎪⎩
∫ t
0 (t − s)α−1S (t− s) f (s,zs + Φs,

∫ s
0 B(s.τ,zτ + Φτ)dτ)ds, t ∈ J1,

gi(t,zt + Φt), t ∈ (ti,si],∫ t
si
(t− s)α−1S (t − s) f (s,zs + Φs,

∫ s
0 B(s,τ,zτ + Φτ)dτ)ds, t ∈ Ji, 1 � i � N.

Let
ṔT = {z ∈ PT : z0 = 0}.

For any z ∈ ṔT , we have
‖z‖ṔT

= sup
t∈J

‖z(t)‖β .

Thus (ṔT ,‖.‖ṔT
) is a Banach space. We define the operator F̃ : ṔT → ṔT by

F̃ (z)t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ (−∞,0],∫ t
0 (t− s)α−1S (t − s) f (s,zs + Φs,

∫ s
0 B(s,τ,zτ + Φτ)dτ)ds, t ∈ J1,

gi(t,xt), t ∈ (ti,si],

T (t− si)gi(si,zsi + Φsi)+
∫ t

si
(t − s)α−1S (t− s) f (s,zs + Φs,

∫ s

0
B(s,τ,zτ + Φτ)dτ)ds, t ∈ Ji, 1 � i � N.

It is clear that the operator F̃ determines the fixed point of the operator F . We show
that F̃ is a contraction mapping.



42 J. BORAH AND S. N. BORA

For x,y ∈ ṔT and t ∈ [0,t1], we get

‖F̃u(t)− F̃v(t)‖β = ‖
∫ t

0
S (t− s)[ f (s,us + Φs,

∫ s

0
B(s,τ,uτ + Φτ)dτ)

− f (s,vs + Φs,

∫ s

0
B(s,τ,vτ + Φτ)dτ)]ds‖β

� M
Γ(α)

∫ t

0
(t− s)α−1Ω(s)[‖us− vs‖P0

+‖
∫ s

0
B(s,τ,uτ + Φτ)dτ −

∫ s

0
B(s,τ,vτ + Φτ)dτ‖β ]ds

� M
Γ(α)

∫ t

0
(t− s)α−1Ω(s)(1+MB)‖us− vs‖P0ds

� M
Γ(α)

(1+MB)C̃1
(∫ t

0
(t − s)

α−1
1−α1

ds)1−α1

ds

×‖Ω‖
L

1
α1 J1

sup
t∈J1

‖u(t)− v(t)‖β

� M
Γ(α)

C̃1
t1(1+a)(1−α1)

(1+a)1−α1
‖Ω‖

L
1

α1 J1
‖u− v‖ṔT

.

For t ∈ Ji,

‖F̃u(t)− F̃v(t)‖β

� ‖T (t − si)gi(si,u(si)+ Φ(si))−T (t− si)gi(si,v(si)+ Φsi)‖β

+‖
∫ t

si
S (t− s)

(
f (s,us + Φs,

∫ s

0
B(s,τ,uτ + Φτ)dτ)

− f (s,vs + Φs,

∫ s

0
B(s,τ,uτ + Φτ)dτ)

)
ds‖β

� LgiM‖usi − vsi‖P0 +
M

Γ(α)

∫ t

si
(t− s)α−1Ω(s)(1+MB)‖us− vs‖P0ds

� LgiM sup
t∈Ji

‖u(t)− v(t)‖β + C̃1
M

Γ(α)
(1+MB)

(ti+1− si)
(1+a)(1−α1)

(1+a)1−α1
‖

×Ω‖
L

1
α1 Ji

sup
t∈(si ,ti+1]

‖u(t)− v(t)‖β

� M
[
C̃1Lgi +

C̃1(1+MB)
Γ(α)

(ti+1− si)(1+a)(1−α1)

(1+a)1−α1
‖Ω‖

L
1

α1 Ji

]‖u− v‖ṔT
.

For t ∈ (ti,si],
‖F̃u(t)− F̃v(t)‖ � C̃1Lgi‖u− v‖ṔT

.

Thus,
‖F̃u− F̃v‖ṔT

� Θ‖u− v‖ṔT
.

Therefore, F̃ is a contraction on ṔT and there exists a unique PC-mild solution of
(1)–(3). �
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In the previous theorem, we established the existence and uniqueness of PC-mild
solution by using Lipschitz conditions on both source as well as impulse functions. In
our next result, we relax the Lipschitz condition on the source function and use Burton-
Kirk’s fixed point theorem to obtain the existence of PC-mild solution.

Consider the ball Br = {z ∈ ṔT : ‖z‖ṔT
� r}.

Clearly Br is a closed, bounded convex set in ṔT .
In the sequel we make the following assumptions:
(H4) For each t ∈ J, the function f (t, ., .) : P0 ×Xβ → Xβ is continuous and for

each ψ ∈ P0 , u ∈ Xβ , the function f (.,ψ ,u) : J → Xβ is strongly measurable.
(H5) There exist a function m ∈ L(J,R+) and a non decreasing function Wf ∈

C([0,∞),R+) such that

siD
−α
t m ∈C(Ji,R

+), lim
t→s+i

siD
−αm(t) = 0, i = 0,1,2, . . .N,

and
‖ f (t,xt ,Bx)‖β � m(t)Wf (‖xt‖P0), x ∈ P and almost all t ∈ J.

THEOREM 2. Assume that assumptions (H3)–(H5) hold. If ‖gi(t,0)‖β , i =
1,2, . . .N are bounded, L1 = max

1�i�N
C̃1MLgi < 1 and the following condition holds:

K1

∫ ti+1

si
(t − s)α−1m(s)ds <

∫ ∞

K0

ds
Wf (s)

, i = 0,1, . . .N,

where

for t ∈ [si,ti+1], K0 =
C̃1M‖gi(t,0)‖β + C̃1‖φ(0)‖β + C̃2‖φ‖P0

1− C̃1MLgi

,

K1 =
C̃1M

Γ(α)(1− C̃1MLgi)
and

for t ∈ [0,t1], K0 = MC̃1‖φ(0)‖β + C̃2‖φ‖P0 ,K1 =
M

Γ(α)
C̃1,

then the problem possesses at least one mild solution on (−∞,T ].

Proof. To apply the fixed point theorem, let us split our operator F̃ : Br → Br,
introduced in the previous theorem, into two parts given by

F̃ =
N

∑
i=0

F̃ 1
i +

N

∑
i=0

F̃ 2
i ,

where F̃ j
i : ṔT −→ ṔT , i = 0, . . . ,N ; j = 1,2 are given by

F̃ 1
i x(t) =

{
0,gi(t,zt + Φt),T (t − si)gi(si,zsi + Φsi),

F̃ 2
i x(t) =

{∫ t
si
S (t − s) f (s,zs + Φs,

∫ s
0 B(s,τ,zτ + Φτ)dτ))ds, t ∈ Ji,

0, t /∈ Ji.
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The proof is split into several steps as follows:
Step I. To show that F̃ 2 maps a bounded set into a bounded set in ṔT .
Note that for z ∈ Br,

‖zs + Φs‖P0 � C1r+C1M‖φ(0)‖β +C2‖φ‖P0 =: r∗.

Let u ∈ Br. For i � 1 and t ∈ Ji , i = 0,1, . . .N , we get

‖T̃ u(t)‖β =
∫ t

si
S (t− s) f (s,zs + Φs,

∫ s

0
B(s,τ,zτ + Φτ)dτ))ds‖β

� M
Γ(α)

∫ t

si
(t− s)α−1m(s)Wf (‖zs + Φs‖P0)ds

� M
Γ(α)

Wf (r∗)sup
t∈Ji

∫ t

si
(t − s)α−1m(s)ds

� M
Γ(α)

Wf (r∗)sup
t∈Ji

∫ t

si
(t − s)α−1m(s)ds

=: l,

where

l = max

{
M

Γ(α)
Wf (r∗)sup

t∈Ji

∫ t

si
(t− s)α−1m(s)ds, 0 � i � N

}
.

Then for each z ∈ Br, we have ‖F̃ 2(u)‖Ṕ � l.
For convenience, from next step onwards, we take B(z + Φ)(s) =

∫ s
0 B(s,τ,zτ +

Φτ)dτ.

Step II. To show that [F̃ 2
i x : x ∈ Br]i , i = 0,1, . . . ,N, is an equicontinuous family

of functions on C([ti,ti+1],Xβ ).
Let, l1, l2 ∈ (si, ti+1] , si<l1<l2 and x ∈ Br . Then

‖(F̃ 2
i x)(l2)− (F̃ 2

i x)(l1)‖β

= ‖
∫ l2

si
(l2 − s)α−1S (l2 − s) f (s,zs + Φs,B(z+ Φ)(s))ds

−
∫ l1

si
(l1 − s)α−1S (l1− s) f (s,x(s), f (s,zs + Φs,B(z+ Φ)(s))ds‖

= ‖
∫ l2

l1
(l2 − s)α−1S (l2 − s) f (s,zs + Φs,B(z+ Φ)(s))ds‖

+‖
∫ l1

si
(l2 − s)α−1S (l2 − s) f (s,zs + Φs,B(z+ Φ)(s))ds

−
∫ l1

si
(l1 − s)α−1S (l2− s) f (s,zs + Φs,B(z+ Φ)(s))ds‖

+‖
∫ l1

si
(l1 − s)α−1[(S (l2 − s)−S (l1 − s))] f (s,zs + Φs,B(z+ Φ)(s))ds‖
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� Mα
Γ(α +1)

∫ l2

l1
(l2− s)α−1m(s)Wf (‖zs + Φs‖P0)ds

+
Mα

Γ(α +1)

∫ l1

si
[(l1 − s)α−1− (l2− s)α−1]m(s)Wf (‖zs + Φs‖P0)ds

+
∫ l1

si
(l1 − s)α−1‖S (l2 − s)−S (l1 − s)‖m(s)Wf (‖zs + Φs‖P0)ds

� Mα
Γ(α +1)

∫ l2

l1
(l2− s)α−1m(s)Wf (r∗)ds

+
Mα

Γ(α +1)

∫ l1

si
[(l1 − s)α−1− (l2− s)α−1]m(s)Wf (r∗)ds

+
∫ l1

si
(l1 − s)α−1‖S (l2 − s)−S (l1 − s)‖m(s)Wf (r∗)ds

� Wf (r∗)
Mα

Γ(α +1)
‖
∫ l2

si
(l2 − s)α−1m(s)ds−

∫ l1

si
(l1− s)α−1m(s)ds‖

+2Wf (r∗)
Mα

Γ(α +1)

∫ l1

si
[(l1 − s)α−1− (l2− s)α−1]m(s)ds

+Wf (r∗)
∫ l1

si
(l1 − s)α−1‖S (l2 − s)−S (l1 − s)‖m(s)ds

=: I1 + I2 + I3.

Since siD
−α
t m ∈C(Ji,R

+) ,

I1 → 0 as l2 → l1.

For l1 < l2,

I2 � Wf (r∗)
2Mα

Γ(α +1)

∫ l1

si
(l1 − s)α−1m(s)ds.

As
∫ l1
si

(l1 − s)α−1m(s)ds < ∞ , we have I2 → 0 as l2 → l1 .

For ε > 0 small enough,

I3 = Wf (r∗)
∫ l1−ε

si
(l1 − s)α−1‖S (l2− s)−S (l1 − s)‖m(s)ds

+Wf (r∗)
∫ l1

l1−ε
(l1 − s)α−1‖S (l2 − s)−S (l1− s)‖m(s)ds

� Wf (r∗)
∫ l1−ε

si
(l1 − s)α−1m(s)ds sup

s∈[si ,l1−ε]
‖S (l2 − s)−S (l1 − s)‖

+Wf (r∗)
∫ l1

si
(l1 − s)α−1‖S (l2 − s)−S (l1 − s)‖m(s)ds

−Wf (r∗)
∫ l1−ε

si
(l1 − s)α−1‖S (l2 − s)−S (l1 − s)‖m(s)ds
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� Wf (r∗)
∫ l1−ε

si
(l1 − s)α−1m(s)ds sup

s∈[si ,l1−ε]
‖S (l2 − s)−S (l1 − s)‖

+Wf (r∗)
2Mα

Γ(α +1)
[
∫ l1

si
(l1− s)α−1m(s)ds−

∫ l1−ε

si
(l1 − s)α−1m(s)ds]

� Wf (r∗)
∫ l1−ε

si
(l1 − s)α−1m(s)ds sup

s∈[si ,l1−ε]
‖S (l2 − s)−S (l1 − s)‖

+Wf (r∗)
2Mα

Γ(α +1)
[
∫ l1

si
(l1− s)α−1m(s)ds−

∫ l1−ε

si
(l1 − ε − s)α−1m(s)ds]

+Wf (r∗)
2Mα

Γ(α +1)

∫ l1−ε

si
[(l1− ε − s)α−1− (l1− s)α−1]m(s)ds

=: I31 + I32 + I33.

Since {Q(t)}t > 0 is a compact operator, it is an equicontinuous family, so I31 → 0 as
l2 → l1. I32 → 0, I33 → 0 as ε → 0 by virtue of I2 and I3. Therefore, ||(F̃ 2

i x)(l2)−
(F̃ 2

i x)(l1)|| → 0 is independent of x ∈ Br since l2 → l1 . By a similar argument,
equicontinuity can be verified in τ1 < 0 < τ2 � T, whereas it is trivial for τ1 < τ2 � 0.

Thus, [F̃ 2Br]i is equicontinuous and hence F2 is completely continuous.

Step III. F̃ 2 : Ṕ → Ṕ is continuous.
Let {zm}∞

m=1 be a sequence in Ṕ with zm → z ∈ Ṕ.
By condition (H3) , we have

lim
m→∞

f (t,zm
t + Φt ,B(zm(t)+ Φ(t)) → f (t,zt + Φt ,B(x(t)+ Φt).

For any t ∈ Ji

(t− s)α−1‖ f (s,zm
s + Φs,B(zm(s)+ Φ(s)))− f (s,zm

s + Φs,B(z(s)+ Φs))‖
� (t− s)α−1m(s)Wf (r∗).

By (H4) the function s → (t− s)α−1m(s) is integrable for s ∈ [si,ti+1].
Hence by Lebesgue’s dominated convergence theorem, we get∫ t

si
(t− s)α−1‖ f (s,zm

s + Φs,B(zm(s)+ Φ(s))− f (s,zs + Φs,B(z(s)+ Φs))‖ds → 0,

as m → ∞.

Thus for t ∈ Ji,

‖(F̃ 1
i zm)(t)− (F̃ 1

i z)(t)‖
� M̃TWf (r∗)

∫ t

si
(t− s)α−1‖ f (s,zm

s ,B(zm(s)+ Φ(s))))− f (s,z(s),B(z(s)+ Φ(s)))‖ds

→ 0, as m → ∞.

Therefore, F̃ 1
i zm → F̃ 1

i z pointwise on Ji as m → ∞.
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Thus F̃ 2 is continuous in Ṕ.

Step IV. Let t ∈ (si,ti+1) be fixed and s(< t) ∈ (si,ti+1) be such that ε ∈ (si,s).
To prove

⋃
τ∈[s,t]

F̃ 2
i z(τ) , z ∈ Br is relatively compact in Xβ .

For any δ>0, define the set

V δ
ε (t) = {(F̃ 2

i )
δ
ε z)(t) : z ∈ Br},

where

((F̃ 2
i )

δ
ε z)(t) = α

∫ t−ε

si

∫ ∞

δ
θ (t− s)α−1ξα(θ )Q((t − s)αθ ) f (s,zs + φs,B(z+ φ)(s))dsdθ

= αQ(εδ θ )
∫ t−ε

si

∫ ∞

δ
θ (τ − s)α−1ξα(θ )Q((τ − s)αθ − εα δ )

f (s,zs + φs,B(z+ φ)(s))dsdθ .

Since Q(εα δ ),(εα δ ) > 0 is compact, the set V δ
ε (τ) is relatively compact in Xβ .

On the other hand, for any z ∈ Br,

|((F̃ 2
i z)(τ)− ((F̃ 2

i )
δ
ε z)(τ)‖β

� α‖
∫ τ

si

∫ ψ

0
θ (τ − s)α−1ξα(θ )Q((τ − s)α(θ ))

f (s,zs + Φs,B(z+ Φs)(s)dsdθ‖β + α‖
∫ τ

τ−ε

∫ ∞

δ
θ (t− s)α−1

ξα(θ )Q((t − s)α(θ )) f (s,zs + Φs,B(z+ Φ)(s)dsdθ‖β

� Wf (r∗)αM
∫ t

si
(t − s)α−1m(s)ds

∫ ψ

0
θξα(θ )dθ

+Wf (r∗)
M

Γ(α)

∫ τ

τ−ε
(τ − s)α−1m(s)ds → 0 as ε → 0, δ → 0.

Thus there exist relatively compact sets arbitrary close to the set
⋃

τ∈[s,t]

F̃ 2
i Br(τ) . There-

fore the set
⋃

τ∈[s,t]

F̃ 2
i Br(τ) is relatively compact in Xβ .

Step V. To prove that F̃ 1 is a contraction in Br.

Let u,v ∈ ṔT and t ∈ Ji , 1 � i � N . We have

‖(F̃ 1
i u)(t)− (F̃ 1

i v)(t)‖β � Lgi‖us− vs‖P0

� C̃1Lgi‖u− v‖ṔT
.
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Also for u,v ∈ ṔT and t ∈ Ji , i = 1,2, . . . ,N, we have

‖(F̃ 1
i u)(t)− (F̃ 1

i v)(t)‖β = ‖T (t− si)gi(si,u(si)+ Φ(si))

−T (t − si)gi(si,v(si)+ Φsi)‖β

� MLgi‖us− vs‖P0

� MC̃1Lgi‖u− v‖ṔT
.

Taking the supremum over t, we get

‖F̃ 1
i (u)− F̃ 1

i (v)‖ṔT
� L‖u− v‖ṔT

.

Hence F̃ 1 is a contraction mapping on ṔT .
Step VI. To establish a priori bounds. Here we show that the set

E = {z ∈ P̃ : z = λF̃ 1z+ λF̃ 2(
z
λ

), for some 0 < λ < 1}

is bounded.
For each t ∈ [0, t1],

z(t) =
∫ t

0
T (t− s)(t− s)α−1 f (s,zs + Φs,B(z+ Φ)(s))ds.

Hence

‖z(t)‖β � M
Γ(α)

∫ t

0
(t− s)α−1m(s)Wf (‖zs + Φs‖P)ds. (8)

Now

‖zs + Φs‖P0 � ‖zs‖P0 +‖Φs‖P0

� C̃1 sup
t∈[0,t1]

‖z(s)‖β +MC̃1‖φ(0)‖β + C̃2‖φ‖P0

=: μ(t).

Hence (8) becomes

‖z(t)‖β � M
Γ(α)

∫ t

0
(t − s)α−1m(s)Wf (μ(s))ds. (9)

Using (9) in the definition of μ , we have

μ(t) � M
Γ(α)

C̃1

∫ t

0
(t − s)α−1m(s)Wf (μ(s))ds+MC̃1‖φ(0)‖β + C̃2‖φ‖P0 . (10)

Thus

μ(t) � K0 +K1

∫ t

0
(t − s)α−1m(s)Wf (μ(s))ds, (11)

where

K0 = MC̃1‖φ(0)‖β + C̃2‖φ‖P0 ,K1 =
M

Γ(α)
C̃1.
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If v(t) = K0 +K1
∫ t
0 (t − s)α−1m(s)Wf (μ(s))ds, then

μ(t) � v(t), v(0) = K0 and v′(t) � K1(s− t)α−1m(t)Wf (v(t)).

Thus for t ∈ [0, t1], we have∫ v(t)

v(0)

ds
Wf (s)

� K1

∫ t

0
(t − s)α−1m(s)ds <

∫ ∞

K0

ds
Wf (s)

.

By lemma 3, we have

v(t) � H−1(K1)
∫ t

0
(t− s)α−1m(s)ds), t ∈ [0,t1],

where

H(y) =
∫ y

K0

ds
Wf (s)

.

Hence
‖zs + Φs‖P0 < Mt0 .

From (9), we get

‖z(t)‖β � M
Γ(α)

∫ t1

0
(t − s)α−1m(s)Wf (Mt0)ds.

Thus there exists Lt0 > 0 such that

‖z‖Ṕ � Lt0 .

For t ∈ (ti,si] , i = 1,2, . . . ,N, we have

z(t) = gi(t,zt + φt).

Hence for each t ∈ Ji

‖z(t)‖β � Lgi‖zt + Φt‖P0 +‖gi(t,0)‖β . (12)

If ‖zs + Φs‖P0 � μ(t), then (12) becomes

‖z(t)‖β � Lgi μ(t)+‖gi(t,0)‖β . (13)

From definition of μ(t) , we have

μ(t) � C̃1(Lgi μ(t)+‖gi(t,0)‖β +MC̃1‖φ(0)‖β + C̃2‖φ‖P0 .

Hence, (14) gives

μ(t) �
C̃1(‖gi(t,0)‖β +M‖φ(0)‖β )+ C̃2‖φ‖P0

1− C̃1Lgi

=: Mti .
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This shows that there is a constant Mti > 0 such that

μ(t) � Mti ,t ∈ (ti,si].

Therefore
‖z(t)‖β � LgiMti +‖gi(t,0)‖β .

Thus
‖z‖Ṕ � Lti .

Finally for each t ∈ Ji,

z(t) = T (t− si)gi(si,zsi + Φsi)+
∫ t

si
(t− s)α−1S f (s,zs + Φs +B(z+ Φ)(s))ds).

Now

‖z(t)‖β � MLgi‖zsi + Φsi‖Ṕ0
+M‖gi(t,0)‖β +

M
Γ(α)

∫ t

si
(t − s)α−1m(s)

Wf (‖zs + Φs‖P0)ds.

Using μ(t), we get

‖z(t)‖β � MLgi μ(t)+M‖gi(t,0)‖β +
M

Γ(α)

∫ t

si
(t − s)α−1m(s)Wf (μ(s))ds. (14)

From the definition of μ , we have

μ(t) � C̃1
(
MLgi μ(t)+M‖gi(t,0)‖β +

M
Γ(α)

∫ t

si
(t− s)α−1m(s)Wf (μ(s))ds

)
+C̃1‖φ(0)‖β + C̃2‖φ‖P0 .

Thus, we get

μ(t) � K̃0 + K̃1

∫ t

si
(t − s)α−1m(s)Wf (μ(s))ds,

where

K̃0 =
C̃1M‖gi(t,0)‖β + C̃1‖φ(0)‖β + C̃2‖φ‖P0

1− C̃1MLgi

and K̃1 =
C̃1M

Γ(α)(1− C̃1MLgi)
.

If we denote the RHS of the above inequality by v(t), we have v(0) = K̃0 , μ(t) �
v(t) , t ∈ [si, ti+1] , i = 1,2, . . .N and v′(t) � K̃1(s− t)α−1m(t))Wf (v(t)). Thus for t ∈
[si,ti+1], ∫ v(t)

v(i)

ds
Wf (s)

� K̃1

∫ t

si
(t − s)α−1m(s)ds <

∫ ∞

K̃0

ds
Wf (s)

.

By lemma 3, we obtain

v(t) � H−1(K̃1

∫ ti+1

si
(t− s)α−1m(s)ds

)
, s ∈ [si,ti+1],
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where

H(y) =
∫ y

K̃0

ds
Wf (s)

.

Therefore,

‖zs + Φs‖P0 < Mti+1 .

From (14), we get

‖z(t)‖β � MLgiMti+1 +M‖gi(t,0)‖β +
M

Γ(α)

∫ t

si
(t − s)α−1m(s)Wf (Mti+1)ds =: Lti+1 .

Thus there exist Lti+1 > 0 such that

‖z‖Ṕ � Lti+1 .

This implies that the set E is bounded. Hence by Burton-Kirk’s fixed point theorem the
operator F̃ has a fixed point, since x(t) = z(t)+ Φ(t) , t ∈ (−∞,T ]. This establishes
that x is a fixed point of the operator T which is a mild solution of the problem. �

4. An example

Consider the space X = L2([0,π ],R) and the following fractional partial differen-
tial equation with infinite delay:

CDα
t x(t,z) =

∂ 2x(t,z)
∂ z2 + σ(t,xt(.,z),

∫ t

0
σ1(t,s,xt(.,z))ds), (15)

t ∈ [si, ti+1], z ∈ [0,π ],
x(t,z) = Gi(t,x(.,z)), i = 1,2, . . .N, (16)

x(t,0) = x(t,π) = 0, t ∈ [0,T ], (17)

x(t,z) = φ(t,z), −∞ � t � 0, 0 � z � π , (18)

where si ∈ (ti, ti+1] (i = 1,2, . . . ,N,) in the partition 0 = t0 < t1 < .. . < tN+1 = T
of the interval [0,T ] with s0 = 0 an xt indicates the portion of the solution x(., .) :
(−∞,T ]× [0,π ]→ X , that is, for any t � 0, xt(., .) : (−∞,0]× [0,π ]→ X is given by

xt(θ ,z) = x(t + θ ,z), for θ ∈ (−∞,0].

Let X = L2[0,π ] and define A : D(A) ⊂ X → X by Ax = x′′, on

D(A) = {x ∈ X :
∂x
∂ z

,
∂ 2x
∂ z2 ∈ X and x(0) = x(π) = 0}.

Then A generates a compact analytic semigroup Q(t)t�0 on X and there exists a con-
stant M � 1 such that ‖Q(t)‖ � M.
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Consider the functions

x(t)z = x(t,z), t ∈ J,z ∈ [0,π ], (19)

gi(t,φ)z = Gi(t,φ(θ ,z)), θ ∈ (−∞,0],z ∈ [0,π ], (20)

f (t,φ ,

∫ t

0
B(t,s,φ)ds)z = σ(t,φ(θ ,z),

∫ t

0
σ1(t,s,φ(θ ,z)ds), (21)

θ ∈ (−∞,0], z ∈ [0,π ],
φ(θ )(z) = φ(θ ,z), θ ∈ (−∞,0], z ∈ [0,π ], (22)

with the following assumptions:
(i) For each i = 0,1, . . .N, the function f : [si,ti+1]×P0 × X → X defined by

(22) is continuous and we impose a suitable condition on F to satisfy the hypotheses
(H1)–(H2) .

(ii) For each i = 1, . . .N, the function gi : (ti,si]×P0 → X defined by (20) is
continuous and we impose a suitable condition on Gi to satisfy the hypothesis (H3).

With the above setting the system of equations (16)–(18) reduces to the system of
equations (1)–(3) satisfying the hypotheses of Theorem 1 and hence ensuring a mild
solution on (−∞,T ].

5. Conclusion

In this paper, the problem of existence of mild solution of a class of Caputo frac-
tional evolution equation with non instantaneous impulses considered. With the aid of
contraction mapping theorem and Burton Kirk’s fixed point theorem, we established
couple of theorems on the existence of mild solution.
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