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FRACTIONAL DIFFERENTIAL INCLUSIONS

AURELIAN CERNEA

(Communicated by S. K. Ntouyas)

Abstract. We study certain coupled systems of fractional differential inclusions with several
boundary conditions and we obtain the existence of solutions in the situation when the set-valued
maps have non-convex values.

1. Introduction

In the last years one may find in the literature an increasing number of paper de-
voted to the study of coupled systems of fractional differential equations and inclusions
[1, 2, 3, 4, 16, 18] etc. All these approaches provide the existence of solutions of such
kind of problems by using standard fixed point techniques and contribute to the de-
velopement of the theory of differential equations and inclusions of fractional order
([6, 9, 14, 15, 17] etc.).

In the present paper we study three classes of coupled systems of fractional differ-
ential inclusions with certain boundary conditions and defined by set-valued maps that
are Lipschitz in the state variables but without convex values. By proving the existence
of solutions we extend or improve corresponding results in the literature [1, 16].

We consider first coupled systems of fractional differential inclusions with random
parameters of the form{

(Dα1,β1x)(t,w) ∈ F1(t,x(t,w),y(t,w),w) a.e. t ∈ I, w ∈ Ω,

(Dα2,β2y)(t,w) ∈ F2(t,x(t,w),y(t,w),w) a.e. t ∈ I, w ∈ Ω,
(1.1)

{
(I1−γ1x)(t,w)|t=0 = ϕ1(w), w ∈ Ω,

(I1−γ2y)(t,w)|t=0 = ϕ2(w), w ∈ Ω,
(1.2)

and ⎧⎨
⎩

(Dα1,β1
H x)(t,w) ∈ G1(t,x(t,w),y(t,w),w) a.e. t ∈ J, w ∈ Ω,

(Dα2,β2
H y)(t,w) ∈ G2(t,x(t,w),y(t,w),w) a.e. t ∈ J, w ∈ Ω,

(1.3)
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{
(I1−γ1

H x)(t,w)|t=0 = ψ1(w), w ∈ Ω,

(I1−γ2
H y)(t,w)|t=0 = ψ2(w), w ∈ Ω,

(1.4)

where αi ∈ (0,1) , βi ∈ (0,1] , γi = αi + βi −αiβi , I = [0,T ] , J = [1,T ] , Ω is a mea-
surable space, w ∈ Ω is a random parameter, ϕi : Ω → R , ψi : Ω → R are measur-
able functions, Fi : I ×R2 ×Ω → P(R) , Gi : J ×R2 ×Ω → P(R) are set-valued
maps, i = 1,2, Dα ,β is the Hilfer fractional derivative of order α and type β , Iγ is
the left-side fractional integral of order γ > 0, Dα ,β

H is the Hilfer-Hadamard fractional
derivative of order α and type β and Iγ

H is the left-sided Hadamard integral of order
γ .

Finally, our study concerns coupled systems of mixed order fractional order dif-
ferential inclusions with coupled integral fractional boundary conditions of the form{

Dα
Cx(t) ∈ H1(t,x(t),y(t)) a.e. t ∈ I,

Dβ
RLy(t) ∈ H2(t,x(t),y(t)) a.e. t ∈ I,

(1.5)

{
x(0) = λDp

Cy(η)

y(0) = 0, y(T ) = γIqx(ξ ),
(1.6)

with α ∈ (0,1],β ∈ (1,2] , p∈ (0,1) , q > 0, γ,λ ∈R , ξ ,η ∈ (0,T ) , Dα
C is the Caputo

fractional derivative of order α , Dβ
RL is the Riemann-Liouville fractional derivative of

order β and Hi : I×R×R→ P(R) are given set-valued maps, i = 1,2.
Our aim is to use suitably the ideas of Filippov [10] to obtain the existence of

solutions for problems (1.1)–(1.2), (1.3)–(1.4) and (1.5)–(1.6). For a differential in-
clusion without convexity in the right-hand side, Filippov’s theorem [10] provides the
existence of solutions starting from a given mapping which is usually called “quasi”
solution. Moreover, the result contains an estimate between the “quasi” solution and
the obtained solution.

The first paper in the literature that deals with coupled systems of fractional dif-
ferential inclusions is [4]. In [4] several existence results for a class of coupled systems
of fractional differential inclusions with coupled boundary conditions are obtained by
using known fixed point theorems for set-valued maps. It is worth to mention that the
first paper in the literature containing Filippov’s approach applied to coupled systems
of fractional differential inclusions is [8]. Moreover, Theorem 1 in [8] provides, in a
particular case, a Filippov type existence result for the boundary problem studied in [4],
a result which is similar to Theorem 3.8 in [4].

The paper is organized as follows: in Section 2 we recall some preliminary facts
that we need in the sequel, while Section 3 is devoted to our existence theorems.

2. Preliminaries

Let (X ,d) be a metric space. Recall that the Pompeiu-Hausdorff distance of the
closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B),d∗(B,A)}, d∗(A,B) = sup{d(a,B);a ∈ A},
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where d(x,B) = infy∈B d(x,y) .
As usual, we denote by C(I,R) the Banach space of all continuous functions x(.) :

I → R endowed with the norm |x(.)|C = supt∈I |x(t)| and by L1(I,R) we denote the
Banach space of all integrable functions x(.) : I → R endowed with the norm |x(.)|1 =∫
I |x(t)|dt . We introduce, also, the weighted space of continuous functions defined

by Cγ(I,R) = {x(.) : (0,T ] → R;t → t1−γx(t) ∈ C(I,R)} with the norm |x(.)|Cγ =
supt∈I |t1−γx(t)| and C1

γ (I,R) = {x(.) : I →R;x′(.)∈Cγ (I,R)} with the norm |x(.)|C1
γ
=

|x(.)|∞ + |x′(.)|Cγ .

DEFINITION 1. a) The fractional integral of order r > 0 of a Lebesgue integrable
function f : (0,T ] → R is defined by

Ir f (t) =
∫ t

0

(t − s)r−1

Γ(r)
f (s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the (Euler’s)
Gamma function defined by Γ(r) =

∫ ∞
0 tr−1e−tdt .

b) The Riemann-Liouville fractional derivative of order r > 0 of a function Lebes-
gue integrable f : (0,T ] → R is defined by

Dr
RL f (t) =

1
Γ(n− r)

dn

dtn

∫ t

0
(t− s)−r+n−1 f (s)ds,

where n = [r]+1, provided the right-hand side is pointwise defined on (0,∞) .
c) The Caputo fractional derivative of order r > 0 of an absolutely continuous

function f : I → R is defined by

Dr
C f (t) =

1
Γ(n− r)

∫ t

0
(t− s)−r+n−1 f (n)(s)ds.

It is assumed implicitly that f is n times differentiable whose n -th derivative is abso-
lutely continuous.

d) Let α ∈ (0,1) , β ∈ [0,1] and f (.) ∈ L1(I,R) with I(1−α)(1−β ) f ∈ AC(I,R) .
The Hilfer fractional derivative of order α and type β of f is defined by

(Dα ,β f )(t) =
(
Iβ (1−α)

( d
dt

(I(1−α)(1−β ) f )
))

(t) a.e. (I).

We note that Hilfer fractional derivative, introduced in [11], has the Riemann-
Liouville and Caputo fractional derivatives as particular cases; namely, Dα ,0 = Dα

RL
and Dα ,1 = Dα

C . For properties of such derivatives we refer, for example, to [12], but
we shall use here only the above definitions.

Next J = [1,T ] , T > 1, we consider the weighted space of continuous functions
defined by Cγ,ln(J,R) = {x(.) : (1,T ] → R;t → (ln t)1−γx(t) ∈C(J,R)} with the norm
|x(.)|Cγ,ln = supt∈J |(ln t)1−γx(t)| .

Set δ = t d
dt , r > 0, n = [r]+1 and ACn

δ = {u : J → R;δ n−1[u(.)] ∈ AC(J,R)} .
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DEFINITION 2. a) The Hadamard fractional integral of order r > 0 of a Lebesgue
integrable function g : J → R is defined by

Ir
Hg(t) =

1
Γ(r)

∫ t

1

(
ln

t
s

)r−1 g(s)
s

ds

provided the integral exists.
b) The Hadamard fractional derivative of order r > 0 of a function g : J → R is

defined by

Dr
Hg(t) =

1
Γ(n− r)

δ n
∫ t

1

(
ln

t
s

)n−r−1 g(s)
s

ds.

c) The Caputo-Hadamard fractional derivative of order r > 0 of function g(.) ∈
ACn

δ is defined by
(Dr

CHg)(t) = (In−r
H δ ng)(t).

In particular, if r ∈ (0,1] then (Dr
CHg)(t) = (I1−r

H δg)(t) .
d) Let α ∈ (0,1) , β ∈ [0,1] and g(.) ∈ L1(J,R) with I(1−α)(1−β )

H g ∈ AC(J,R) .
The Hilfer-Hadamard fractional derivative of order α and type β of g is defined by

(Dα ,β
H g)(t) = (Iβ (1−α)

H (Dγ
Hg))(t) a.e. (I).

We note that Hilfer-Hadammard fractional derivative has the Hadamard and Capu-
to-Hadamard fractional derivatives as particular cases; namely, Dα ,0

H = Dα
H and Dα ,1

H =
Dα

CH . For properties of such derivatives we refer, for example, to [11, 13], but we shall
use here only the above definitions.

In what follows (Ω,A ) is a measurable space, Fi : I ×R2 × Ω → P(R) are
given set-valued maps, i = 1,2, x(., .) : I ×Ω → R , y(., .) : I ×Ω → R are such that
x(.,w),y(.,w) ∈Cγ (I,R) ∀w ∈ Ω . We define the set of selections of F1 and F2 by

SF1,x,y(w) = { f1 : I×Ω → R; f1(t,w) ∈ F1(t,x(t,w),y(t,w),w) a.e. (I)},
SF2,x,y(w) = { f2 : I×Ω → R; f2(t,w) ∈ F2(t,x(t,w),y(t,w),w) a.e. (I)}.
The next technical result is proved in [1].

LEMMA 1. a) Let h ∈Cγ(I,R) . Then the unique solution of the Cauchy problem
(Dα ,β u)(t) = h(t) , (I1−γu)(0) = ϕ is u(t) = ϕ

Γ(γ) t
γ−1 + Iαh(t).

b) Let h∈Cγ,ln(I,R) . Then the unique solution of the Cauchy problem (Dα ,β
H u)(t)

= h(t) , (I1−γ
H u)(0) = ψ is u(t) = ψ

Γ(γ) (ln t)γ−1 + Iα
Hh(t).

DEFINITION 3. By a solution of problem (1.1)–(1.2)we understand two functions
x(., .) : I ×Ω → R , y(., .) : I×Ω → R such that x(t, .) , y(t, .) are measurable for any
t ∈ I , x(.,w) , y(.,w) ∈Cγ (I,R) ∀w ∈ Ω and satisfies equations

x(t,w) =
ϕ1(w)
Γ(γ)

tγ−1 +(Iα f1(.,w))(t), y(t,w) =
ϕ2(w)
Γ(γ)

tγ−1 +(Iα f2(.,w))(t),

where fi ∈ SFi,x,y(w) with fi(.,w) ∈ L1(I,R) ∀w ∈ Ω , i = 1,2.
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DEFINITION 4. By a solution of problem (1.3)–(1.4)we understand two functions
x(., .) : J×Ω → R , y(., .) : J×Ω → R such that x(t, .) , y(t, .) are measurable for any
t ∈ J , x(.,w),y(.,w) ∈Cγ,ln(I,R) ∀w ∈ Ω and satisfies equations

x(t,w) =
ψ1(w)
Γ(γ)

tγ−1 +(Iα
Hg1(.,w))(t), y(t,w) =

ψ2(w)
Γ(γ)

tγ−1 +(Iα
Hg2(.,w))(t),

where gi ∈ SGi,x,y(w) with gi(.,w) ∈ L1(I,R) ∀w ∈ Ω , i = 1,2.

LEMMA 2. Consider h1,h2 ∈ C(I,R) and α ∈ (0,1] , β ∈ (1,2] . Then the solu-
tion of the linear system {

Dα
Cx(t) = h1(t) a.e. t ∈ I,

Dβ
RLy(t) = h2(t) a.e. t ∈ I,

with boundary conditions (1.6) is equivalent to the following system of integral equa-
tions

x(t) = Iαh1(t)− λ
Λ [T β−1Iβ−ph2(η)− Γ(β )

Γ(β−p)ηβ−p−1(γIq+αh1(ξ )− Iβh2(T ))]

y(t) = Iβ h2(t)+ tβ−1

Λ [Iβ h2(T )− γIq+αh1(ξ )−λ γ ξ q

Γ(1+q)I
β−ph2(η)],

(2.1)

where it is assumed that Λ := Tβ−1 + λ γ Γ(β )ξ qηβ−p−1

Γ(1+q)Γ(β−p) �= 0 .

The proof may be found in [16], namely Lemma 2.5.

REMARK 1. If we denote

H1(t,s) =
(t − s)α−1

Γ(α)
χ[0,t](s)+

λ
Λ
· γΓ(β )ηβ−p−1

Γ(β − p)
· (ξ − s)q+α−1

Γ(q+ α)
χ[0,ξ ](s),

H2(t,s) = −λ
Λ

T β−1 · (η − s)β−p−1

Γ(β − p)
− λ

Λ
ηβ−p−1 · (T − s)β−1

Γ(β − p)
,

H3(t,s) = − γtβ−1

Λ
· (t − s)q+α−1

Γ(q+ α)
χ[0,ξ ](s),

H4(t,s) =
(t− s)β−1

Γ(β )
χ[0,t](s)+

tβ−1

Λ
(
(T − s)β−1

Γ(β )
− λ γξ q

Γ(1+q)
(η − s)β−p−1

Γ(β − p)
χ[0,η](s)).

then the solutions in (2.1) may be rewritten as

x(t) =
∫ T
0 H1(t,s)h1(s)ds+

∫ T
0 H2(t,s)h2(s)ds, t ∈ I,

y(t) =
∫ T
0 H3(t,s)h1(s)ds+

∫ T
0 H4(t,s)h(s)ds, t ∈ I.

Moreover, if β > p+1, for any t,s ∈ I , we have

|H1(t,s)| � T α−1

Γ(α)
+

|λ |
|Λ| ·

|γ|Γ(β )ηβ−p−1

Γ(β − p)
· ξ q+α−1

Γ(q+ α)
=: M1,
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|H2(t,s)| � |λ |
|Λ|T

β−1 ηβ−p−1

Γ(β − p)
+

|λ |
|Λ|η

β−p−1 T β−1

Γ(β − p)
=: M2,

|H3(t,s)| � |γ|T β−1

|Λ|
ξ q+α−1

Γ(q+ α)
=: M3,

|H4(t,s)| � T β−1

Γ(β )
+

T 2β−2

|Λ|Γ(β )
+

|λ |
|Λ|

|γ|T β−1ξ q

Γ(1+q)
ηβ−p−1

Γ(β − p)
=: M4.

DEFINITION 5. By solution of problem (1.5)–(1.6) we mean the functions x(.) ∈
C1(I,R) , y(.) ∈ C2(I,R) such that there exist functions h1(.),h2(.) ∈ L1(I,R) that
satisfies h1(t) ∈ H1(t,x(t),y(t)) a.e. (I) , h2(t) ∈ H2(t,x(t),y(t)) a.e. (I) and (2.1) is
satisfied.

The next lemma [5] contains a selection result for set-valued maps and is a version
of the celebrated Kuratowski and Ryll-Nardzewski selection theorem.

LEMMA 3. Consider X a separable Banach space, B is the closed unit ball in X ,
W : I → P(X) is a set-valued map with nonempty closed values and c : I → X ,r : I →
R+ are measurable functions. If

W (t)∩ (c(t)+ r(t)B) �= /0 a.e. (I),

then the set-valued map t →W (t)∩ (c(t)+ r(t)B) has a measurable selection.

3. Main results

We treat first problem (1.1)–(1.2). We need the following assumptions.

HYPOTHESIS H1. i) Fi(., ., ., .) : I×R2×Ω → P(R) have nonempty closed val-
ues and the set-valued maps (t,w) → Fi(t,u,v,w) are measurable ∀u,v ∈ R , i = 1,2 .

ii) There exists measurable and bounded functions li(., .) : I ×Ω → (0,∞) such
that, for all w ∈ Ω , Fi(t, ., .,w) satisfy the following Lipschitz condition

dH(Fi(t,x1,y1,w),Fi(t,x2,y2,w)) � t1−γi li(t,w)(|x1 − x2|+ |y1− y2|),
∀ t ∈ I, x1,x2,y1,y2 ∈ R , i = 1,2.

Denote l∗i := supw∈Ω |li(.,w)|∞ , i = 1,2 and L = l∗1T 1+α1−γ1

Γ(1+α1)
+ l∗2T 1+α2−γ2

Γ(1+α2)
.

THEOREM 1. Assume that Hypothesis H1 is satisfied and L < 1 . Let u(., .),z(., .) :
I × Ω → R be such that u(t, .) and z(t, .) are measurable for any t ∈ I , u(.,w) ∈
Cγ1(I,R) , z(.,w) ∈ Cγ2(I,R) ∀w ∈ Ω , (I1−γ1u)(0+,w) = Φ1(w) , (I1−γ2z)(0+,w) =
Φ2(w) , w∈Ω with Φ1,Φ2 : Ω→R measurable functions and there exist p(., .),q(., .) :
I ×Ω → R , p(t, .) , q(t, .) are measurable functions for any t ∈ I , (Iα1 p(.,w))(T ) <
+∞ , (Iα2q(.,w))(T ) < +∞ ∀w ∈ Ω and such that d((Dα1,β1u)(t,w),F1(t,u(t,w),z(t,
w),w)) � p(t,w) , d((Dα2,β2z)(t,w),F2(t,u(t,w),z(t,w),w)) � q(t,w) a.e. t ∈ I , ∀w ∈
Ω .
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Then there exists (x(., .),y(., .)) a solution of problem (1.1)–(1.2) satisfying for all
w ∈ Ω

|x(.,w)−u(.,w)|Cγ1
+ |y(.,w)− z(.,w)|Cγ2

� 1
1−L

[ 1
Γ(γ1)

|ϕ1(w)−Φ1(w)| 1
Γ(γ2)

|ϕ2(w)−Φ2(w)|

++T 1−γ1(Iα1 p(.,w))(T )+T 1−γ2(Iα2q(.,w))(T )
]
.

(3.1)

Proof. The multifunctions t → Fi(t,u(t,w),z(t,w),w) are measurable with closed
values and for almost all t ∈ I

F1(t,u(t,w),z(t,w),w)∩{(Dα1,β1u)(t,w)+ p(t,w)[−1,1]} �= /0,

F2(t,u(t,w),z(t,w),w)∩{(Dα2,β2z)(t,w)+q(t,w)[−1,1]} �= /0.

It follows from Lemma 3 that there exists f1(., .),g1(., .) : I ×Ω → R such that
f1(.,w) , q1(.,w) are measurable for any w ∈ Ω , f1(t,w) ∈ F1(t,u(t,w),z(t,w),w) ,
g1(t,w) ∈ F2(t,u(t,w),z(t,w),w) a.e. t ∈ I ∀w ∈ Ω veryfing

| f1(t,w)− (Dα1,β1u)(t,w)| � p(t,w) a.e. t ∈ I, ∀w ∈ Ω,

|g1(t,w)− (Dα2,β2z)(t,w)| � q(t,w) a.e. t ∈ I, ∀w ∈ Ω.
(3.2)

Define x1(t,w) = ϕ1(w)
Γ(γ1)

tγ1−1 +(Iα1 f1(.,w))(t) , y1(t,w) = ϕ2(w)
Γ(γ2)

tγ2−1+(Iα2g1(.,w))(t) ;
one has

t1−γ1 |x1(t,w)−u(t,w)| � 1
Γ(γ1)

|ϕ1(w)−Φ1(w)|+ t1−γ1(Iα1 p(.,w))(t),

t1−γ2 |y1(t,w)− z(t,w)| � 1
Γ(γ2) |ϕ2(w)−Φ2(w)|+ t1−γ2(Iα2q(.,w))(t),

|x1(.,w)−u(.,w)|Cγ1
� 1

Γ(γ1) |ϕ1(w)−Φ1(w)|+T 1−γ1(Iα1 p(.,w))(T ),

|y1(.,w)− z(.,w)|Cγ2
� 1

Γ(γ2)
|ϕ2(w)−Φ2(w)|+T 1−γ2(Iα2q(.,w))(T ),

and therefore,

|x1(.,w)−u(.,w)|Cγ1
+ |y1(.,w)− z(.,w)|Cγ2

� 1
Γ(γ1)

|ϕ1(w)−Φ1(w)|+ 1
Γ(γ2)

|ϕ2(w)−Φ2(w)|

+T 1−γ1(Iα1 p(.,w))(T )+T1−γ2(Iα2q(.,w))(T ) =: K.

Next we construct the sequences xn(., .),yn(., .) : I×Ω → R , xn(.,w) , yn(.,w) ∈
C(I,R) , for any w ∈ Ω , fn(., .),gn(., .) : I ×Ω → R , fn(.,w) , gn(.,w) ∈ L1(I,R) for
any w ∈ Ω , n � 1 with the following properties

xn(t,w) = ϕ1(w)
Γ(γ1)

tγ1−1 +(Iα1 fn(.,w))(t), t ∈ I, w ∈ Ω,

yn(t,w) = ϕ2(w)
Γ(γ2)

tγ2−1 +(Iα2gn(.,w))(t), t ∈ I, w ∈ Ω,
(3.3)
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fn(t,w) ∈ F1(t,xn−1(t,w),yn−1(t,w),w) a.e.t ∈ I, w ∈ Ω,

gn(t,w) ∈ F2(t,xn−1(t,w),yn−1(t,w),w) a.e. t ∈ I, w ∈ Ω,
(3.4)

| fn+1(t,w)− fn(t,w)| � l∗1(|xn(.,w)− xn−1(.,w)|Cγ1
+ |yn(.,w)− yn−1(.,w)|Cγ2

),
a.e. t ∈ I, w ∈ Ω,

|gn+1(t,w)−gn(t,w)| � l∗2(|xn(.,w)− xn−1(.,w)|Cγ1
+ |yn(.,w)− yn−1(.,w)|Cγ2

),
a.e. t ∈ I, w ∈ Ω.

(3.5)
If we done this construction, then from (3.2)–(3.5) we have for all w ∈ Ω

|xn+1(.,w)− xn(.,w)|Cγ1
+ |yn+1(.,w)− yn(.,w)|Cγ2

� KLn.

Indeed, assume that the last inequality is true for n−1 and we prove it for n . One
has

t1−γ1 |xn+1(t,w)− xn(t,w)|

� t1−γ1

∫ t

0

(t− s)α1−1

Γ(α1)
| fn+1(s,w)− fn(s,w)|ds

� T 1−γ1 l∗1
∫ t

0

(t− s)α1−1

Γ(α1)
(|xn(.,w)− xn−1(.,w)|Cγ1

+ |yn(.,w)− yn−1(.,w)|Cγ2
)ds

= T 1−γ1 l∗1
T α1

Γ(α1 +1)
(|xn(.,w)− xn−1(.,w)|Cγ1

+ |yn(.,w)− yn−1(.,w)|Cγ2
).

Similarly,

t1−γ2 |yn+1(t,w)− yn(t,w)|
� T 1−γ2 l∗2

T α2

Γ(α2 +1)
(|xn(.,w)− xn−1(.,w)|Cγ1

+ |yn(.,w)− yn−1(.,w)|Cγ2
).

Therefore,

|xn+1(.,w)− xn(.,w)|Cγ1
+ |yn+1(.,w)− yn(.,w)|Cγ2

� L(|xn(.,w)− xn−1(.,w)|Cγ1
+ |yn(.,w)− yn−1(.,w)|Cγ2

).

and

|xn+1(.,w)− xn(.,w)|Cγ1
+ |yn+1(.,w)− yn(.,w)|Cγ2

� L ·KLn−1 = KLn.

Therefore, {xn(.,w)} and {yn(.,w)} are Cauchy sequences in the Banach space
C(I,R) , hence converging uniformly to some x(.,w),y(.,w) ∈ C(I,R) , for any w ∈
Ω ,. Therefore, by (3.5), for almost all t ∈ I , the sequences { fn(t,w)} , {gn(t,w)} are
Cauchy in R , for any w ∈ Ω . Let f (.,w) be the pointwise limit of fn(.,w) and g(.,w)
be the pointwise limit of gn(.,w) .
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For any t ∈ I,w ∈ Ω we have the estimate

|xn(t,w)−u(t,w)|+ |yn(t,w)− z(t,w)|
� |x1(t,w)−u(t,w)|+ |y1(t,w)− z(t,w)|

+
n−1

∑
i=1

(|xi+1(t,w)− xi(t,w)|+ |yi+1(t,w)− yi(t,w)|)

�K +
n−1

∑
i=1

KLi � K · 1
1−L

.

(3.6)

At the same time, from (3.2), (3.5) and (3.6) we obtain for almost all t ∈ I and any
w ∈ Ω

| fn(t,w)− (Dα1,β1u)(t,w)|+ |gn(t,w)− (Dα2,β2z)(t,w)|

�
n−1

∑
i=1

(| fi+1(t,w)− fi(t,w)|+ |gi+1(t,w)−gi(t,w)|)

+| f1(t,w)− (Dα1,β1u)(t,w)|+ |g1(t,w)− (Dα2,β2z)(t,w)|

�
n−1

∑
i=1

(t1−γ1 l1(t,w)+ t1−γ2 l2(t,w))K
1

1−L
+ p(t,w)+q(t,w).

Hence the sequences fn(.,w),gn(.,w) are integrably bounded and therefore, f (.,w) ,
g(.,w) ∈ L1(I,R) for any w ∈ Ω .

Using Lebesgue’s dominated convergence theorem and taking the limit in (3.3),
(3.4) we deduce that (x(., .),y(., .)) is a solution of (1.1)–(1.2). Finally, passing to the
limit in (3.6) we obtain the desired estimates on x(., .) and y(., .) .

It remains the construction of the sequences xn(., .), fn(., .) and yn(., .) , gn(., .)
with the properties in (3.3)–(3.5). This construction will be realized by induction.

We note that the first step is already realized. Next, assume that for some N � 1
we already constructed xn(., .),yn(., .) : I×Ω → R , xn(.,w),yn(.,w) ∈C(I,R) , for any
w ∈ Ω and fn(., .),gn(., .) : I ×Ω → R , fn(.,w),gn(.,w) ∈ L1(I,R) for any w ∈ Ω ,
n = 1,2, . . .N satisfying (3.3), (3.5) for n = 1,2, . . . ,N and (3.4) for n = 1,2, . . . ,N−1.
The set-valued maps t → Fi(t,xN(t,w),yN(t,w),w) , i = 1,2 are measurable. Moreover,
the maps t → t1−γi li(t,w)(|xN(t,w)−xN−1(t,w)|+ |yN(t,w)−yN−1(t,w)|) , i = 1,2 are
measurable. By the lipschitzianity of Fi(t, ., .,w) , i = 1,2 we have that for almost all
t ∈ I and any w ∈ Ω

F1(t,xN(t,w),yN(t,w),w)∩{ fN(t,w)+ t1−γ1 l1(t,w)(|xN(t,w)− xN−1(t,w)|
+|yN(t,w)− yN−1(t,w)|)[−1,1]} �= /0

F2(t,xN(t,w),yN(t,w),w)∩{gN(t,w)+ t1−γ2 l2(t,w)(|xN(t,w)− xN−1(t,w)|
+|yN(t,w)− yN−1(t,w)|)[−1,1]} �= /0.

Using again Lemma 3 we find that there exists fN+1(., .),gN+1(., .) : I×Ω → R such
that fN+1(.,w) , gN+1(.,w) are measurable for any w ∈ Ω , fN+1(t,w) ∈ F1(t,xN(t,w),
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yN(t,w),w) , gN+1(t,w) ∈ F2(t,xN(t,w),yN(t,w),w) a.e. t ∈ I , ∀w ∈ Ω and

| fN+1(t,w)− fN(t,w)|
� t1−γ1 l1(t,w)(|xN(t,w)− xN−1(t,w)|+ |yN(t,w)− yN−1(t,w)|)

a.e. t ∈ I,∀w ∈ Ω,

|gN+1(t,w)−gN(t,w)|
� t1−γ2 l2(t,w)(|xN(t,w)− xN−1(t,w)|+ |yN(t,w)− yN−1(t,w)|)

a.e. t ∈ I,∀w ∈ Ω.

We define xN+1(., .) and yN+1(., .) as in (3.3) with n = N + 1. Therefore, fN+1(., .)
and gN+1(., .) satisfies (3.4) and (3.5) and the proof is complete. �

The assumptions in Theorem 1 are satisfied, in particular, for u = z = 0, Φ1 =
Φ2 = 0, p = l1 and q = l2 . We obtain the following consequence of Theorem 1.

COROLLARY 1. Hypothesis H1 is satisfied, d(0,Fi(t,0,0,w)) � li(t,w) a.e. t ∈
I , ∀w ∈ Ω , i = 1,2 and L < 1 .

Then there exists (x(., .),y(., .)) a solution of problem (1.1)–(1.2) satisfying for all
w ∈ Ω

|x(.,w)|Cγ1
+ |y(.,w)|Cγ2

� 1
1−L

[
1

Γ(γ1)
|ϕ1(w)|+ 1

Γ(γ2)
|ϕ2(w)|

+T 1−γ1(Iα1 l1(.,w))(T )+T 1−γ2(Iα2 l2(.,w))(T )].

REMARK 2. Problem (1.1)–(1.2) with F1 and F2 single-valued maps was studied
in [1, 2]. In [1] the functions that define the problem are assumed to be Carathéodory
and in [2] these functions are Lipschitz. Corollary 1 above may be regarded as an
extension to the set-valued framework of Theorem 3 in [2] whose proof uses a random
version of the contraction principle.

Next, we are concerned with problem (1.3)–(1.4).

HYPOTHESIS H2. i) Gi(., ., .) : I×R2×Ω→P(R) have nonempty closed values
and the set-valued maps (t,w) → Gi(t,u,v,w) are measurable ∀u,v ∈ R , i = 1,2 .

ii) There exists measurable and bounded functions ki(., .) : I ×Ω → (0,∞) such
that, for all w ∈ Ω , Gi(t, ., .,w) satisfy the following Lipschitz condition

dH(Gi(t,x1,y1,w),Gi(t,x2,y2,w)) � (ln t)1−γiki(t,w)(|x1 − x2|+ |y1− y2|),

∀ t ∈ I, x1,x2,y1,y2 ∈ R , i = 1,2.

Denote k∗i := supw∈Ω |ki(.,w)|∞ , i = 1,2 and k = k∗1(lnT )1+α1−γ1

Γ(1+α1)
+ k∗2(lnT )1+α2−γ2

Γ(1+α2)
.

THEOREM 2. Assume that Hypothesis H2 is satisfied and k < 1 . Let u(., .),z(., .) :
I × Ω → R be such that u(t, .) and z(t, .) are measurable for any t ∈ I , u(.,w) ∈
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Cγ1,ln(I,R) , z(.,w) ∈Cγ2,ln(I,R) ∀w ∈ Ω , (I1−γ1u)(0+,w) = Ψ1(w) , (I1−γ2z)(0+,w)
= Ψ2(w) , w ∈ Ω with Ψ1,Ψ2 : Ω →R measurable maps and there exist p(., .),q(., .) :
I ×Ω → R , p(t, .) , q(t, .) are measurable functions for any t ∈ I , (Iα1

H p(.,w))(T ) <

+∞ , (Iα2
H q(.,w))(T ) < +∞ ∀w ∈ Ω and such that d((Dα1,β1

H u)(t,w),G1(t,u(t,w),z(t,
w),w)) � p(t,w) , d((Dα2,β2

H z)(t,w),G2(t,u(t,w),z(t,w),w)) � q(t,w) a.e. t ∈ I , ∀w∈
Ω .

Then there exists (x(., .),y(., .)) a solution of problem (1.3)–(1.4) satisfying for all
w ∈ Ω

|x(.,w)−u(.,w)|Cγ1 ,ln + |y(.,w)− z(.,w)|Cγ2,ln

� 1
1− k

[ 1
Γ(γ1)

|ψ1(w)−Ψ1(w)|+ 1
Γ(γ2)

|ψ2(w)−Ψ2(w)|

+(lnT )1−γ1(Iα1
H p(.,w))(T )+ (lnT )1−γ2(Iα2

H q(.,w))(T )
]
.

The proof of Theorem 2 is similar to the proof of Theorem 1.
Theorems 1 and 2 may be interpreted as extensions to coupled systems of frac-

tional differential inclusions with random parameters of similar results in [7] obtained
for ”single” fractional differential inclusions with random parameters.

Finally, we consider problem (1.5)–(1.6).

HYPOTHESIS H3. i) Hi(., ., .) : I × R× R → P(R) , i = 1,2 have nonempty
closed values and are L (I)⊗B(R×R) measurable.

(ii) There exist mi(.) ∈ L1(I,(0,∞)) such that, for almost all t ∈ I , Hi(t, ., .) are
mi(t)-Lipschitz in the sense that

dH(H1(t,x1,y1),H2(t,x2,y2)) � m1(t)(|x1− x2|+ |y1− y2|) ∀ x1,x2,y1,y2 ∈ R.

dH(H1(t,x1,y1),H2(t,x2,y2)) � m2(t)(|x1− x2|+ |y1− y2|) ∀ x1,x2,y1,y2 ∈ R.

We use next the following notation: M(t) = M1m1(t) + M2m2(t) + M3m1(t) +
M4m2(t) , t ∈ I .

THEOREM 3. Assume that Hypothesis H3 is satisfied, Λ �= 0 , β > p + 1 and
|M(.)|1 < 1 .

Consider u(.)∈C1(I,R) , z(.)∈C2(I,R) with u(0)= λDp
Cz(η) , z(0)= 0 , z(T ) =

γIqu(ξ ) and there exists p(.),q(.) ∈ L1(I,R+) verifying d(Dα
Cu(t),H1(t,u(t),z(t))) �

p(t) a.e. (I) and d(Dβ
RLz(t),H2(t,u(t),z(t))) � q(t) a.e. (I) .

Then there exists (x(.),y(.)) a solution of problem (1.5)–(1.6) satisfying for all
t ∈ I

|x(t)−u(t)|+ |y(t)− z(t)|� (M1 +M3)|p(.)|1 +(M2 +M4)|q(.)|1
1−|M(.)|1 .

The proof of Theorem 3 is similar to the proof of Theorem 1 (see also the proof of
Theorem 1 in [8]).

If in Theorem 3 we take u = z = 0, p = m1 and q = m2 we get the following
consequence of Theorem 3.
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COROLLARY 2. Assume that Hypothesis H3 is satisfied, Λ �= 0 , β > p + 1 ,
d(0,H1(t,0,0)) � m1(t) , d(0,H2(t,0,0)) � m2(t) a.e. (I) and |M(.)|1 < 1 .

Then there exists (x(.),y(.)) a solution of problem (1.5)–(1.6) satisfying for all
t ∈ I

|x(t)|+ |y(t)|� (M1 +M3)|m1(.)|1 +(M2 +M4)|m2(.)|1
1−|M(.)|1 . (3.7)

REMARK 3. A similar existence result to the one in Corollary 2 may be found in
[16], namely Theorem 3.7. Its proof is performed by using the set-valued contraction
principle. It is worth to mention that the approach in [1], apart from the requirement
that the values of F(., .) are compact, does not provides a priori bounds for solutions
as in (3.7).
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