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Abstract. The main aim of this article is to establish a uniqueness criterion for coupled systems
of the nonlinear higher-order ∇ -difference boundary value problems. To this end, the coinci-
dence degree theory has chosen to make a solvability space for the existence of at least one
solution to the under investigation fractional-order system. Next, we create some conditions that
enable us to prove the existence of the exactly one solution of the under study fractional-order
system. At the end, a numerical example is given to illustrate the applicability of the obtained
theoretical criterion.

1. Introduction and preliminaries

The theory of fractional calculus basically acts on the integral/differential oper-
ators as Dα

t ≡ dα/dtα having the sliding arbitrary order α ∈ R , that generalize the
integer order integration/differentiation. Nowadays the knowledge of fractional mathe-
matics appears in many specialized sciences such as viscoelastic materials, porous and
fractured media, bioengineering, electrochemical processes and so many other real life
phenomena, see [21], [24]–[26], [31]–[34] for details.

On the other hand, the literature is witnessed the boom of the abstract develop-
ments of the theory of fractional calculus inspiring by the traditional foundations of the
fractional calculus such as [21], [24], [25], [26]. Mostly, these developments are ap-
peared regarding to some particular properties of the fractional order operators such as
those fractional-order operators that are constructed on the shoulders of the Riemann-
Liouville fractional integration and differentiation operators acting on the appropriate
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functions and given by:

I
ρ
a+(b−) f (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I
ρ
a+ f (t) =

1
Γ(ρ)

∫ t

a
(t − s)ρ−1 f (s)ds; ρ > 0,

I
ρ
b− f (t) =

1
Γ(ρ)

∫ b

t
(s− t)ρ−1 f (s)ds; ρ > 0,

f (t) ; ρ = 0,

and

D
ρ
a+(b−) f (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D
ρ
a+ f (t) =

1
Γ(n−ρ)

(
dn

dtn

)∫ t

a
(t− s)n−ρ−1 f (s)ds; ρ > 0,

D
ρ
b− f (t) =

(−1)n

Γ(n−ρ)

(
dn

dtn

)∫ b

t
(s− t)n−ρ−1 f (s)ds; ρ > 0,

f (t) ; ρ = 0,

respectively, such that α > 0 and n = [α]+ 1. Some of these fractional-order opera-
tors are the Hadamard, Erdeli-Kober, Hilfer and Caputo fractional operators (see [21]
for more details), or, concentrating on the lack of the Leibniz-rule in the Riemann-
Liouville based fractional-order operators (see [30]), one can mentioned the recently
introduced fractional-order operators that generalize the limit approach of classic dif-
ferentiation and admitting the fractional version of the Leibniz-rule, namely the frac-
tional conformable integration and differentiation operators that were introduced by
[19], generalized by [1] and are defined as:

Iν f (t) =

⎧⎪⎪⎨
⎪⎪⎩

Iν
a f (t) =

1
n!

∫ t

a
(t− s)n(s−a)ν−n−1 f (s)ds,

bIν f (t) =
1
n!

∫ b

t
(s− t)n(b− s)ν−n−1 f (s)ds,

for f ∈ L1(a,b) and

T ν f (t) =

⎧⎪⎪⎨
⎪⎪⎩

T ν
a f (t) = lim

ε→0

f ([ν]−1)(t + ε(t−a)[ν]−ν)− f ([ν]−1)(t)
ε

,

bT ν f (t) = (−1)n+1 lim
ε→0

f ([ν]−1)(t + ε(b− t)[ν]−ν)− f [ν]−1(t)
ε

,

respectively, where n < ν � n+1, n ∈ N∪{0} and f is n -differentiable function.
This variety in the theory naturally makes variety in the applications. In this

way, almost all of the applications are constructed on the solutions of the considered
fractional-order problems, that is why the concept of solvability of the fractional-order
problems is of the greatest importance. Here we suggest a collection of the solvabil-
ity tools for the fractional-order differential/difference equations, [3]–[11], [14]–[18],
[20], [22], [23], [27]–[29], [31]–[35] and related cited bibliography therein. But the
main purpose of this paper is devoted to the completely different fractional-order op-
erators. Indeed, we are dealt with the study about fractional difference operators that
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are divided into the fractional Δ-differences and fractional ∇-differences. As a use-
ful collection of the references about discrete fractional calculus, we suggest here the
sample-wise references [2]–[11], [13], [14], [20], [22], [23], [27], [29] and the cited
bibliography to more consultation on topic.

Between the aforementioned research works, we are interested in the investigation
about the existence and uniqueness criteria for the discrete version of the following
system of the higher-order fractional boundary value problems⎧⎨

⎩
Dα

0+u(t) = f (t,v(t),v
′
(t),v

′′
(t), . . . ,v(N−1)(t)),

Dβ
0+v(t) = f (t,u(t),u

′
(t),u

′′
(t), . . . ,u(N−1)(t)),

(1.1)

subject to the coupled two-point boundary conditions{
u(k)(0) = 0, u(N−1)(0) = u(N−1)(1),

v(k)(0) = 0, v(N−1)(0) = v(N−1)(1),
(1.2)

where N−1 < α,β � N, N ∈ N2, 0 � k � N −2 and 0 < t < 1. In this work, f and
g are two given continuous functions. In fact, this fractional-order system is the main
problem in the research work [17], where the authors in the light of the coincidence
degree theory, make some sufficient conditions to reach at least one solution for the
fractional-order system (1.1)–(1.2), and then, presenting some additional ones, they at-
tempt to find a unique solution for this system. So, we consider the following nonlinear
higher-order fractional ∇-difference system⎧⎨

⎩
∇α

a+y(t) = f (t,z,∇α−(n−1)
a+ z,∇α−(n−2)

a+ z, . . . ,∇α−1
a+ z),

∇α
a+z(t) = g(t,y,∇α−(n−1)

a+ y,∇α−(n−2)
a+ y, . . . ,∇α−1

a+ y),
(1.3)

subject to the two-point boundary conditions⎧⎨
⎩

∇α−n
a+ y(a+1) = . . . = ∇α−2

a+ y(a+1) = 0, ∇α−1
a+ y(a+1) = ∇α−1

a+ y(b),

∇α−n
a+ z(a+1) = . . . = ∇α−2

a+ z(a+1) = 0, ∇α−1
a+ z(a+1) = ∇α−1

a+ z(b),
(1.4)

where n− 1 < α � n, n ∈ N2, and t ∈ N
b
a, a,b ∈ Z0, b � a+ 3. ∇α

a+ stands for the
fractional ∇-difference operator of order α > 0. Throughout this paper we will assume
that f ,g : N

b
a+1×R

n → R are continuous functions.
At the end of this section, we state the organization of the rest of the paper. In

section 2, some definitions and technical lemmas regarding the ∇-fractional calculus
are given. Besides, we will have a brief tour on the coincidence degree theory as the
main solvability key to the fractional-order ∇-difference system (1.3)–(1.4). Section
3, as the main body of this paper includes the existence and uniqueness criteria for the
fractional-order ∇-difference system (1.3)–(1.4). In order to justify that the presented
existence and uniqueness criteria are implementable in practice, a numerical example in
section 4 is given. Finally, we have the section 5 as the conclusion of the paper, where
the managed investigation on the fractional-order ∇-difference system (1.3)–(1.4) will
be summarized.
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2. Basic requirements

This segment of the paper, is actually the setting garage of the solvability ma-
chine of the fractional-order ∇-difference system (1.3)–(1.4). In order to activate this
mechanism, we start with the fractional rising functions that construct the kernels of the
fractional ∇-difference operators.

DEFINITION 2.1. [2], [[13], Chap. 3] For a natural number m , the rising function
of t is defined by

tm =
m−1

∏
k=0

(t + k), t0 = 1.

Its generalization for any real number α that is called fractional rising function is given
by

tα =
Γ(t + α)

Γ(t)
, t ∈ R−{. . . ,−2,−1,0}, 0α = 0. (2.1)

Note that ∇
(
tα)= αtα−1 .

NOTATION. For each a,b ∈ R ,

Na = {a,a+1,a+2, . . .}, bN = {b,b−1,b−2, . . .}, N
b
a = {a,a+1, . . . ,b−1,b}.

(2.2)

Having the above background in hand, now we are enable to define the fractional ∇-
difference operators as follows.

DEFINITION 2.2. [2], [[13], Chap. 3] Fractional left and right sided ∇-sums of
order α > 0 are defined as

∇−α f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇−α
a+ f (t) =

1
Γ(α)

t

∑
s=a

(t − δ (s))α−1 f (s),

∇−α
b− f (t) =

1
Γ(α)

b

∑
s=t

(s− δ (t)α−1 f (s),
(2.3)

where δ (s) = s−1.

REMARK 2.3. [2], [[13], Chap. 3] Fractional left and right sided ∇-sums of
order α > 0, defined by (2.3) have the following properties:

(i) ∇−α
a+ maps functions defined on Na to functions defined on Na .

(ii) ∇−α
b− maps functions defined on bN to functions defined on bN .
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DEFINITION 2.4. [2], [[13], Chap. 3] Fractional left and right sided ∇-differences
of order 0 � n−1 < α � n for n ∈ N are given by

∇α f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇α
a+ f (t) =

1
Γ(n−α)

∇n
t

( t

∑
s=a

(t− δ (s))n−α−1 f (s)
)

,

∇α
b− f (t) =

(−1)n

Γ(n−α)
Δn

t

(
b

∑
s=t

(s− δ (t)n−α−1 f (s)

)
,

(2.4)

such that α > 0, n = [α] + 1 and Δt denotes the forward difference operator with
respect to the variable t .

REMARK 2.5. [2], [[13], Chap. 3] Fractional left and right sided ∇-differences
of order α > 0, defined by (2.4) have the following properties:

(i) ∇α
a+ maps functions defined on Na to functions defined on Na+n ,

(ii) ∇α
b− maps functions defined on bN to functions defined on b−nN ,

where n = [α]+1.

Here is worthy time to state some of the most important properties of the fractional
∇-difference operators that will be the road lights to establish the main results.

LEMMA 2.6. [2], [[13], Chap. 3] Assume that f is a real-valued function and
μ > 0, 0 � n−1 < ν � n. Then

(Q1) ∇−μ
a+ ∇−ν

a+ f (t) = ∇−(μ+ν)
a+ f (t) = ∇−ν

a+ ∇−μ
a+ f (t),

(Q2) ∇−ν
a+ ∇ν

a+ f (t) = f (t) + c1(t − a)ν−1 + c2(t − a)ν−2 + . . . + cn(t − a)ν−n , ci ∈
R, i = 1,2, . . . ,n.

(Q3) ∇ν
a+ ∇−ν

a+ f (t) = f (t).

(Q4) ∇ν
a+(t−a)μ =

Γ(μ +1)
Γ(μ −ν +1)

(t −a)μ−ν , μ −ν +1 �∈ (−Z0) .

Since our main aim is to sake unique nontrivial solution for the fractional-order
∇-difference system (1.3)–(1.4), then, we continue as follows. As we know

∇α
a+u(t)= 0 iff u(t)= c1(t−a)ν−1+c2(t−a)ν−2+ . . .+cn(t−a)ν−n, ci ∈R, i∈N

n
1.

(2.5)
Therefore, thanks to the properties (Q2 ) and (Q4 ) in Lemma 2.6 we have

∇α− j
a+ u(t) = ∇α− j

a+

(
n

∑
i=1

ci(t −a)α−i

)
=

n

∑
i=1

ci∇α− j
a+ (t−a)α−i

=
n

∑
i=1

ci
Γ(α − i+1)
Γ( j− i+1)

(t−a) j−i, j ∈ N
n
2.

(2.6)
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Using 1β = β + 1 and considering the substitution t = a + 1, yields the following
algebraic system:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

c1Γ(α)+ c2Γ(α −1) = 0,

c1Γ(α)+ c2Γ(α −1)+ c3Γ(α −2) = 0,

c1Γ(α)+ c2Γ(α −1)+ c3Γ(α −2)+ c4Γ(α −3) = 0,
...
c1Γ(α)+ c2Γ(α −1)+ c3Γ(α −2)+ . . .+ cnΓ(α −n+1) = 0.

(2.7)

Some manipulations on the algebraic system (2.7), we get that

αc1 + c2 = 0, ci = 0, i = 3,4, . . . ,n.

So the homogeneous fractional ∇-difference equation ∇α
a+u(t) = 0 has a nontrivial

solution. Relying on this fact, now we are in such a position that can establish a solv-
ability framework to reach a uniqueness criterion for the nontrivial solutions of the
fractional-order ∇-difference system (1.3)–(1.4). Prior to this analysis, it will be bet-
ter understanding of the existence path provided that we have a quick overview on the
coincidence degree theory as follows [see [12]; Chapters IV,V, for more details].

DEFINITION 2.7. Assume that B and D be real normed spaces. A linear map-
ping L : dom L ⊂ B → D is called a Fredholm mapping provided that the following
conditions hold:

(i) kerL has a finite dimension,

(ii) ImL is closed and has a finite codimension.

Let L is a Fredholm mapping. Then its index is given by

Ind L = dim kerL− codim ImL.

Assume that L is a Fredholm mapping with index zero and there exist continuous pro-
jectors P : B → B and Q : D → D such that

ImP = kerL, kerQ = ImL, B = kerL⊕kerP, D = ImL⊕ ImQ.

It follows that the mapping

L|domL∩kerP : domL∩kerP → ImL

is invertible. Let us denote the inverse by KP : ImL → domL∩kerP . The generalized
inverse of L denoted by KP,Q : Z → domL∩kerP is defined by KP,Q = KP(I−Q) .

If L is a Fredholm mapping of index zero, then for every isomorphism J : ImQ→
kerL , the mapping JQ+KP,Q : Z → domL is an isomorphism and, for every u∈ domL ,

(JQ+KP,Q)−1u = (L+ J−1P)u.
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DEFINITION 2.8. Let L : domL⊂B→D be a Fredholm mapping, E be a metric
space, and N : E → D be a mapping. N is to be called L -compact on E provided that,
QN : E → D is continuous and KP,Q : E → B is compact on E . In addition, we say
that, N is L -completely continuous if it is L -compact on every bounded E ⊂ B .

THEOREM 2.9. Let Ω ⊂ B be open and bounded, L be a Fredholm mapping
of index zero and N be L-compact on Ω . Assume that the following conditions are
satisfied:

(i) Lu �= λNu for every (u,λ ) ∈ ((domL\ kerL)∩∂Ω)× (0,1);

(ii) Nu �∈ ImL for every u ∈ kerL∩∂Ω;

(iii) deg(JQN|kerL∩∂Ω,Ω∩kerL,0) �= 0 with Q : D→D a continuous projector such
that kerQ = ImL and J : ImQ → kerL is an isomorphism.

Then the abstract operator equation Lu = Nu has at least one solution in domL∩Ω .

3. Main results

As stated above, in order to find at least one solution for the fractional-order ∇-
difference system (1.3)–(1.4), at first we have to establish an appropriate functional
space that gives us enough ability to control the growth of the nonlinearities f and g ,
introduced in the right-hand sides of the governing equations (1.3). So, we begin as
follows.

(E,‖.‖E) , E = C
(
N

b
a+1,R

)
, ‖ f‖E = max

t∈N
b
a+1

| f (t)|, (3.1a)

(X ,‖.‖X) , X =
{

u

∣∣∣∣u ∈ E, ∇α−i
a+ u ∈ Fi, Fi = C

(
N

b+n−i
a+n−i+1,R

)
, i = 1,2, . . . ,n−1

}
,

(3.1b)

‖u‖X = max

{
‖u‖E ,

∥∥∥∥∇α−i
a+ u

∥∥∥∥
Fi

, i = 1,2, . . . ,n−1

}
. (3.1c)

Based on the recent Banach spaces, the desired Banach spaces that will be applied in
this paper are introduced as follows:

(B,‖.‖B) ,
{

B = X ×X ,
‖(u,v)‖B = max{‖u‖X ,‖v‖X}, (3.2a)

(D,‖.‖D) ,
{

D = E ×E,
‖(u,v)‖D = max{‖u‖E ,‖v‖E}. (3.2b)

Now it is time to provide the elements of the coincidence degree theory. To this aim,
we begin with defining the operators Li : domLi ∩X → E, i = 1,2 as follows:

L1y = ∇α
a+y, domL1 =

{
y∈X

∣∣∣∣∇α−i
a+ y(a+1)= 0, ∇α−1

a+ y(a+1) = ∇α−1
a+ y(b), i∈N

n
1

}
,

(3.3a)
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L2z = ∇α
a+z, domL2 =

{
z ∈ X

∣∣∣∣ ∇α−i
a+ z(a+1) = 0, ∇α−1

a+ z(a+1) = ∇α−1
a+ z(b), i∈ N

n
1

}
.

(3.3b)
Thereafter, we can define the operator L : domL∩B → D as

L(y,z) = (L1y,L2z) , (3.4)

where
domL = {(y,z) ∈ B| y ∈ domL1, z ∈ domL2}. (3.5)

Next, we define the operator N : B → D as

N(y,z) = (N1z,N2y) , (3.6)

where Nγ : X → E for γ ∈ {1,2} , are defined as below

N1z = f (t,z,∇α−(n−1)
a+ z,∇α−(n−2)

a+ z, . . . ,∇α−1
a+ z), (3.7a)

N2y = g(t,y,∇α−(n−1)
a+ y,∇α−(n−2)

a+ y, . . . ,∇α−1
a+ y). (3.7b)

Turning to the coincidence degree theory discussed in previous section and comparing
the main problem (1.3)–(1.4) with (3.3a)–(3.7b), we find that L(y,z) = N(y,z) . Contin-
uing our research path, we have to prove that the operator L defined by (3.3a)–(3.4) is
a Fredholm operator having index zero.

LEMMA 3.1. The operator L : domL∩B → D defined by (3.3a)–(3.4) is a Fred-
holm operator with index zero.

Proof. Applying the property (Q2 ) in Lemma 2.6, it follows that kerL = (t −
a)α−1 (c1,d1) , c1,d1 ∈ R . Thus, kerL ∼= R

2 . Assuming (u,v) ∈ ImL , there exists
(y,z) ∈ domL , such that L(y,z) = (u,v) . Thereby

y(t) = ∇−α
a+ u(t)+ c1(t−a)α−1 + c2(t−a)α−2 + . . .+ cn(t−a)α−n,

z(t) = ∇−α
a+ v(t)+d1(t−a)α−1 +d2(t−a)α−2 + . . .+dn(t −a)α−n.

Definition of the operator L in (3.3a)–(3.4), consequences that ci = di = 0, i = 2,3, . . . ,n .
So, we conclude that

y(t) = ∇−α
a+ u(t)+ c1(t −a)α−1,

z(t) = ∇−α
a+ v(t)+d1(t −a)α−1.

Hence

∇α−1
a+ y(t) = ∇α−1

a+

(
∇−α

a+ u
)
(t)+ c1Γ(α),

∇α−1
a+ z(t) = ∇α−1

a+

(
∇−α

a+ v
)
(t)+d1Γ(α).

(3.8)
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Here we impose the boundary conditions

∇α−1
a+ y(a+1) = ∇α−1

a+ y(b),

∇α−1
a+ z(a+1) = ∇α−1

a+ z(b),

on (3.8) to arrive at
b

∑
s=a+2

u(s) = 0,
b

∑
s=a+2

v(s) = 0.

Assume given (u,v) fulfils the recent equalities. Taking y(t) = ∇−α
a+ u(t) and z(t) =

∇−α
a+ v(t) , one can directly conclude that (y,z) ∈ domL . Consequently, we have

ImL =

{
(u,v)

∣∣∣∣∣
b

∑
s=a+2

u(s) = 0,
b

∑
s=a+2

v(s) = 0

}
. (3.9)

Now we define the operators Qγ : Eα → Eα , γ ∈ {1,2} as

Q1u(t) =
1

b−a−1

b

∑
s=a+2

u(s), Q2v(t) =
1

b−a−1

b

∑
s=a+2

v(s). (3.10)

Obviously Q(u,v) = (Q1u,Q2v) ∼= R
2 . Thereby, it is easy to check that for u,v ∈ E,

upcoming properties hold:

Q2
1u(t) = Q1u(t), Q2

2v(t) = Q2v(t),

that is Q2(u,v) = Q(u,v) . Using the identity (u,v) = (u,v)−Q(u,v)+Q(u,v) , one can
derive D = ImL+ ImQ . In addition, since ImL∩ ImQ = {(0,0)} , then, we deduce that
D = ImL⊕ ImQ . Finally, by Definition 2.7, we have:

IndL = dimkerL− codim ImL = dimkerL− [dim D−dim ImL] = 2− [4−2] = 0.

Therefore, the operator L defined above is a Fredholm operator having index zero. �
In this position, let us consider the operators Pγ : X → X , γ ∈ {1,2} as

P1u(t) =
∇α−1

a+ u(a)
Γ(α)

(t−a)α−1, P2v(t) =
∇α−1

a+ v(a)
Γ(α)

(t −a)α−1. (3.11)

Using the property (Q4 ) in Lemma 2.6, it is immediate that P2
1 u = P1u and P2

2 v = P2v .
Thus, if we define P : B → B as P(u,v) = (P1u,P2v) , then, we have

kerP =
{

(u,v)
∣∣∣∣ ∇α−1

a+ u(a) = 0, ∇α−1
a+ v(a) = 0

}
.

If we take the setting (u,v) = (u,v)− P(u,v) + P(u,v) , so, it is easy to check that
B = kerP + kerL , and as a result of kerP∩ kerL = {(0,0)} , we deduce that B =
kerP⊕kerL .
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Next, we define the operator KP : Im L → dom L∩kerP as:

KP(u,v) =
(
∇−α

a+ u,∇−α
a+ v

)
. (3.12)

Thus, for each (u,v) ∈ ImL , we have

LKP(u,v) = L
(
∇−α

a+ u,∇−α
a+ v

)
=
(
∇α

a+∇−α
a+ u,∇α

a+∇−α
a+ v

)
= (u,v). (3.13)

On the other hand, since for every (u,v) ∈ domL∩ kerP , we have ∇α−1
a+ u(a) = 0 and

∇α−1
a+ v(a) = 0, hence, in the identities

u(t) = ∇−α
a+ ∇α

a+u(t)+ c1(t−a)α−1 + c2(t−a)α−2 + . . .+ cn(t−a)α−n,

v(t) = ∇−α
a+ ∇α

a+v(t)+d1(t−a)α−1 +d2(t −a)α−2 + . . .+dn(t−a)α−n,

all of the coefficients ci,di = 0 for i = 1,2, . . . ,n . Equivalently, we have

KPL(u,v) =
(
∇−α

a+ ∇α
a+u,∇−α

a+ ∇α
a+v
)

= (u,v). (3.14)

Therefore, using (3.13) and (3.14), it has proven that the following identity is satisfied:
KP = (LdomL∩kerP)−1 .

LEMMA 3.2. Assume that Ω be an open and bounded subset of B such that
domL∩Ω �= ∅ . Then, the operator N defined by (3.6)–(3.7b) is L-compact.

Proof. Continuity of f ,g : Nb
a+1×R

n →R implies that QN(Ω) and KP(I−Q)N(Ω)
are bounded. So, for applying the Arzela−Ascoli theorem, it is sufficient that KP(I−
Q)N(Ω) ⊂B be equicontinuous. This is immediate by the discrete nature of fractional
∇-difference operators. �

In this position we present an assessment for an upper bound of fractional ris-
ing function (t − a)α−1 , that will play crucial role in the simplification of the related
computations.

LEMMA 3.3. Let n−1 < α � n, n ∈ N1 . Then∥∥∥∥(t−a)α−1

∥∥∥∥
X

� max

{
(b−a)α−1,Γ(α)(b−a+1)n−2

}
. (3.15)

Proof. Considering (3.1c) we have

∥∥∥∥(t −a)α−1

∥∥∥∥
X

= max

{∥∥∥∥(t −a)α−1

∥∥∥∥
E
,

∥∥∥∥∇α−i
a+ (t−a)α−1

∥∥∥∥
Fi

; i = 1,2,3, . . . ,n−1

}
.

On the other hand, by the property (Q4 ) in Lemma 2.6, we have

∇α−i
a+ (t −a)α−1 =

Γ(α)
Γ(i)

(t −a)i−1, i = 1,2,3, . . . ,n−1.
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Therefore, we come to the conclusion that∥∥∥∥(t−a)α−1

∥∥∥∥
X

= max

{∥∥∥∥(t−a)α−1

∥∥∥∥
E
,

Γ(α)
Γ(i)

∥∥∥∥(t −a)i−1

∥∥∥∥
Fi

, i = 1,2,3, . . . ,n−1

}
,

� max

{∥∥∥∥(t−a)α−1

∥∥∥∥
E
, Γ(α)

∥∥∥∥(t−a)i−1

∥∥∥∥
Fi

, i = 1,2,3, . . . ,n−1

}
.

Since

Δ(t−a)i−1 = (t −a)i−1
(

i−1
t −a

)
� 0 t ∈ N

b+n−i
a+n−i+1, i = 1,2, . . . ,n−1,

Δi(b+n− i−a)i−1 =
Γ(b+n−a−1)
Γ(b+n− i−a)

(b+n− i−a−2)� 0, i = 1,2, . . . ,n−1,

thus, it follows that

max
t∈N

b+n−i
a+n−i+1,i=1,2,...,n−1

(t−a)i−1 = (b−a+1)n−2. (3.16)

Similarly we have
max

t∈N
b
a+1

(t−a)α−1 = (b−a)α−1. (3.17)

Therefore, it has proven that∥∥∥∥(t−a)α−1

∥∥∥∥
X

� max

{
(b−a)α−1,Γ(α)(b−a+1)n−2

}
.

The proof is completed. �

REMARK 3.4. By similar arguments as represented in Lemma 3.3, one can con-
clude ∥∥∥∥(t −a−1)α−1

∥∥∥∥
X

� max

{
(b−a−1)α−1,Γ(α)(b−a)n−2

}
. (3.18)

REMARK 3.5. For each (u,v) ∈ B , Lemma 3.3 implies that

‖P(u,v)‖B = ‖(P1(u),P2(v))‖B = max

{
‖P1(u)‖X ,‖P2(v)‖X

}

= max

{∣∣∇α−1
a+ u(a)

∣∣
Γ(α)

∥∥(t−a)α−1
∥∥

X ,

∣∣∇α−1
a+ v(a)

∣∣
Γ(α)

∥∥(t −a)α−1
∥∥

X

}

� Λ1 max

{∣∣∇α−1
a+ u(a)

∣∣, ∣∣∇α−1
a+ v(a)

∣∣},

(3.19)

where

Λ1 =
max

{
(b−a)α−1,Γ(α)(b−a+1)n−2

}
Γ(α)

. (3.20)
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A direct computation shows that

Δs(t− s+1)α−1 � 0, t � s, s = a+1, . . . ,b.

Therefore, the operator KP defined by (3.12) for (u,v) ∈ ImL , satisfies the following
inequality:

‖KP(u,v)‖B =
∥∥∥∥(∇−α

a+ u,∇−α
a+ v

)∥∥∥∥
B

= max

{∥∥∇−α
a+ u

∥∥
X ,
∥∥∇−α

a+ v
∥∥

X

}

� (b−a+1)Λ2max

{
‖u‖E ,‖v‖E

}
,

(3.21)

where

Λ2 =
max

{
(b−a−1)α−1,Γ(α)(b−a)n−2

}
Γ(α)

. (3.22)

In order to find at least one solution for the fractional-order ∇-difference system
(1.3)–(1.4), we present the following hypotheses.

(C1) Continuous functions f ,g have the following properties

f : N
b
a+1×R

n → R
+ ∪{0}, or f : N

b
a+1×R

n → R
− ∪{0}, (3.23a)

and

g : N
b
a+1×R

n → R
+∪{0}, or g : N

b
a+1×R

n → R
−∪{0}. (3.23b)

(C2) There exist positive real constants bk,ck,d1,d2 for k = 1,2, . . . ,n and real con-
stants θk,λk ∈ [0,1] with k = 1,2, . . . ,n such that for all (x1,x2, . . . ,xn) ∈ R

n ,

| f (t,x1,x2, . . . ,xn)| � d1 +
n

∑
k=1

bk|xk|θk , t ∈ N
b
a+1, (3.24a)

and

|g(t,x1,x2, . . . ,xn)| � d2 +
n

∑
k=1

ck|xk|λk , t ∈ N
b
a+1. (3.24b)

(C3) There exists a positive real constant B such that for any wi,zi ∈ R, i = 1,2, . . . ,n ,
if |wn| > B or |zn| > B , one has either

zn . f (t,w1,w2, . . . ,wn) > 0, or zn . f (t,w1,w2, . . . ,wn) < 0, t ∈ N
b
a+1,
(3.25a)

or

wn . g(t,z1,z2, . . . ,zn) > 0, or wn . g(t,z1,z2, . . . ,zn) < 0, t ∈ N
b
a+1. (3.25b)
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(C4)
n

∑
i=1

|xi| < 1
(b−a+1)(Λ1 + Λ2)

, x = b,c, (3.26a)

Λ1

n

∑
i=1

|ci|+ Λ2

n

∑
i=1

|bi| < 1
b−a+1

, (3.26b)

Λ1

n

∑
i=1

|bi|+ Λ2

n

∑
i=1

|ci| < 1
b−a+1

. (3.26c)

Let us once again turn to the coincidence degree theory. Then, it can be observed that
the existence of at least one solution for coupled system (1.3)–(1.4), depends on the
boundedness of the following sets:

Ω1 =
{

(u,v) ∈ domL\ kerL

∣∣∣∣ L(u,v) = λN(u,v), λ ∈ [0,1]
}

, (3.27a)

Ω2 =
{

(u,v) ∈ kerL

∣∣∣∣ N(u,v) ∈ Im L

}
, (3.27b)

Ω3 =
{

(u,v) ∈ kerL

∣∣∣∣ λ (u,v)+ (1−λ )QN(u,v) = (0,0), λ ∈ [0,1]
}

, (3.27c)

Ω4 =
{

(u,v) ∈ kerL

∣∣∣∣ −λ (u,v)+ (1−λ )QN(u,v) = (0,0), λ ∈ [0,1]
}

. (3.27d)

So, we must prove that the quadruplets Ω j, j = 1,2,3,4 are bounded.

LEMMA 3.6. Ω1 defined by (3.27a) is bounded.

Proof. We point out this fact that for each (u,v) ∈ Ω1 , necessarily λ �= 0. There-
fore, the abstract operator equation

L(u,v) = λN(u,v) ∈ ImL = kerQ, (3.28)

ensures that

λ
b−a−1

b

∑
s=a+2

f
(
s,v,∇α−(n−1)

a+ v,∇α−(n−2)
a+ v, . . . ,∇α−1

a+ v
)

= 0,

λ
b−a−1

b

∑
s=a+2

g
(
s,u,β α−(n−1)

a+ u,∇α−(n−2)
a+ u, . . . ,∇α−1

a+ u
)

= 0.

Accordingly, the hypothesis (C1 ) implies that there exist t0, t1 ∈ N
b
a+1 such that

f
(
t1,v(t1),∇

α−(n−1)
a+ v(t1),∇

α−(n−2)
a+ v(t1), . . . ,∇α−1

a+ v(t1)
)

= 0,

g
(
t0,u(t0),∇

α−(n−1)
a+ u(t0),∇

α−(n−2)
a+ u(t0), . . . ,∇α−1

a+ u(t0)
)

= 0.
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The recent equalities in combination with the hypothesis (C3 ), lead us to the following
inequalities:

|∇α−1
a+ u(t0)| � B, |∇α−1

a+ v(t1)| � B.

By definition of Ω1 represented by (3.27a), (u,v) ∈ Ω1 , if and only if (u,v) ∈ domL\
kerL . Thus, because of P2 = P , we conclude that (I −P)(u,v) ∈ domL∩ kerP and
LP(u,v) = (0,0) . Hence, (3.21) yields:

‖(I−P)(u,v)‖B = ‖KPL(I−P)(u,v)‖B = ‖KP (L1u,L2v)‖B

=
∥∥∥∥(∇−α

a+ L1u,∇−α
a+ L2u

)∥∥∥∥
B

� λ (b−a+1)Λ2max

{
‖N1v‖E ,‖N2u‖E

}
,

� (b−a+1)Λ2max

{
‖N1v‖E ,‖N2u‖E

}
.

(3.29)

By recalling the abstract operator equation

L(u,v) = λN(u,v), (u,v) ∈ domL,

equivalently we have {
L1u = λN1v,

L2v = λN2u.
(3.30)

So, using the following well known identity

∇−α
a+ ∇α

a+u(t)= u(t)−
n−1

∑
k=0

(t−a)α−n+k

Γ(α −n+ k+1)
∇k

a+

[
∇α−n

a+ u(a)
]
, 0 � n−1< α � n, n∈N,

one can transform (3.30) to the following fractional ∇-sum coupled system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(t) = λ ∇−α
a+ N1v+ ∑n−1

k=0
(t−a)α−n+k

Γ(α −n+ k+1)
∇k

a+

[
∇α−n

a+ u(a)
]
,

v(t) = λ ∇−α
a+ N2u+ ∑n−1

k=0
(t−a)α−n+k

Γ(α −n+ k+1)
∇k

a+

[
∇α−n

a+ v(a)
]
.

Now, taking ∇α−1
a+ on the both sides in the last coupled system, it follows that

∇α−1
a+ u(t) = λ ∇−1

a+ N1v+ ∇α−1
a+ u(a), (3.31a)

∇α−1
a+ v(t) = λ ∇−1

a+ N2u+ ∇α−1
a+ v(a). (3.31b)

Substituting t = t0 in (3.31a) and t = t1 in (3.31b), as a result of |∇α−1
a+ u(t0)| � B and

|∇α−1
a+ v(t1)| � B , one may derive:⎧⎪⎪⎨
⎪⎪⎩

|∇α−1
a+ u(a)| � B+ λ ∑t1

s=a

∣∣∣∣ f (s,v(s),∇α−(n−1)
a+ v(s),∇α−(n−2)

a+ v(s), . . . ,∇α−1
a+ v(s))

∣∣∣∣,
|∇α−1

a+ v(a)| � B+ λ ∑t0
s=a

∣∣∣∣g(s,u(s),∇α−(n−1)
a+ u(s),∇α−(n−2)

a+ u(s), . . . ,∇α−1
a+ u(s))

∣∣∣∣.
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Finally, applying the hypothesis (C2 ) represented by (3.24a) and (3.24b), we achieve
the followings

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|∇α−1
a+ u(a)| � B+(b−a+1)

(
d1 +b1‖v‖θ1

E + ∑n
i=2 bi

∥∥∥∥∇α−i+1
a+ v

∥∥∥∥
θi

Fi−1

)
,

|∇α−1
a+ v(a)| � B+(b−a+1)

(
d2 + c1‖u‖λ1

E + ∑n
i=2 ci

∥∥∥∥∇α−i+1
a+ u

∥∥∥∥
λi

Fi−1

)
.

(3.32)

Reminding the Remark 3.5 together with (3.29), we have

‖(u,v)‖B = ‖P(u,v)+ (I−P)(u,v)‖B

� ‖P(u,v)‖B +‖(I−P)(u,v)‖B

� max

{{
Λ1

∣∣∣∣∇α−1
a+ u(a)

∣∣∣∣+(b−a+1)Λ2‖N1v‖E

}
,

{
Λ1

∣∣∣∣∇α−1
a+ v(a)

∣∣∣∣+(b−a+1)Λ2‖N2u‖E

}
,{

Λ1

∣∣∣∣Δα−1
a+ u(a)

∣∣∣∣+(b−a+1)Λ2‖N2u‖E

}
,

{
Λ1

∣∣∣∣∇α−1
a+ v(a)

∣∣∣∣+(b−a+1)Λ2‖N1v‖E

}}
.

(3.33)

In order to complete the proof, let us divide the remainder of the proof into four cases
as follows:

(i) The hypothesis (C2 ) and (3.32), imply that

‖(u,v)‖B � Λ1

∣∣∣∣∇α−1
a+ u(a)

∣∣∣∣+(b−a+1)Λ2‖N1v‖E

� Λ1B+(b−a+1)(Λ1+ Λ2)

(
d1 +b1‖v‖θ1

E +
n

∑
i=2

bi

∥∥∥∥∇α−i+1
a+ v

∥∥∥∥
θi

Fi−1

)
.

(ii) Once again considering the hypothesis (C2 ) together with (3.32), similarly we
conclude that

‖(u,v)‖B � Λ1

∣∣∣∣∇α−1
a+ v(a)

∣∣∣∣+(b−a+1)Λ2‖N2u‖E

� Λ1B+(b−a+1)(Λ1+ Λ2)

(
d2 + c1‖u‖λ1

E +
n

∑
i=2

ci

∥∥∥∥∇α−i+1
a+ u

∥∥∥∥
λi

Fi−1

)
.
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(iii) In third case, we have the following

‖(u,v)‖B � Λ1

∣∣∣∣∇α−1
a+ u(a)

∣∣∣∣+(b−a+1)Λ2‖N2u‖E

� Λ1

{
B+(b−a+1)

(
d1 +b1‖v‖θ1

E +
n

∑
i=2

bi

∥∥∥∥∇α−i+1
a+ v

∥∥∥∥
θi

Fi−1

)}

+(b−a+1)Λ2

(
d2 + c1‖u‖λ1

E +
n

∑
i=2

ci

∥∥∥∥∇β−i+1
a+ u

∥∥∥∥
λi

Fi−1

)
.

(iv) In the last case, similar to the case ( iii), it follows that

‖(u,v)‖B � Λ1

∣∣∣∣∇β−1
a+ v(a)

∣∣∣∣+(b−a+1)Λ2‖N1v‖E

� Λ1

{
B+(b−a+1)

(
d2 + c1‖u‖λ1

E +
n

∑
i=2

ci

∥∥∥∥∇β−i+1
a+ u

∥∥∥∥
λi

Fi−1

)}

+(b−a+1)Λ2

(
d1 +b1‖v‖θ1

E +
n

∑
i=2

bi

∥∥∥∥∇α−i+1
a+ v

∥∥∥∥
θi

Fi−1

)
.

At the last step of the proof applying the inequalities (3.26a)–(3.26c) in the hypothesis
(C4 ), in the recent four inequalities, we conclude the boundedness of Ω1 as below:

(i)

‖(u,v)‖B � Λ1B+ |d1|(b−a+1)(Λ1+ Λ2)
1− (b−a+1)(Λ1+ Λ2)∑n

i=1 |bi| . (3.34)

(ii)

‖(u,v)‖B � Λ1B+ |d2|(b−a+1)(Λ1+ Λ2)
1− (b−a+1)(Λ1+ Λ2)∑n

i=1 |ci| . (3.35)

(iii)

‖(u,v)‖B � Λ1B+(b−a+1)(Λ1|d1|+ Λ2|d2|)
1− (b−a+1)

[
Λ1 ∑n

i=1 |bi|+ Λ2 ∑n
i=1 |ci|

] . (3.36)

(iv)

‖(u,v)‖B � Λ1B+(b−a+1)(Λ1|d2|+ Λ2|d1|)
1− (b−a+1)

[
Λ1 ∑n

i=1 |ci|+ Λ2 ∑n
i=1 |bi|

] . (3.37)

Let us now define

M =max

{
Λ1B+ |d1|(b−a+1)(Λ1 + Λ2), Λ1B+ |d2|(b−a+1)(Λ1 + Λ2),

Λ1B+(b−a+1)(Λ1|d1|+ Λ2|d2|), Λ1B+(b−a+1)(Λ1|d2|+ Λ2|d1|)
}

.

(3.38)
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Combining the inequalities (3.34)–(3.37) with (3.38), yields ‖(u,v)‖B < M for each
(u,v) ∈ B . Thus, Ω1 defined by (3.27a) is bounded. �

LEMMA 3.7. Ω2 defined by (3.27b) is bounded.

Proof. Suppose (u,v)∈Ω2 . Then, u = c1(t−a)α−1, v = c2(t−a)α−1, c1,c2 ∈R .
On the other hand, N(u,v) = (N1v,N2u) ∈ ImL = kerQ , implies that

b

∑
s=a+2

f

(
s,c2(s−a)α−1,c2∇α−(n−1)

a+ (s−a)α−1,

c2∇α−(n−2)
a+ (s−a)α−1, . . . ,c2∇α−1

a+ (s−a)α−1
)

= 0,

b

∑
s=a+2

f

(
s,c1(s−a)α−1,c1∇α−(n−1)

a+ (s−a)α−1,

c1∇α−(n−2)
a+ (s−a)α−1, . . . ,c1∇α−1

a+ (s−a)α−1
)

= 0.

So, by means of the hypothesis (C1 ), there exist constants t0,t1 ∈ N
b
a+1 such that

f

(
t1,c2(t1 −a)α−1,c2∇α−(n−1)

a+ (t1−a)α−1,

c2∇α−(n−2)
a+ (t1−a)α−1, . . . ,c2∇α−1

a+ (t1 −a)α−1
)

= 0,

f

(
t0,c1(t0 −a)α−1,c1∇α−(n−1)

a+ (t0−a)α−1,

c1∇α−(n−2)
a+ (t0−a)α−1, . . . ,c1∇α−1

a+ (t0 −a)α−1
)

= 0.

Thus, relying on the hypothesis (C3 ), we arrive at

|c1|, |c2| � B
Γ(α)

. (3.39)

The inequalities (3.39) guarantee the boundedness of Ω2 . �

LEMMA 3.8. Ω3 defined by (3.27c) is bounded.

Proof. Let (u,v) ∈ Ω3 . Hence, (u,v) = (t−a)α−1(c1,c2), c1,c2 ∈ R . Therefore,
the equality λ (u,v)+ (1−λ )QN(u,v) = (0,0) leads us to the following:

c1λ (t −a)α−1 +
(1−λ )
b−a−1

×
b

∑
s=a+2

f
(
s,c2(s−a)α−1,c2∇α−(n−1)

a+ (s−a)α−1, . . . ,c2∇α−1
a+ (s−a)α−1

)
= 0,
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c2λ (t −a)α−1 +
(1−λ )
b−a−1

×
b

∑
s=a+2

f
(
s,c1(s−a)α−1,c1∇α−(n−1)

a+ (s−a)α−1, . . . ,c1∇α−1
a+ (s−a)α−1

)
= 0.

If λ = 0, then, a similar argument as represented in Lemma 3.7 gives the boundedness
of Ω3 . Now, suppose λ ∈ (0,1] . In this case the hypothesis (C3 ) and more precisely
the first parts of (3.25a) and (3.25b), help us to obtain the desired result. �

REMARK 3.9. Considering the second parts of the hypothesis (C3 ) (the first parts
were applied in Lemma 3.8), we come to the conclusion that Ω4 defined by (3.27d) is
bounded.

Now we are ready to prove the first part of the main results that is, the existence of
at least one solution for fractional-order system (1.3)–(1.4).

THEOREM 3.10. Assume that the hypotheses (C1)–(C4) are satisfied. Then, the
fractional-order ∇-difference system (1.3) and (1.4) has at least one solution in B .

Proof. Let Ω ⊃ ∪3
i=1Ωi ∪{0}(or, Ω ⊃ ∪2

i=1Ωi∪Ω4∪{0}) be an open bounded
subset of B . It follows from Lemma 3.2 that N is a L -compact operator on Ω . Also,
by means of Lemma 3.6-Remark 3.9, we have:

(1) L(u,v) = λN(u,v) for every ((u,v),λ ) ∈ [dom L\ ker L∩∂Ω]× (0,1) .

(2) N(u,v) �∈ Im L for every (u,v) ∈ ker L∩∂Ω .

So, we just need to prove:

(3) deg(JQN|kerL, Ω∩ker L, 0) �= 0.

Let us consider the isomorphism J(u,v) as the identity operator Id(u,v) and define

H((u,v),λ ) = ±λ Id(u,v)+ (1−λ )JQN(u,v).

So, thanks to the the degree property of the invariance under a homotopy, if u ∈ kerL∩
∂Ω , then

deg(JQN|kerL, Ω∩ker L, 0)
= deg(H(.,0), Ω∩ker L, 0)
= deg(H(.,1), Ω∩ker L, 0)
= deg(±Id, Ω∩ker L, 0) �= 0.

Hence, the assumption (iii) in Theorem 2.9 is also fulfilled, that completes the proof,
that is the fractional-order system (1.3)–(1.4) has at least one solution. �

This position is the beginning of the second part of the main results, where, we
have to present a uniqueness criterion for the fractional-order ∇-difference system
(1.3)–(1.4). To this aim, we have the following theorem.
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THEOREM 3.11. Suppose the hypothesis (C2) is replaced with the following ones:

(C
′
2,1) There exist positive constants (ai,bi) ∈ R

2, i = 1, . . . ,n, such that for all
((xi)n

1,(yi)n
1) ∈ R

n×R
n , one has

| f (t,x1,x2, . . . ,xn)− f (t,y1,y2, . . . ,yn)| �
n

∑
i=1

ai|xi− yi|, t ∈ N
b
a+1, (3.40a)

|g(t,x1,x2, . . . ,xn)−g(t,y1,y2, . . . ,yn)| �
n

∑
i=1

bi|xi − yi|, t ∈ N
b
a+1. (3.40b)

(C
′
2,2) There exist positive constants (ki, li) ∈ R

2, i = 1, . . . ,n, such that for all
((xi)n

1,(yi)n
1) ∈ R

n×R
n , one has

| f (t,x1,x2, . . . ,xn)− f (t,y1,y2, . . . ,yn)|� kn|xn−yn|−
n−1

∑
i=1

ki|xi−yi|, t ∈ N
b
a+1,

(3.41a)

|g(t,x1,x2, . . . ,xn)−g(t,y1,y2, . . . ,yn)| � ln|xn− yn|−
n−1

∑
i=1

li|xi − yi|, t ∈ N
b
a+1.

(3.41b)

Then, the fractional-order system (1.3)–(1.4) has exactly one solution in B provided
that

Λ1

[
n−2

∑
i=1

ln−i

ln
+

l1
ln

]
+(b−a+1)(Λ1+ Λ2)

n

∑
i=1

|bi| > 1, (3.42a)

Λ1

[
n−2

∑
i=1

kn−i

kn
+

k1

kn

]
+(b−a+1)(Λ1+ Λ2)

n

∑
i=1

|ai| > 1, (3.42b)

Λ1

[
n−2

∑
i=1

ln−i

ln
+

l1
ln

]
+(b−a+1)

[
Λ1

n

∑
i=1

|bi|+ Λ2

n

∑
i=1

|ai|
]

> 1, (3.42c)

Λ1

[
n−2

∑
i=1

kn−i

kn
+

k1

kn

]
+(b−a+1)

[
Λ1

n

∑
i=1

|ai|+ Λ2

n

∑
i=1

|bi|
]

> 1. (3.42d)

Proof. First, we prove the existence of at least one solution for the fractional-order
system (1.3)–(1.4). Taking yi = 0, i = 1,2, . . . ,n and defining

d1 = max f (t,0,0, . . . ,0), d2 = maxg(t,0,0, . . . ,0), t ∈ N
b
a+1,

fulfilment of the hypothesis (C2 ) is immediate. Thus, Theorem 3.10 ensures the exis-
tence of at least one solution for the fractional-order system (1.3)–(1.4). Next, in order
to complete the proof it is enough to prove that the fractional-order system (1.3)–(1.4)
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has exactly one solution. To this aim, assume that (ui,vi) ∈ B for i = 1,2 are two
solutions of fractional-order system (1.3)–(1.4). Thus, we get the following

∇α
a+ui(t) = f

(
t,vi,∇

α−(n−1)
a+ vi,∇

α−(n−2)
a+ vi, . . . ,∇α−1

a+ vi

)
,

∇α
a+vi(t) = g

(
t,ui,∇

α−(n−1)
a+ ui,∇

α−(n−2)
a+ ui, . . . ,∇α−1

a+ ui

)
.

Denoting u = u1−u2, v = v1 − v2 , we have

∇α
a+u(t) = f

(
t,v1,∇

α−(n−1)
a+ v1, . . . ,∇α−1

a+ v1

)
− f

(
t,v2,∇

α−(n−1)
a+ v2, . . . ,∇α−1

a+ v2

)
,

∇α
a+v(t) = g

(
t,u1,∇

α−(n−1)
a+ u1, . . . ,∇α−1

a+ u1

)
−g
(
t,u2,∇

α−(n−1)
a+ u2, . . . ,∇α−1

a+ u2

)
.

(3.43)

In the light of the equality ImL = kerQ , we conclude that

b

∑
s=a+2

{
f
(
s,v1,∇

α−(n−1)
a+ v1, . . . ,∇α−1

a+ v1

)
− f

(
s,v2,∇

α−(n−1)
a+ v2, . . . ,∇α−1

a+ v2

)}
= 0,

b

∑
s=a+2

{
g
(
s,u1,∇

α−(n−1)
a+ u1, . . . ,∇α−1

a+ u1

)
−g
(
s,u2,∇

α−(n−1)
a+ u2, . . . ,∇α−1

a+ u2

)}
= 0.

Accordingly, using the hypothesis (C1 ) one may derive that there exist at least one pair
(t2,t3) ∈

(
N

b
a+2,N

b
a+2

)
such that

f
(
t3,v1(t3),∇

α−(n−1)
a+ v1(t3), . . . ,∇α−1

a+ v1(t3)
)

= f
(
t3,v2(t3),∇

α−(n−1)
a+ v3(t2), . . . ,∇α−1

a+ v2(t3)
)

,

g
(
t2,u1(t2),∇

α−(n−1)
a+ u1(t2), . . . ,∇α−1

a+ u1(t2)
)

=g
(
t2,u2(t2),∇

α−(n−1)
a+ u2(t2), . . . ,∇α−1

a+ u2(t2)
)

.

Therefore, using the hypothesis (C
′
2,2) , we arrive at the following result

0 =
∣∣∣∣ f (t3,v1(t3),∇

α−(n−1)
a+ v1(t3), . . . ,∇α−1

a+ v1(t3)
)

− f
(
t3,v2(t3),∇

α−(n−1)
a+ v2(t3), . . . ,∇α−1

a+ v2(t3)
)∣∣∣∣

� kn

∣∣∣∣∇α−1
a+ v(t3)

∣∣∣∣− n−2

∑
i=1

kn−i

∣∣∣∣∇α−i−1
a+ v(t3)

∣∣∣∣− k1|v(t3)|.

Therefore ∣∣∣∣∇α−1
a+ v(t3)

∣∣∣∣� n−2

∑
i=1

kn−i

kn

∣∣∣∣∇α−i−1
a+ v(t3)

∣∣∣∣+ k1

kn
|v(t3)|.



UNIQUENESS RESULTS FOR FRACTIONAL ∇ -DIFFERENCE SYSTEMS 105

Consequently we have

∣∣∣∣∇α−1
a+ v(t3)

∣∣∣∣ �
n−2

∑
i=1

kn−i

kn

∥∥∥∥∇α−i−1
a+ v

∥∥∥∥
F

+
k1

kn
‖v‖E

�
[

n−2

∑
i=1

kn−i

kn
+

k1

kn

]
‖v‖X . (3.44)

With a similar argument, it can be shown that

∣∣∣∣∇α−1
a+ u(t2)

∣∣∣∣�
[

n−2

∑
i=1

ln−i

ln
+

l1
ln

]
‖u‖X . (3.45)

On the other hand by (3.43), we deduce that

∇α−1
a+ u(t)−∇α−1

a+ u(a)

=∇−1
a+

{
f
(
t,v1,∇

α−(n−1)
a+ v1, . . . ,∇α−1

a+ v1

)
− f

(
t,v2,∇

α−(n−1)
a+ v2, . . . ,∇α−1

a+ v2

)}
,

∇α−1
a+ v(t)−∇α−1

a+ v(a)

=∇−1
a+

{
g
(
t,u1,∇

α−(n−1)
a+ u1, . . . ,∇α−1

a+ u1

)
−g
(
t,u2,∇

α−(n−1)
a+ u2, . . . ,∇α−1

a+ u2

)}
.

Now substituting t = t2 in the first equality and t = t3 in second one and then applying
the hypothesis (C

′
2,1) , one has

∣∣∣∣∇α−1
a+ u(a)

∣∣∣∣�
∣∣∣∣∇α−1

a+ u(t2)
∣∣∣∣+(b−a+1)

n

∑
i=1

ai

∥∥∥∥∇α−i+1
a+ v

∥∥∥∥
Fi−1

, (3.46a)

and ∣∣∣∣∇α−1
a+ v(a)

∣∣∣∣�
∣∣∣∣Δα−1

a+ v(t3)
∣∣∣∣+(b−a+1)

n

∑
i=1

bi

∥∥∥∥∇α−i+1
a+ u

∥∥∥∥
Fi−1

. (3.46b)

Now, (3.44) and (3.45), lead us to

∣∣∣∣∇α−1
a+ u(a)

∣∣∣∣�
[

n−2

∑
i=1

ln−i

ln
+

l1
ln

]
‖u‖X +(b−a+1)

n

∑
i=1

bi‖v‖X , (3.47a)

∣∣∣∣∇α−1
a+ v(a)

∣∣∣∣�
[

n−2

∑
i=1

kn−i

kn
+

k1

kn

]
‖v‖X +(b−a+1)

n

∑
i=1

ai‖u‖X . (3.47b)
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Considering (3.44), we have

‖(u,v)‖B = ‖P(u,v)+ (I−P)(u,v)‖B

� ‖P(u,v)‖B +‖(I−P)(u,v)‖B

� max

{{
Λ1

∣∣∣∣∇α−1
a+ u(a)

∣∣∣∣+(b−a+1)Λ2‖N1v‖E

}
,

{
Λ1

∣∣∣∣∇α−1
a+ v(a)

∣∣∣∣+(b−a+1)Λ2‖N2u‖E

}
,{

Λ1

∣∣∣∣∇α−1
a+ u(a)

∣∣∣∣+(b−a+1)Λ2‖N2u‖E

}
,

{
Λ1

∣∣∣∣∇α−1
a+ v(a)

∣∣∣∣+(b−a+1)Λ2‖N1v‖E

}}
,

(3.48)

that in combination with (3.47a) and (3.47b) consequences the following cases:

i.

‖(u,v)‖B � Λ1

∣∣∣∣∇α−1
a+ u(a)

∣∣∣∣+(b−a+1)Λ2‖N1v‖E

� (b−a+1)Λ2|d1|

1−
{

Λ1

[
∑n−2

i=1
ln−i
ln

+ l1
ln

]
+(b−a+1)(Λ1+ Λ2)∑n

i=1 |bi|
} .

(3.49)

ii.

‖(u,v)‖B � Λ1

∣∣∣∣∇α−1
a+ v(a)

∣∣∣∣+(b−a+1)Λ2‖N2u‖E

� (b−a+1)Λ2|d2|

1−
{

Λ1

[
∑n−2

i=1
kn−i
kn

+ k1
kn

]
+(b−a+1)(Λ1+ Λ2)∑n

i=1 |ai|
} .

(3.50)

iii.

‖(u,v)‖B � Λ1

∣∣∣∣∇α−1
a+ u(a)

∣∣∣∣+(b−a+1)Λ2‖N2u‖E

� (b−a+1)Λ2|d2|

1−
{

Λ1

[
∑n−2

i=1
ln−i
ln

+ l1
ln

]
+(b−a+1)

[
Λ1 ∑n

i=1 |bi|+ Λ2 ∑n
i=1 |ai|

]} .

(3.51)
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iv.

‖(u,v)‖B � Λ1

∣∣∣∣∇β−1
a+ v(a)

∣∣∣∣+(b−a+1)Λ2‖N1v‖E

� (b−a+1)Λ2|d1|

1−
{

Λ1

[
∑n−2

i=1
kn−i
kn

+ k1
kn

]
+(b−a+1)

[
Λ1 ∑n

i=1 |ai|+ Λ2 ∑n
i=1 |bi|

]} .

(3.52)

Combining (3.42a)–(3.42d) with the inequalities (3.49)–(3.52), we come to the con-
clusion that u = v = 0, i.e. (u1,v1) = (u2,v2) . Therefore, the fractional-order system
(1.3)–(1.4) has a unique solution in B . This completes the proof. �

4. An application

We are going to demonstrate that the presented existence and uniqueness criteria
in Theorem 3.10 and Theorem 3.10, can be implemented in practice. To this aim, let us
consider the fractional ∇-difference system

⎧⎪⎪⎨
⎪⎪⎩

∇
3
2
1+y(t) = f

(
t,z,∇

1
2
1+z

)
, t ∈ N

4
1,

∇
3
2
1+z(t) = g

(
t,y,∇

1
2
1+y

)
, t ∈ N

4
1,

(4.1)

such that f ,g ∈ N
4
2×R×R → R

+∪{0} . Besides, the corresponding boundary condi-
tions are as follows: ⎧⎪⎨

⎪⎩
∇− 1

2
1+ y(2) = 0, ∇

1
2
1+y(2) = ∇

1
2
1+y(4),

∇− 1
2

1+ z(2) = 0, ∇
1
2
1+z(2) = ∇

1
2
1+z(4).

(4.2)

Indeed, aforementioned system is the reduced version of the primitive fractional-order
system (1.3)–(1.4) under the setting n = 2, α = 3

2 and a = 1, b = 4. Also, the functions
f and g in system (4.1) read as follows

f (t,v,w) = sin

(
t− 1

2

)
+

1
30

{
ln(1+ |v|)+

|w|
1+ |w|

}
, (4.3)

g(t,v,w) = sinh

(
t− 1

2

)
+

1
20

{
|v|+ |w|e−|w|

}
. (4.4)

Choosing d1 = 2, bi = 1
60 , θi = 1 for i = 1,2 and d2 = 4, ci = 1

64 , i = 1,2, λ1 = 1, λ2 =
1
2 , it is easy to check that the nonnegative nature of f and g for given positive parameter
B , the hypothesis (C3 ) is also satisfied. At the end, considering the parameters α = 3

2
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and n = 2, it follows that Λ1 and Λ2 defined by (3.20) and (3.22), respectively, take
the following values

Λ1 =
15
8

, Λ2 =
3
2
. (4.5)

Therefore, with a direct calculation one can identify that the hypothesis (C4 ) holds.
So, based on Theorem 3.10, the fractional-order system (4.1)–(4.2) admits at least one
solution in B .

Now it is time to evaluate the uniqueness of solutions for fractional-order system
(4.1) and (4.2) as follows. Taking ai = bi = 1, i = 1,2 and k1 = l1 = 1, k2 = l2 = −1,
the hypotheses (C

′
2,1) and (C

′
2,2) hold. Also, using this traditional convention that

∑ j
k=i hk ≡ 0, j > i , we find that (3.42a)–(3.42d) are satisfied for a = 1, b = 4 and

Λ1 =
15
8

, Λ2 =
3
2

. Then, the fractional-order coupled system (4.1)–(4.2) admits exactly

one solution in B .

5. Concluding Remarks

We finalize this investigation by making a summary of the presented solvability
precess to find a unique solution for the fractional-order ∇-difference boundary value
problems (1.3)–(1.4). So, we sort this investigation step by step as follows:

� In this paper, we have considered the higher-order coupled system (1.3)–(1.4)
powered by the fractional-order ∇-differences;

� the fractional-order system (1.3)–(1.4) includes full nonliniraities, that is the in-
dependent variable, spatial variable and fractional ∇-differences having the or-
ders α − i, i = 1,2, . . . ,n−1 of the spatial variable with respect to the indepen-
dent variable are included in the nonliniearities;

� the coincidence degree theory as the main solvability key has applied;

� in frame of Theorem 3.10, an existence criterion for at least one solution of the
fractional-order system (1.3)–(1.4) has presented;

� Theorem 3.11 has enabled us to reach the unique solution of the fractional-order
system (1.3)–(1.4);

� in section 4, a numerical application has presented to guarantee that the obtained
theoretical existence and uniqueness criteria can be applied in practice.
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UNIQUENESS RESULTS FOR FRACTIONAL ∇ -DIFFERENCE SYSTEMS 109

RE F ER EN C ES

[1] T. ABDELJAWAD, On conformable fractional calculus, J. Comput. Appl. Math. Vol. 279, (2015), pp.
57–66.

[2] T. ABDELJAWAD, F. M. ATICI, On the definitions of nabla fractional operators, Abstr. Appl. Anal.
Vol. 2012, (2012), Article ID 406757, 13 pages doi:10.1155/2012/406757.

[3] H. ADIGUZEL, Oscillatory behavior of solutions of certain fractional difference equations, Adv. Dif-
ference Equ. 445 (2018), https://doi.org/10.1186/s13662-018-1905-3.

[4] F. M. ATICI, P. W. ELOE, A transform method in discrete fractional calculus, Int. J. Difference Equ.
Vol. 2, No. 2, (2007), pp. 165–176.

[5] F. M. ATICI, P. W. ELOE, Two-point boundary value problems for finite fractional difference equa-
tions, J. Difference Equ. Appl. Vol. 17, No. 4, (2011), pp. 445–456.

[6] F. M. ATICI, P. W. ELOE, Initial value problems in discrete fractional calculus, Proc. Amer. Math.
Soc. Vol. 137, no. 3, (2009), pp. 981–989.

[7] F. M. ATICI, P. W. ELOE, Discrete fractional calculus with the nabla operator, Electron. J. Qual.
Theory Differ. Equ., Spec. Ed. I, No. 3, (2009), pp. 1–12.

[8] D. BALEANU, M. ALQURASHI, M. MURUGESAN, B. A. X. GNANAPRAKASAM, One dimensional
fractional frequency Fourier transform by inverse difference operator, Adv. Difference Equ. 212
(2019), https://doi.org/10.1186/s13662-019-2071-y.

[9] R. I. BUTT, T. ABDELJAWAD, M. UR REHMAN, Stability analysis by fixed point theorems for a
class of non-linear Caputo nabla fractional difference equation, Adv. Difference Equ. 209 (2020),
https://doi.org/10.1186/s13662-020-02674-1.

[10] J. CAO, B. SAMET, Y. ZHOU, Asymptotically almost periodic mild solutions to a class of Weyl-like
fractional difference equations, Adv. Difference Equ. 371 (2019),
https://doi.org/10.1186/s13662-019-2316-9.

[11] W. CHENG, J. XU, Y. CUI, Q. GE, Positive solutions for a class of fractional difference systems with
coupled boundary conditions, Adv. Difference. Equ, 249 (2019),
https://doi.org/10.1186/s13662-019-2184-3.

[12] R. E. GAINES, J. MAWHIN, Coincidence Degree and Nonlinear Differential Equations, Springer,
1977.

[13] C. S. GOODRICH, A. C. PETERSON, Discrete Fractional Calculus, Springer, (2015).
[14] C. S. GOODRICH, Existence and uniqueness of solutions to a fractional difference equation with

nonlocal conditions, Comput. Math. Appl., Vol. 61, (2011), pp. 191–202.
[15] Z. HU, W. LIU, T. CHEN, Existence of solutions for a coupled system of fractional differential equa-

tions at resonance, Bound. Value. Probl. Vol. 2012, no. 98, (2012), pp. 1–13.
[16] Z. HU, W. LIU, T. CHEN, Two-point boundary value problems for fractional differential equations at

resonance, Bull. Malays. Math. Sci. Soc. Vol. 36, no. 3, (2013), pp. 747–755.
[17] L. HU, S. ZHANG, Existence and uniqueness of solutions for a higher-order coupled fractional dif-

ferential equations at resonance, Adv. Difference Equ. Vol. 202, (2015), pp. 1–14.
[18] W. JIANG, The existence of solutions to boundary value problems of fractional differential equations

at resonance, Nonlinear Anal. Vol. 74, (2011), pp. 1987–1994.
[19] R. KHALIL, M. AL HORANI, A. YOUSEF, M. SABABHEH, A new definition of fractional derivative,

J. Comput. Appl. Math. Vol. 264, (2014), pp. 65–70.
[20] A. KHENNAOUI, A. OUANNAS, S. BENDOUKHA, G. GRASSI, X. WANG, V. H. PHAM, F. E. AL-

SAADI, Chaos, control, and synchronization in some fractional-order difference equations, Adv. Dif-
ference Equ. 412 (2019), https://doi.org/10.1186/s13662-019-2343-6.

[21] A. A. KILBAS, H. M. SRIVASTAVA, J. J. TRUJILLO, Theory and Applications of Fractional Differ-
ential Equations, North-Holland mathematics studies, Elsevier science, 204 (2006).

[22] Y. LIANG, H. YANG, H. LI, Existence of positive solutions for the fractional q -difference boundary
value problem, Adv. Difference Equ. 416 (2020),
https://doi.org/10.1186/s13662-020-02849-w.

[23] Q. LU, Y. ZHU, Z. G. LU, Uncertain fractional forward difference equations for Riemann-Liouville
type, Adv. Difference Equ. 147 (2019), https://doi.org/10.1186/s13662-019-2093-5.

[24] K. S. MILLER, B. ROSS, An Introduction to Fractional Calculus and Fractioal Differential Equation,
John Wiley, New York, (1993).

[25] K. B. OLDHAM, J. SPANIER, The Fractional Calculus, Academic Press, New York, (1974).



110 Y. GHOLAMI

[26] I. PODLUBNY, Fractional Differential Equations, Mathematics in Science and Applications, Aca-
demic Press, New York, 19 (1999).

[27] J. REUNSUMRIT, T. SITTHIWIRATTHAM,Existence results of fractional delta-nabla difference equa-
tions via mixed boundary conditions, Adv. Difference Equ. 370 (2020),
https://doi.org/10.1186/s13662-020-02835-2.

[28] W. RUI, Existence of solutions of nonlinear fractional differential equations at resonance, Electron. J.
Qual. Theory Differ. Equ. Vol. 66, (2011), pp. 1–12.

[29] S. SABYEL HAIDER, M. UR REHMAN, T. ABDELJAWAD, On Hilfer fractional difference operator,
Adv. Difference Equ. 122 (2020), https://doi.org/10.1186/s13662-020-02576-2.

[30] VASILY E. TARASOV, No violation of the Leibniz rule. No fractional derivative, Commun. Nonlinear
Sci. Numer. Simul. Vol. 18, (2013), pp. 2945–2948.

[31] M. ZAYERNOURI, G. E. KARNIADAKIS, Fractional Sturm-Liouville eigen-problems: Theory and
numerical approximation, J. Comput. Phys. Vol. 252, (2013), pp. 495–517.

[32] M. ZAYERNOURI, G. E. KARNIADAKIS,Exponentially accurate spectral and spectral element meth-
ods for fractional ODEs, J. Comput. Phys. Vol. 257, (2014), pp. 460–480.

[33] M. ZAYERNOURI, G. E. KARNIADAKIS,Fractional spectral collocation methods for linear and non-
linear variable order FPDEs, J. Comput. Phys. Vol. 293, (2015), pp. 312–338.

[34] M. ZAYERNOURI, G. E. KARNIADAKIS, Fractional spectrl collocation method, SIAM J. Sci. Com-
put. Vol. 36, no. 1, (2014), pp. A40–A62.

[35] Y. ZHANG, Z. BAI, T. FENG, Existence results for a coupled system of nonlinear fractional three-
point boundary value problems at resonance, Comput. Math. Appl. Vol. 61, (2011), pp. 1032–1047.

(Received September 8, 2020) Yousef Gholami
Department of Applied Mathematics

Sahand University of Technology
P. O. Box: 51335-1996, Tabriz, IRAN

e-mail: y gholami@sut.ac.ir

Fractional Differential Calculus
www.ele-math.com
fdc@ele-math.com


