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Abstract. In this paper we study generalized time-fractional diffusion equations on the Poincaré
half plane H

+
2 . The time-fractional operators here considered are fractional derivatives of a

function with respect to another function, that can be obtained essentially by means of a deter-
ministic change of variable in the Caputo derivative. We obtain an explicit representation of the
fundamental solution of the generalized-diffusion equation on H

+
2 and provide a probabilistic

interpretation in terms of a time-changed hyperbolic Brownian motion. We finally include an
explicit result regarding the non-linear case admitting a separating variable solution.

1. Introduction

In this paper we study generalized time-fractional diffusion equations on the hy-
perbolic Poincaré half-plane

H
+
2 =

{
(x,y) ∈ R

2

∣∣∣∣y > 0

}
.

The generalization considered here is based on the application of time-fractional deriva-
tives of a function with respect to another function (see [1] for the definition and main
properties), an interesting approach that permits us to take into account both time-
varying coefficients and memory effects (see e.g. [3] for a physical discussion about
this). In the previous paper [7] the authors studied for the first time the time-fractional
diffusion equation on the hyperbolic space involving the classical Caputo derivative.
Moreover, in the more recent paper [4], an interesting probabilistic interpretation of
the fundamental solution of the time-fractional telegraph-type equation on hyperbolic
spaces has been provided. In particular, a relevant connection with time-changed hy-
perbolic Brownian motions has been proved.

The main aim of this paper is to provide a rigorous analysis of the generalized
time-fractional diffusion equation on the hyperbolic space H

+
2 . We find an explicit

representation of the fundamental solution by means of the method of separation of
variables. Moreover, we obtain a probabilistic interpretation as the law of a stochastic
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process represented by a time-changed hyperbolic Brownian motion. In the first part
of the paper we provide some necessary preliminaries about the Poincaré half-plane
and the definition and basic properties of the fractional operators here considered. We
decided to provide some preliminaries about the Poincaré half-plane since many non-
trivial computations are involved and we think that this short guide can be of help for
the potential reader.

Then, we analyze the generalized time-fractional diffusion equation on H
+
2 pro-

viding the representation of the fundamental solution and the related probabilistic mean-
ing. Finally, we also consider a nonlinear generalized time-fractional diffusion equation
on H

+
2 admitting a solution obtained by means of the method of separation of variables.
Few papers (for example [4] and [7]) are concerned with the probabilistic analysis

of time-fractional diffusive equations on hyperbolic spaces and the present work should
inspire further works to establish a connection among hyperbolic geometry, fractional
calculus and stochastic processes.

2. Preliminaries

2.1. A short survey on hyperbolic geometry

We here give some necessary mathematical preliminaries about the model of the
Poincairé half-plane i.e the set H

+
2 =

{
(x,y) ∈ R

2|y > 0
}

with the following metric

ds2 =
dx2 +dy2

y2 (1)

First of all, in order to characterize the geometry of the Poincaré half-plane, we
study the form of the geodesics, by using the variational principle.

We consider the family of curves on the hyperbolic plane passing through two
arbitrary points (x1,y1) and (x2,y2) with parametric representation i.e.

γ =
{

(x(t),y(t))
∣∣∣∣t1 � t � t2

}
, (2)

where t1 and t2 are such that (x(t1),y(t1)) = (x1,y1) and (x(t2),y(t2)) = (x2,y2) .
The length of this curve in the hyperbolic plane is

L (γ) =
∫ t2

t1

√
x′(t)2 + y′(t)2

y(t)
dt. (3)

We can simplify this expression by restricting ourselves to the family of parametric
curves of (2) to curves with Cartesian parameterization i.e

γ = {(x,y(x))|x1 � x � x2} . (4)

In this case, the integral (3) becomes

L (γ) =
∫ x2

x1

√
1+ y′(x)2

y(x)
dx. (5)
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We can consider an arbitrary function w(x) = y(x)+ εh(x) with ε � 0 and h(x)
is such that h(x1) = h(x2) = 0.

By applying (5) the length of the curve γ reads

L (γ) = l(ε) =
∫ x2

x1

√
1+(y′(x)+ εh′(x))2

y(x)+ εh(x)
dx. (6)

The geodesic curve is associated with a minimum point with respect to the ε vari-
able of the function l(ε) for which the condition

dl
dε

∣∣∣∣
ε=0

= 0 (7)

is satisfied.
By direct computation we have that

dl
dε

∣∣∣∣
ε=0

=
∫ x2

x1

d
dε

(√
1+(y′+ εh′)2

y+ εh

)
|ε=0dx

=
∫ x2

x1

(
−h
√

1+(y′+ εh′)2

(y+ εh)2 +
h′(y′ + εh′)

(y+ εh)
√

1+(y′+ εh′)2

)
|ε=0dx

=
∫ x2

x1

(
−h
√

1+ y′2

y2 +
h′y′

y
√

1+ y′2

)
dx =

∫ x2

x1

−h
√

1+ y′2

y2 dx+

[
hy′

y
√

1+ y′2

]x2

x1

−
∫ x2

x1

h
d
dx

y′

y
√

1+ y′2
dx

(since the function h(x) is such that h(x1) = h(x2) = 0)

=
∫ x2

x1

(
−
√

1+ y′2

y2 − d
dx

y′

y
√

1+ y′2

)
hdx (8)

By (7), the integral (8) must be equal to zero for all functions h and therefore we
have that

−
√

1+ y′2

y2 − d
dx

y′

y
√

1+ y′2
= 0

and thus

− 1

y2
√

1+ y′2
− y′′

y
(√

1+ y′2
)3 = 0. (9)

We finally obtain that

1+
d
dx

(yy′) = 0. (10)

Integrating twice (10) we have the following equation

x2 + y2−2cx−2d = 0 (11)
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which is the equation of the semi-circles with an arbitrary center on the x -axis and with
an arbitrary radius.

Other geodesic curves in the Poincairé half-plane are the half-lines parallel to the
y-axis, that emerge if x1 = x2 .

In H
+
2 the position of a point can be given either by cartesian coordinates (x,y)

or by hyperbolic coordinates (η ,α) . By η we indicate the distance of (x,y) from the
origin (0,1) evaluated by means of (1). By α we mean the angle that the tangent at
(0,1) forms with the geodesic line passing through (x,y) .

The equation of geodesic lines is given by

(x− tanα)2 + y2 =
1

cos2 α
(12)

and thus the following formula

tanα =
x2 + y2−1

2x
, (13)

gives the angle α for an arbitrary point (x,y) of H
+
2 .

Finally, the relationship between the η coordinate and the Cartesian coordinates
is given by

coshη =
x2 + y2 +1

2y
. (14)

Starting from the relations (13) and (14) we obtain the relationship between the
cartesian coordinates (x,y) and the hyperbolic coordinates (η ,α) in H

+
2⎧⎪⎨

⎪⎩
x =

cosα sinhη
coshη − sinhη sinα

, η > 0, 0 < α < 2π

y =
1

coshη − sinhη sinα
.

(15)

We are now able to derive the expression of the Laplacian operator in hyperbolic
coordinates.

First of all, we observe that the Poincaré upper half-plane is a Riemannian mani-
fold with the following metric tensor

g =

(
1
y2 0

0 1
y2

)
.

In general, on a Riemannian manifold with a metric tensor g, the Laplacian is
given by

Δ f =
1√|g|

n

∑
i=1

∂i(
√
|g|

n

∑
j=1

gi j∂ j f ), (16)

where |g| is the determinant of the metric tensor and the elements gi j are the compo-
nents of the inverse matrix of g and n is the dimension of the manifold.
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By observing that the inverse matrix g−1 and |g| are respectively given by

g−1 =
(

y2 0
0 y2

)
, |g| = 1

y4 , (17)

we have that in this case Δ f becomes

Δ f =
1√

1
y4

[
∂
∂x

(√
1
y4 y2 ∂

∂x
f

)
+

∂
∂y

(√
1
y4 y2 ∂

∂y
f

)]

= y2
[

∂
∂x

(
∂
∂x

f

)
+

∂
∂y

(
∂
∂y

f

)]

= y2
(

∂ 2

∂x2 +
∂ 2

∂y2

)
f , x ∈ R, y > 0 (18)

By applying (15) to (18) we can derive the expression of the Laplacian in hyper-
bolic coordinates (see [7] Theorem 2.1 for detailed calculations) that is given by the
differential operator

1
sinhη

∂
∂η

(
sinhη

∂
∂η

)
+

1

sinh2 η
∂ 2

∂α2 , 0 < α < 2π , η > 0. (19)

For further reading on hyperbolic geometry you can consult [13] (Chapter 3) and [12].

2.2. Fractional derivatives of a function with respect to another function

Fractional derivatives of a function with respect to another function have been
considered in the classical monograph by Kilbas et al. [6] (Section 2.5) and date back
to Holmgren (1865) and Osler (1970) (see [11]). Recently Almeida in [1] studied the
Caputo-type regularization of the existing definition and some interesting properties.
Starting from this paper, this topic has gained interest both for mathematical reasons
(see e.g. [2]) and for physical applications (e.g. in rheology, see [3] and the references
therein). The utility of these generalized fractional operators in the applications is rep-
resented by the fact that they are essentially obtained by a deterministic time-change
and permits us to take into account both time-variable coefficients and memory effects.
Moreover, this class of operators include as special cases classical well-known time-
fractional derivatives (for example, fractional derivatives in the sense of Hadamard, or
Erdélyi-Kober).

Here we recall the basic definitions and properties for the reader’s convenience.
Let ν > 0, f ∈C1([a,t]) an increasing function such that f ′(t) �= 0 in [a, t] , the

fractional integral of a function g(t) with respect to another function f (t) is given by(
Iν, f
a+ g

)
(t) :=

1
Γ(ν)

∫ t

a
f ′(τ)( f (t)− f (τ))ν−1g(τ)dτ. (20)

Observe that for f (t) = tβ we recover the definition of Erdélyi-Kober fractional inte-
gral recently applied, for example, in connection with the Generalized Grey Brownian
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Motion [9]. For simplicity hereafter we will consider a = 0 (as usual) and suitable
functions f such that f (0) = 0. All the results can be simply generalized.

The correspondingCaputo-type evolution operator (see [1]) for 0 < ν < 1 is given
by

(
Oν, f g

)
(t) :=

1
Γ(1−ν)

∫ t

0
( f (t)− f (τ))−ν d

dτ
g(τ)dτ (21)

= I1−ν, f
0+

(
1

f ′(t)
d
dt

)
g(t). (22)

For the general case ν ∈ R we refer to [1]. In this paper we are interested to the case
0 < ν < 1 interpolating as a limit case the ordinary first order derivative, while the
higher order cases can be treated in a similar way. We have used the symbol Oν, f (·) in
order to underline the generic integro-differential nature of the time-evolution operator,
depending on the choice of the function f (t) and the real order ν .

A relevant property of the operator (21) is that if g(t) = ( f (t))β−1 with β > 1,
then (see Lemma 1 of [1])

(
Oν, f g

)
(t) =

Γ(β )
Γ(β −ν)

( f (t))β−ν−1. (23)

Indeed, by direct calculation we have that

(
Oν, f f β−1

)
(t) =

(β −1)
Γ(1−ν)

∫ t

0
( f (t)− f (τ))−ν f ′(τ)( f (τ))β−2dτ

and taking y = f (τ)/ f (t) we have that

(
Oν, f f β−1

)
(t) =

(β −1) f β−1−ν(t)
Γ(1−ν)

∫ 1

0
(1− y)−νyβ−2dy

=
Γ(β ) f β−1−ν(t)

Γ(β −1)Γ(1−ν)
Γ(1−ν)Γ(β −1)

Γ(β −ν)

=
Γ(β )

Γ(β −ν)
( f (t))β−ν−1.

Therefore, the composite Mittag-Leffler function

g(t) = Eν(λ ( f (t))ν ) (24)

is an eigenfunction of the operator Oν, f , when ν ∈ (0,1) and f is a well-behaved
function such that f (0) = 0. This means that

Oν, f Eν(λ ( f (t))ν ) = λEν(λ ( f (t))ν ). (25)
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3. Generalized linear and nonlinear fractional diffusion on Poincaré half-plane

3.1. The linear case

In a previous paper [7], the authors considered the following diffusion-type equa-
tion on H

+
2

∂ β

∂ tβ u(η ,t) =
1

sinhη

(
∂

∂η
sinhη

∂
∂η

)
u(η ,t), β ∈ (0,1), (26)

where ∂ β

∂ tβ is a fractional derivative of order β in the sense of Caputo. We here analyze
the more general case involving the fractional derivative w.r.t. another function. First
of all, we have the following result

THEOREM 1. Let be f ∈ L1[0,t] such that f (0) = 0 , the fundamental solution for
the generalized time-fractional diffusion equation(

Oβ , f u
)

(η ,t) =
1

sinhη

(
∂

∂η
sinhη

∂
∂η

)
u(η ,t) (27)

is given by

u(η , t) =
2
π

∫ ∞

0
xEβ

(
− f (t)β

4
− x2 f (t)β

)
dx
∫ ∞

η
dϕ

sin(xϕ)√
2coshϕ −2coshη

. (28)

Proof. We find the solution to (27) by means of the separation of variables and
transform the Laplacian operator by using the change of variable y = coshη which
leads to

u(y,t) = F(y) ·T (t)

and therefore we get (
Oβ , f T

)
= −ωT, (29)

(y2−1)F ′′ +2yF ′ + ωF = 0. (30)

The solution of the first equation is given by

T (t,ω) = Eβ ,1(−ω f (t)β ). (31)

The spatial part of the solution remains the same as in the classical hyperbolic diffusion
equation and we refer to [7] for the details. �

REMARK 1. We denoted by fundamental solution, the solution of the Cauchy
problem for (27) under the initial condition u(η ,0) = δ (η) . It is possible to prove
that the solution (28) becomes for t → 0 a source function in the form of a Dirac delta
function (see the similar case in [7]). Therefore, the construction based on the classical
method of separation of variables leads exactly to the fundamental solution for (27).
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REMARK 2. Observe that for f (t) = t and β = 1 we recover the transition func-
tion of the hyperbolic Brownian motion, firstly studied by Gertsenshtein and Vasiliev
in [5].

Moreover, for f (t) = t and β ∈ (0,1) we recover the results obtained in [7].

Let us introduce the process

T β ( f (t)) = Bhp(L β ( f (t))),

where Bhp is the hyperbolic Brownian motion on H
+
2 independent from L β (t) which

is the inverse of the stable subordinator Hβ (t) , that is

L β (t) = inf{s > 0 : Hβ (s) � t}, β ∈ (0,1).

We have the following

THEOREM 2. The distribution p(x,t) of the process Tβ ( f (t)) coincides with the
fundamental solution of the equation (27).

Proof. We observe that, by means of the deterministic time-change f (t) → t , we
can essentially go back to a time-fractional diffusion equation involving the Caputo
derivative. Then, by means of the time-Laplace transform method, it can be proved
that the fundamental solution of (26) coincides with the distribution of the process
Tβ ( f (t)) . �

Observe that this paper is devoted to diffusive models in the Poincaré half-space
H

+
2 but the generalizations to H

+
n can be obtained in a similar way from the probabilis-

tic point of view and will be the object of a further detailed analysis.
Finally, by means of similar methods, we can generalize the recent results obtained

in [4] about time-fractional telegraph-type equations in Hn . In particular, we have that

THEOREM 3. The distribution of the composition

T β (t) = Bhp(Lβ ( f (t))), (32)

where
Lβ (t) = inf{s > 0 : H2β

1 (s)+ (2λ )1/βHβ
2 (s) � t},

and H2β
1 , Hβ

2 are independent stable subordinators (with β ∈ (0,1/2) , coincides with
the fundamental solution of the equation

(
O2β , f u

)
(η , t)+2λ

(
Oβ , f u

)
(η ,t)=

1
sinhη

(
∂

∂η
sinhη

∂
∂η

)
u(η ,t), β ∈ (0,1/2).

(33)

The main idea of the proof is essentially the same of that of the previous theo-
rem. The result can be generalized to a multi-term fractional equation involving a finite
number of fractional derivatives w.r.t. another function of order less than one (see [8]).
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3.2. The nonlinear case

We recall that the construction of the explicit representation of the fundamental
solution of the linear diffusion equation is based (also in the fractional case) on the
classical method of separation of variables. We observe that particular solutions for
nonlinear equations can be constructed by means of the generalized method of separa-
tion of variables (see [10]). On the other hand, we underline that in the recent literature,
the analysis of the porous medium equation in hyperbolic space attracted the attention
of different authors, we refer in particular to the relevant paper [14]. Indeed, the analysis
of nonlinear reaction-diffusion equations in hyperbolic spaces leads to interesting and
new mathematical problems and the time-fractional counterpart should be completly
investigated.

Based on this motivation, a final result on non-linear fractional reaction-diffusion
equation in H

+
2 is here considered.

THEOREM 4. The generalized time-fractional nonlinear diffusive equation in H
+
2(

Oβ , f u
)

(η , t)=
1

sinhη

(
∂

∂η
sinhη

∂
∂η

)
un(η ,t)−u(η ,t), n > 0, (η , t)∈R

+×R
+

(34)
admits as a particular solution

u(η ,t) = g(η) ·Eβ

(
−( f (t))β

)
, (35)

where g(η) is such that dgn

dη = 1
sinhη .

Proof. We first determine a solution by means of the generalized separation of
variables in the simple form

u(η ,t) = r(t) ·g(η).

We observe that if g(η) is such that

dgn

dη
=

1
sinhη

,

then
1

sinhη

(
∂

∂η
sinhη

∂
∂η

)
un(η ,t) = 0

and therefore by substitution we have that

g(η)
(
Oβ , f r

)
(t) = −g(η)r(t)

and therefore r(t) = Eβ
(−( f (t))β ) . �

The study of nonlinear diffusive equations in H
+
2 is not the main object of this

paper, but we observe that by starting from this simple result, it is possible to construct
exact solutions for many different classes of generalized time-fractional nonlinear equa-
tions in H

+
2 , a completly new topic of research.
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