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Abstract. In this paper, we establish a connection between the well-known Grünwald–Letnikov
fractional operators which were defined in the mid–1800s and the recently defined fractional h -
discrete operators. We prove that the Mittag-Leffler function of the Riemann-Liouville fractional
calculus in continuous time is the limit of the Mittag-Leffler type function in fractional h -discrete
calculus in discrete time when h approaches zero. In our study, we only focus on the backward
difference operators which are also known as discrete nabla operators.

1. Introduction

Approximations of the Grünwald–Letnikov fractional operators, defined by Grün-
wald and Letnikov in [12, 15], to the Riemann-Liouville fractional operators have
been extensively analyzed by Podlubny in his book [26]. These approximations of the
Grünwald–Letnikov fractional operators for numerical calculations in several applica-
tions have appeared in much literature [1, 14, 22, 24, 25, 28, 27, 30, 31] over the years.
While this is one direction of the study of fractional calculus in continuous time, math-
ematicians and scientists have started to focus more on fractional operators in discrete
time [3, 8, 11], recently.

Nowadays, fractional calculus in discrete time is a highly popular area of research
that involves contribution from many researchers to build theory and highlight applica-
tions. In the development of this theory, two discrete operators known as delta (Δ) and
nabla (∇) take the foremost attention. In addition, calculus on time scales [6, 7] be-
comes an important tool and gives the momentum to form and establish building blocks
of the theory by scientists. Discrete fractional calculus is called fractional h - discrete
calculus if its domain is hNa = {a, a+h, a+2h, . . .} for any positive real number h
and any real number a .

In this short paper, we aim to give a connection between what has been done in
the 1800s and the current stage of development in the theory of discrete fractional cal-
culus by considering the Grünwald–Letnikov fractional operators. By providing this
connection for researchers who are interested in working in this area, we hope that the
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work on Grünwald–Letnikov fractional operators [1, 5, 8, 9, 17, 18, 19, 20, 22, 23,
24, 25, 28, 29, 30, 31, 32, 33] and the work on recent developments in discrete frac-
tional calculus [2, 3, 4, 13, 16] will evolve in the same direction. This will eliminate
the need to publish papers which have identical results but with different notation. In
addition, we prove that the Mittag-Leffler function of Riemann-Liouville fractional cal-
culus in continuous time is the limit of the Mittag-Leffler–type function of fractional
h -discrete calculus when h approaches zero. Hence the finite sum which corresponds
to the Mittag-Leffler–type function in h discrete calculus will be used to approximate
the infinite sum which represents the Mittag-Leffler function in continuous time. This
will provide a straightforward approximation for numerical calculations in this area.

2. Preliminaries

DEFINITION 1. Let a ∈ R and h ∈ R
+ . The backward h -difference operator for

a function f : hNa −→ R is defined by

∇h f (t) =
f (t)− f (t−h)

h
, t = a+h, a+2h, . . . ,

where hNa = {a, a+h, a+2h, . . .} .

REMARK 1. We note that

i) if h = 1, we have the backward difference operator, or nabla operator (∇)

(∇ f ) (t) = f (t)− f (t−1), t ∈ Na+1,

ii) if lim
h→0

f (t)− f (t −h)
h

exists, then we have f ′(t) = limh→0 ∇h f (t) .

DEFINITION 2. For any t , r ∈ R and h > 0, the h -rising factorial function is
defined by

trh = hr Γ( t
h + r)

Γ( t
h )

,

where the quotient is well-defined. Here Γ(·) denotes the Euler gamma function.

In [7], Theorem 103 has the following special form if the time scale is considered
as hNa .

THEOREM 1. Let t ∈ hNa . If f is a real valued function defined on hNa , then the
solution of the initial value problem

∇n
hy(t) = f (t), ∇i

hy(a−h) = 0, 0 � i � n−1

is given by

y(t) =
1

Γ(n)

t/h

∑
s=a/h

(
t−ρ(sh)

)n−1
h f (sh)h.
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Here y(t) represents n -fold summation of f (t) , i.e.

y(t) =
t/h

∑
s=a/h

t/h

∑
s=a/h

· · ·
t/h

∑
s=a/h︸ ︷︷ ︸

n term

f (t).

In other words, y(t) = ∇−n
h f (t) . Replacing n by any positive real number yields the

following.

DEFINITION 3. [2] Let α > 0 and a be two real numbers. For a function f :
hNa −→ R , the nabla h -fractional sum with order α is defined by

∇−α
h,a f (t) :=

1
Γ(α)

t/h

∑
s=a/h

(
t −ρ(sh)

)α−1
h f (sh)h, t ∈ hNa,

where h > 0 and ρ(t) = t−h.

DEFINITION 4. The nabla h -fractional difference of order α in the sense of Rie-
mann-Liouville is defined by

∇α
h,a f (t) := ∇n

h ∇−(n−α)
h,a f (t), t ∈ hNa+nh,

where a,α ∈ R, n−1 < α < n, and n is a positive integer.

THEOREM 2. [7] Let a be any real number, h > 0 , and t ∈ hNa . Then for a
function f (t, ·) : N a

h
→ R the following identity is true.

∇h

t/h

∑
s=a/h

f (t,s) =
t/h

∑
s=a/h

∇h f (t,s)+
f (t −h, t

h )
h

.

Theorem 2 will be crucial in the proof of the following result.

THEOREM 3. Assume f : hNa → R; α > 0 , α /∈ N1 , and choose n ∈ N1 such
that n−1 < α < n. Then,

∇α
h,a f (t) :=

1
Γ(−α)

t/h

∑
s=a/h

(t−ρ(sh))−α−1
h f (sh)h, t ∈ hNa. (1)

Proof. We prove the statement (1) using mathematical induction on n . Let n = 1.
Then, 0 < α < 1. Consider

∇α
h,a f (t) = ∇h∇−(1−α)

h,a f (t)

= ∇h

[
1

Γ(1−α)

t/h

∑
s=a/h

(t−ρ(sh))−α
h f (sh)h

]
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=
1

Γ(1−α)

t/h

∑
s=a/h

∇h

[
(t−ρ(sh))−α

h

]
f (sh)h

+
1
h

[
(t −ρ(sh))−α

h f (sh)h
]
t→t−h, s→ t

h

=
1

Γ(1−α)

t/h

∑
s=a/h

[
Γ(−α +1)

Γ(−α −1+1)
(t−ρ(sh))−α−1

h

]
f (sh)h+0

=
1

Γ(−α)

t/h

∑
s=a/h

(t−ρ(sh))−α−1
h f (sh)h.

Assume the statement (1) is true for n = k . Then, we have

∇α
h,a f (t) = ∇k

h∇−(k−α)
h,a f (t) = ∇k

h

[
1

Γ(k−α)

t/h

∑
s=a/h

(t −ρ(sh))k−α−1
h f (sh)h

]
(2)

=
1

Γ(−α)

t/h

∑
s=a/h

(t −ρ(sh))−α−1
h f (sh)h. (3)

Next, we prove the statement (1) is true for n = k+1. Here k < α < k+1. Consider

∇α
h,a f (t) = ∇k+1

h ∇−(k+1−α)
h,a f (t)

= ∇k+1
h

[
1

Γ(k+1−α)

t/h

∑
s=a/h

(t−ρ(sh))k−α
h f (sh)h

]

= ∇k
h

(
∇h

[
1

Γ(k+1−α)

t/h

∑
s=a/h

(t−ρ(sh))k−α
h f (sh)h

])

= ∇k
h

( 1
Γ(k+1−α)

t/h

∑
s=a/h

∇h

[
(t−ρ(sh))k−α

h

]
f (sh)h

+
1
h

[
(t −ρ(sh))k−α

h f (sh)h
]
t→t−h, s→ t

h

)

= ∇k
h

(
1

Γ(k+1−α)

t/h

∑
s=a/h

[
Γ(k−α +1)

Γ(k−α −1+1)
(t−ρ(sh))k−α−1

h

]
f (sh)h+0

)

= ∇k
h

(
1

Γ(k−α)

t/h

∑
s=a/h

(t−ρ(sh))k−α−1
h f (sh)h

)

= ∇k
h∇−(k−α)

h,a f (t) (From Definition 3)

=
1

Γ(−α)

t/h

∑
s=a/h

(t−ρ(sh))−α−1
h f (sh)h. (From (2))
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Thus, the statement (1) is true for n = k + 1. Hence, by principle of mathematical
induction, the statement (1) is true for all n ∈ N1 . �

In view of Definition 3 and Theorem 3, the unified definition for α -th order nabla
h -fractional sum and differences is as follows:

DEFINITION 5. Let α and a be two real numbers. The α -th order nabla h -
fractional difference in the sense of Riemann–Liouville of a function f : hNa → R is
defined by

∇α
h,a f (t) :=

1
Γ(−α)

t/h

∑
s=a/h

(t−ρ(sh))−α−1
h f (sh)h, t ∈ hNa, (4)

where h > 0.

3. Approximations

Next we recall the definition of the fractional order Grünwald–Letnikov like h -
difference operator given in [17].

DEFINITION 6. Let α and a be two real numbers. The α -th order Grünwald–
Letnikov like h -difference of a function f : hNa → R is defined by

GL∇α
h,a f (t) :=

t−a
h

∑
r=0

h−α
[
(−1)r α(α −1) · · ·(α − r+1)

r!

]
f (t − rh), t ∈ hNa,

where h > 0.

We assume that f in an integrable function on the set of positive real numbers.

LEMMA 1. The following are valid:

i) ∇α
h,a f (t) =GL ∇α

h,a f (t), t ∈ hNa.

ii) If limh→0

[
∇α

h,a f (t)
]

exists, then limh→0

[
∇α

h,a f (t)
]

=

{
Dα

a f (t), α � 0

Iα
a f (t), α < 0,

for t ∈ R
+ , where Dα

a , Iα
a are Riemann-Liouville fractional derivative and integral

operators, respectively.

Proof. The proof of i) follows from the lines below:

∇α
h,a f (t) =

1
Γ(−α)

t/h

∑
s=a/h

(t−ρ(sh))−α−1
h f (sh)h

=
1

Γ(−α)

t−a
h

∑
r=0

(rh+h)−α−1
h f (t − rh)h (Take t− rh = sh)
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=
1

Γ(−α)

t−a
h

∑
r=0

h−α−1 Γ( rh+h
h −α −1)

Γ( rh+h
h )

f (t − rh)h

=

t−a
h

∑
r=0

h−α Γ(r−α)
Γ(r+1)Γ(−α)

f (t − rh)

=

t−a
h

∑
r=0

h−α
[−α(−α +1) · · ·(−α + r−1)

r!

]
f (t − rh)

=

t−a
h

∑
r=0

h−α
[
(−1)r α(α −1) · · ·(α − r+1)

r!

]
f (t − rh)

=GL ∇α
h,a f (t).

Thus, we have
∇α

h,a f (t) =GL ∇α
h,a f (t), t ∈ hNa.

The proof of ii) may be found in [26]. �

Next, we recall the well-known Mittag–Leffler function in fractional calculus and
the Mittag-Leffler type function in fractional h -discrete calculus respectively.

DEFINITION 7. A two-parameter function of the Mittag–Leffler type is defined
by the series expansion

Eα ,β (x) =
∞

∑
k=0

xk

Γ(αk+ β )
, α > 0, β > 0, x ∈ R. (5)

DEFINITION 8. [2] Let μ , λ , t0 ∈ R and ν > 0. A two-parameter function of
the Mittag–Leffler type in discrete time is defined by

Ẽh
λ ,ν,μ(t, t0) =

1
hμ

(t − t0 +h)μ
h

Γ(μ +1)
+

1
hμ

t
h

∑
n= t0

h +1

λ n− t0
h

(t −ρ(nh))
ν(n− t0

h )+μ
h

Γ(ν(n− t0
h )+ μ +1)

, t ∈ hNt0 .

(6)

DEFINITION 9. [21] Let λ , β ∈ R and α > 0. A discrete-time Mittag–Leffler
function is defined by

E(α ,β )(λ ,n) =
∞

∑
k=0

λ k
(

n− k+ kα + β −1
n− k

)
, n ∈ Z. (7)

Our plan is to prove that the Mittag–Leffler type function in fractional h -discrete
calculus approaches to the Mittag-Leffler function of fractional calculus when h is
getting closer to zero. The following identity plays an important role in the proof.
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(Wendel’s Limit) For any real numbers x , a and b ,

lim
x→∞

[
xa−b Γ(x+a)

Γ(x+b)

]
= 1. (8)

Next, we recall Tannery’s Theorem since it will be a main tool in proof of follow-
ing lemma.

THEOREM 4. [10] Suppose we are given sequences (an(p)) ⊂ R depending on
p ∈ N0 . Assume

lim
p→∞

an (p) = an,

for all n ∈ N0 ,

|an (p)| � Mn, for all n, p ∈ N0 , where
∞

∑
n=0

Mn < ∞.

Then

lim
p→∞

p

∑
n=0

an (p) = lim
p→∞

∞

∑
n=0

an (p) =
∞

∑
n=0

an.

LEMMA 2. The following are valid:

i) E(ν,μ+1)(λhν , t
h ) = Ẽh

λ ,ν,μ(t,0) for t ∈ hN0.

ii) limh→0

[
hμ Ẽh

λ ,ν,μ(t,0)
]

= tμEν,μ+1(λ tν).

Proof. The proof of i) is straightforward. Hence we omit the proof. In Definition
8, take t0 = 0. Then, we obtain

Ẽh
λ ,ν,μ(t,0) =

1
hμ

(t +h)μ
h

Γ(μ +1)
+

1
hμ

t
h

∑
n=1

λ n (t−ρ(nh))νn+μ
h

Γ(νn+ μ +1)

=
1
hμ

t
h

∑
n=0

λ n (t −ρ(nh))νn+μ
h

Γ(νn+ μ +1)

=
1
hμ

t
h

∑
n=0

λ n (t −nh+h)νn+μ
h

Γ(νn+ μ +1)

=
1
hμ

t
h

∑
n=0

λ nhνn+μ Γ( t−nh+h
h + νn+ μ)

Γ( t−nh+h
h )

1
Γ(νn+ μ +1)

=

t
h

∑
n=0

λ nhνn Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)Γ(νn+ μ +1)

. (9)
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Consider

lim
h→0

[
hμ Ẽh

λ ,ν,μ(t,0)
]

= lim
h→0

⎡
⎣ t

h

∑
n=0

λ nhνn+μ Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)Γ(νn+ μ +1)

⎤
⎦

= lim
t
h→∞

⎡
⎣ t

h

∑
n=0

λ nhνn+μ Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)Γ(νn+ μ +1)

⎤
⎦

= lim
t
h→∞

⎡
⎣ t

h

∑
n=0

λ ntνn+μ
( t

h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)Γ(νn+ μ +1)

⎤
⎦ . (10)

To prove ii) , we first use Wendel’s Limit. Then we have

lim
t
h→∞

[( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

]
= 1. (11)

That is, for any given any ε > 0 there exists K = K(ε) > 0 such that for any t
h > K ,∣∣∣∣( t

h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

−1

∣∣∣∣< ε, (12)

implying that

1− ε <
( t

h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

< 1+ ε. (13)

Consider

∞

∑
n=0

λ ntνn+μ
( t

h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)Γ(νn+ μ +1)

=
∞

∑
n=0

λ ntνn+μ

Γ(νn+ μ +1)

( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

=
∞

∑
n=0

λ ntνn+μ

Γ(νn+ μ +1)

( t
h

)−(νn+μ)( t
h
−n+1

)νn+μ

=

t
h

∑
n=0

λ ntνn+μ

Γ(νn+ μ +1)

( t
h

)−(νn+μ)( t
h
−n+1

)νn+μ

+
∞

∑
n= t

h +1

λ ntνn+μ

Γ(νn+ μ +1)

( t
h

)−(νn+μ)( t
h
−n+1

)νn+μ

= L1 +L2. (14)
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We know that
(

t
h −n+1

)νn+μ = 0 for all n ∈ N t
h +1 . Thus,

L2 =
∞

∑
n= t

h +1

λ ntνn+μ

Γ(νn+ μ +1)

( t
h

)−(νn+μ)( t
h
−n+1

)νn+μ
= 0. (15)

Consequently, from (14) and (15), we obtain

∞

∑
n=0

λ ntνn+μ
( t

h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)Γ(νn+ μ +1)

=

t
h

∑
n=0

λ ntνn+μ

Γ(νn+ μ +1)

( t
h

)−(νn+μ)( t
h
−n+1

)νn+μ

=

t
h

∑
n=0

λ ntνn+μ

Γ(νn+ μ +1)

( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

. (16)

Now, consider

lim
h→0

[
hμ Ẽh

λ ,ν,μ(t,0)
]

= lim
t
h→∞

⎡
⎣ t

h

∑
n=0

λ ntνn+μ
( t

h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)Γ(νn+ μ +1)

⎤
⎦ (By (10))

= lim
t
h→∞

[
∞

∑
n=0

λ ntνn+μ

Γ(νn+ μ +1)

( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

]
(By (16)). (17)

We apply Tannery’s theorem (Theorem 4) to (17). Here

an

( t
h

)
=

λ ntνn+μ

Γ(νn+ μ +1)

( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

,

and denote by

S t
h

=
∞

∑
n=0

an

( t
h

)
.

First, we show that

lim
t
h→∞

an

( t
h

)
= bn.

We have

bn = lim
t
h→∞

an

( t
h

)

= lim
t
h→∞

[
λ ntνn+μ

Γ(νn+ μ +1)

( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

]
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=
λ ntνn+μ

Γ(νn+ μ +1)
lim
t
h→∞

[( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

]

=
λ ntνn+μ

Γ(νn+ μ +1)
. [By (11)] (18)

Next, we show that ∣∣∣an

( t
h

)∣∣∣� Mn, and
∞

∑
n=0

Mn < ∞.

For all t
h ∈ N

K
0 , ( t

h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

is a non-negative continuous function. So, it is bounded for all t
h ∈ N

K
0 . Then, there

exists a constant A � 0 such that( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

� A,
t
h
∈ N

K
0 . (19)

Then, ∣∣∣an

( t
h

)∣∣∣= ∣∣∣∣λ ntνn+μ
( t

h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)Γ(νn+ μ +1)

∣∣∣∣
� |λ |n tνn+μ

Γ(νn+ μ +1)

∣∣∣∣( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

∣∣∣∣
=

|λ |n tνn+μ

Γ(νn+ μ +1)

[( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

]

� A
|λ |n tνn+μ

Γ(νn+ μ +1)
. [By (19)] (20)

For t
h > K , consider∣∣∣∣λ ntνn+μ

( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)Γ(νn+ μ +1)

∣∣∣∣
� |λ |n tνn+μ

Γ(νn+ μ +1)

∣∣∣∣( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

∣∣∣∣
=

|λ |n tνn+μ

Γ(νn+ μ +1)

[( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

]

< (1+ ε)
|λ |n tνn+μ

Γ(νn+ μ +1)
. [By (13)] (21)

Choose M = max{A,(1+ ε)} and denote by

Mn = M
|λ |n tνn+μ

Γ(νn+ μ +1)
.
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It follows from (20) and (21) that ∣∣∣an

( t
h

)∣∣∣� Mn.

Also,
∞

∑
n=0

Mn = M
∞

∑
n=0

|λ |n tνn+μ

Γ(νn+ μ +1)

= Mtμ
∞

∑
n=0

(|λ |tν)n

Γ(νn+ μ +1)

= MtμEν,μ+1(|λ |tν).

Since
∞

∑
n=0

|λ |n tνn+μ

Γ(νn+ μ +1)

is convergent for all t ∈ R , we have
∞

∑
n=0

Mn < ∞.

Thus, all the conditions of Tannery’s theorem hypothesis are satisfied. Hence, by Tan-
nery’s theorem, we have

lim
t
h→∞

S t
h

= lim
t
h→∞

∞

∑
n=0

an

( t
h

)

=
∞

∑
n=0

[
lim
t
h→∞

an

( t
h

)]

=
∞

∑
n=0

bn

=
∞

∑
n=0

λ ntνn+μ

Γ(νn+ μ +1)

= tμ
∞

∑
n=0

(λ tν)n

Γ(νn+ μ +1)

= tμEν,μ+1(λ tν).

Finally, from (17) and the above equality, we have

lim
h→0

[
hμ Ẽh

λ ,ν,μ(t,0)
]

= lim
t
h→∞

[
∞

∑
n=0

λ ntνn+μ

Γ(νn+ μ +1)

( t
h

)−(νn+μ) Γ( t
h −n+ νn+ μ +1)

Γ( t
h −n+1)

]

= lim
t
h→∞

S t
h

= tμEν,μ+1(λ tν). �
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REMARK 2. While discrete Mittag-Leffler type function Ẽ1
λ ,ν,ν−1(t,0) for ν ∈

(0,1) , solves the equation

∇ν
h,0y(t) = λy(t−h), t ∈ hNh,

another Mittag-Leffler type function given in [4]

hê
(

λ , tν
h

)
= (1+ λhν)

1
hν−1

∞

∑
n=0

λ n(t +h)νn+ν−1
h

Γ(νn+ ν)
, t ∈ hN0

solves the equation
∇ν

h,0y(t) = λy(t), t ∈ hNh.

The following approximation can be proven using Tannery’s theorem:

lim
h→0

[
hν−1

(1+ λhν) hê
(

λ ,tν
h

)]
= tν−1Eν,ν(λ tν).
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