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EXISTENCE RESULTS FOR A CAPUTO-HADAMARD
TYPE FRACTIONAL BOUNDARY VALUE PROBLEM
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(Communicated by J. Tariboon)

Abstract. The main purpose of this paper is to establish the existence and uniqueness of mild so-
lutions for a Caputo-Hadamard type fractional boundary value problem. Existence and unique-
ness results are based on the Krasnoselskii fixed point theorem and the Banach contraction map-
ping principle. Finally, two examples are given to illustrate this work.

1. Introduction

Fractional differential equations arise from a variety of applications including in
various fields of science and engineering such as applied sciences, physics, chemistry,
biology, medicine, etc. In particular, problems concerning qualitative analysis of lin-
ear and nonlinear fractional differential equations have received the attention of many
authors, see [1]-[20], [22]-[25] and the references therein.

In [18], Niyom et al. studied the existence and uniqueness of solutions of the
following boundary value problem with four Riemann-Liouville fractional derivatives

(AD* + (1 - 1)DB) x(t) = f(t,x(t)), t € (0,T),
X(0) =0, uD"X(T) + (1 —pu)D2X(T) = 1,

where D? is the Riemann-Liouville fractional derivative of order ¢ € {a,,71,72}

suchthat 1< o, <2and 0<y,p<a—f, BeR, 0<A <1, 0<u<are

given constantsand f : [0, T] x R — R is a given continuous function. By using the Ba-

nach fixed point theorem, the Krasnoselskii fixed point theorem and the Leray-Schauder

nonlinear alternative, the existence and uniqueness of solutions have been established.
The nonlinear fractional differential equation

CDox(t) = f(t,x(t)) +SD* g(t,x(t)), 0<t < T,
x(0)=6; >0, X (0) =6, >0,
has been investigated in [10], where ©D¥ is the standard Caputo’s fractional derivative
oforder 1 < <2, 9,f:[0,T] x[0,00) — [0,0) are given continuous functions, g is
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non-decreasing on x and 6, > g(0,6;). By employing the method of the upper and
lower solutions and Schauder and Banach fixed point theorems, the authors obtained
positivity results.

Ahmad and Ntouyas in [1] discussed the existence and uniqueness of solutions to
the following boundary value problem

Y (@’fu(t)—g(t,ut)) = f(t,w), t[1,b],
ult) =¢(t), te[l—r1],
’Dfu(l):n eR,

where ©f and @f are the Caputo-Hadamard fractional derivatives, 0 < o, < 1.
By employing the fixed point theorems, the authors obtained existence and uniqueness
results.

Inspired and motivated by the works mentioned above, we study the existence
and uniqueness of mild solutions for the following Caputo-Hadamard type fractional
boundary value problem
(A®g+@-1)28)x0) = f(t.x(W), te (LT, "

X(1) =0, uDFX(T) + (1 - w)DPX(T) =,

where @f is the Caputo-Hadamard fractional derivative of order ¢ € {c,3,71,12}
suchthat 1< o, <2and 0<y,p<a—f, BeR, 0<A <1, 0<u<are
given constantsand f : [1,T] x R — R is a continuous function. To show the existence
and uniqueness of mild solutions, we transform (1) into an integral equation and then
use the Krasnoselskii and Banach fixed point theorems.

The rest of this paper is organized as follows. In Section 2, we introduce some
definitions and lemmas, and state some preliminaries results needed in later sections.
Also, we present the Banach and Krasnoselskii fixed point theorems. For details on the
Banach and Krasnoselskii theorems we refer the reader to [21]. In Section 3, we prove
the existence and uniqueness of mild solutions for (1). Finally, two examples are given
in Section 4 to illustrate our main results.

2. Preliminaries

We introduce some necessary definitions, lemmas and theorems which will be
used in this paper. For more details, see [13, 20].

DEFINITION 2.1. ([13]) The Hadamard fractional integral of order o« > 0 for a
continuous function x: [1,4-e) — R is defined as

IEX(t) = ﬁ/lt (Iog g)ailx(s)d—:, o >0.
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DEFINITION 2.2. ([13]) The Caputo-Hadamard fractional derivative of order o >
0 for a continuous function x: [1,+e) — R is defined as

1 t t\n-o-1 ds
o - n
le(t)—i(n )/1 (Iogs) (5 x)(s)s7n 1<a<n,

where 8" = (t4)", ne N.
LEMMA 2.1. ([13]) Letn—1<oa<n,neNand xeC"([1,T]). Then

~OLyOL _ _nil (6kx) (1) k
(IR O =) = 3, 5 (ot

LEMMA 2.2, ([13]) Forall u>0and v > —1,

N v 1t t\H-1 v as r'(v+1) v
34 (logt)" = Tﬁl)/l (Iog §> (logs) <= m(logt)”* .

LEMMA 2.3. For o € C([1,T]), the boundary value problem

{ (22¢+@-1)2])xt) = 0(t), te (1,T), 2
X

(1) =0, uDX(T) + (1 - w)DPX(T) =1,

has a unique mild solution given by

A—-1 t tye-B-1  ds 1 t tyo-l ds
X(t):7/lr(a—ﬁ)/1 (Iog§> X(s)§+xr(a)/1 (Iog§> a)(s)g
logt p(A—1) T/ T\* P71 g
TR (7/3_“(06—13—71)/1 (1005) s

Cm T TN ds
ek (095) 00

A—p)A—=1) [T/ T\* P2l ds
sk (w3) S

1—p [T T\*® 1 ds B
“iratg ) (99%) “’<S>z)7t€J—[1aTL ©

where the non zero constant A is defined by

Cp(logT)™™ (21— p)(logT)* 7
R T S P @

Proof. From the first equation of (2), we get

A=1

DIX(t) = =

DPx(t) + %w(t), ted. )
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Taking the Hadamard fractional integral of order o to both sides of (5), we obtain

A—1 t tye-B-1  ds
XV = a—p) /1 (loag) X9

t o—1
/1 (Iog E) o(s) ds +Cy +Clogt,

+ -
S S

Al ()
for C;,C; € R. The boundary condition of (2) implies that C; = 0. Hence

A—1 t tyo—B-1 ds
X(t) = m/l (logg) = x5 ©)

1 t tyo-l ds
M"(a)/l (Iog;) w(s)E+Czlogt.

Applying the Caputo-Hadamard fractional derivative of order y € {y1,7%2} such that
0 <y < o—f to(6), we have

A—1 t tyeB-v-1  ds
DYx(t) = m/l (lOQ 5) X(S);

1 ' ta—y— ds 1 _

+

Substituting the values y = 1 and w = 7» in the above relation and using the second
condition of (2), we obtain

. p(a-1) T/ T\* Pt s
#=artapom b (95) s

-n-1 1I-n
et [ () s b
TATa—mh %5 S A

A—pw)A—=1) [T/ T\* P2t ds
Trapoh (03) %

Lt (M (10a T g 88 (L) (logT)t ™
+7Ll"(oc—y2)/1 ('OQE> ST ey

u(A—=1) [T/ T\*P 7t gs
mara g b (%95) s

u T/ T\*nl  gs
e b (5) e

A-pr-1) /lT (Iog I)a_ﬁ_yz_lx(s)ﬁz

which leads to

1
CZ:X

CAl(a—B—p) s s

et )]



A CAPUTO-HADAMARD TYPE FRACTIONAL BOUNDARY VALUE PROBLEM 245

Substituting the value of the constant C, in (6), we obtain the unique mild solution (3).
This completes the proof. [

DEFINITION 2.3. A function x € C([1,T]) is said to be a mild solution of the
problem (1) if x satisfies the following associated integral equation of (1)

A-1 t tye-BF-1  ds 1 t tyo-l ds

X(t) :721"(06—[3)/1 (Iog §> X9+ )LF(a)/l <|09 5) f(sx(s)
logt p(A—1) [T/ T\*P 7t gs
Y (Yr g e (o%) XS

u T/ooT\ent ds
_721"(06—)/1)/1 <|ogg> f(sX(9)

A—pw)A—1) [T/ T\* P2t ds
reph (03) oS

TR T\* %1t ds
_m/l <|ogg> f(s7x(s))§>,t6\].

Lastly in this section, we state the fixed point theorems which enable us to prove
the existence and uniqueness of a solution of (1).

DEFINITION 2.4. Let (X,||.||) be a Banach space and &7 : X — X. The operator
&7 is a contraction operator if there isan p € (0,1) such that x,y € X imply

[2x=2y| < plIx=Yl.

THEOREM 2.1. (Banach [21]) Let . be a nonempty closed convex subset of a
Banach space X and &2 : # — _# bea contraction operator. Then thereis a unique
X € & with ZZx=X.

THEOREM 2.2. (Krasnoselskii fixed point theorem [21]) If ¢ is a nonempty
bounded, closed and convex subset of a Banach space X, &?; and &, two opera-
tors defined on % with valuesin X such that

i) P1x+ Ppye x  foral xye . r,

i) &, iscontinuous and compact,

iii) &7 isacontraction.

Thenthereexists ze % suchthat z= 2,2+ Z5z.

3. Existence and uniqueness results

Let C:=C([1,T],R) denote the Banach space of all continuous functions from
[1,T] into R with the norm ||x|| = sup{|x(t)|, t € [1,T]}.
Our first result is based on the Krasnoselskii fixed point theorem.
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THEOREM 3.1. Let f : Jx R — R be a continuous function. Assume that
(H1) There exists a function v € C(J,RR.) such that

|f(t,u)| < v(t), forae teJandeachueR.
(H2)

(logT)* P|A—1]  (logT)* P71 pyja —1]
Al(a—B+1) AT (x—B—1+1)
(logT)* P2+ (1 py|a —1
AANT(a—B—1+1)

Q1 =

<1. @)

Then, the problem (1) has at least one mild solution on J.

Proof. Let B = {x€ C:||x|| < r} be a closed bounded and convex subset of C,
where r is a fixed constant. Consider the operator & : C — C defined by

(200) = e m/( )“ T

e Tf(ox) P
t

S

log p(A—1) T/ T\*P7m1 g
T(Yrm/l (1os) XS

u T/ oT\ent ds
_7/11“(06—7/1)/1 (Iogg> f(sX(9)S

A—p)A—=1) [T/ T\* P2l ds
sk (w3) oS
o

+

1

_fyz) /1T (Iog 2)05_7%1 f(s,x(s))d—ss> ,ted.

Let us define 21, %%, :C — C by

_ o—pB—
(gzlx)(t)zilﬁ’}a_l)ﬁ)/: (Iogtg) lx(s)d—ss

Clogt [ p(A-1) T/ T\*Pnt o gs
Ny (Ana 7 (o9%) s

A—p)A—=1) [T/ T\* P2l ds
g (%05) X(S)?>’

AT
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and
R0 =117, (o9g)” 1639
_%/j <'°9£>Wl f<syx<s>>d—j> .
Clearly

(2X)(t) = (21X) (1) + (P22X)(1), t € J. (8)

Obviously the operator & has a fixed point is equivalent to &7 + &2, has one, so it
turns to prove that 21 + &2, has a fixed point. We shall show that the operators &7,
and &7, satisfy all conditions of the Krasnoselskii fixed point theorem. The proof will
be given in several steps.

Sepl. B, C B;. Let us select

o VI + %[ (logT) /A
= 1-Q ’

where Q; defined by (H2) and

(logT)*  (logT)* ™ u  (logT)**™(1—p)

2= TN a+1)  AANa—nt1) | AAT(a—p+D)

©)

For any x € By, we have

a—p—
(200 <| a5 | (I t) x(9%
t ds
f [ (log) 16X
oau—1 (T TV
MF(a—B—n)/l (og) xS

(logt) (A—m)(A—1) (T (, T\“ P72 ds
AT B—7) /1 (Iogg) X(S)g
logt u T TGP ds
(s | (o03) " e

(1—p) [T/ T\**! ds
_m/l <Iogg> f(s7x(s))§>
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< (09T 1A= (logT)* P i 1]
- AT(oc—B+1) ANT (=B —n+1)

(logT)* P21 i)ja —1|\ | |x|logT
AN (=B —p+1) A

+”v”< (logT)*  (logT)* "1y <IogT>“—°’2“<l—u>>

AT(a+1)  AAT(0—p+1)  AAT(a—p+1)

|y3/log T <r
A

<rQ + HVHQz-l-

which implies that #B; C B;.

Sep 2. &7, is compact and continuous. Observe that the operator P, is uniformly
bounded in view of Step 1. Let t1,t, € J with t; <t and x € B,. Then we obtain

[(Z72%)(t2) — (Z72%) ()|
< )LFl(a) /:1 [(Iog t—;)H ~ (tog %)al] v(s)d—sS

1 t try -1 ds

+/1r(a)/t1 (loag)  vog
|logt, — logt,| u /T T\ "t ds
A Bl e L 1095 v(s)g

1—p) (T T\* %!  ds
g () o)

= m ((logtz)* — (logt1)*)
u(logT)* ™ [v]| | (1—p)(I0gT)* "™ |v||\ |logt, —logty|
+ <|Y3|+ lr(a—)/l—l-l) AF((X—Yz+1) ) 1 ,

which is independent of x and tends to zero as t, —t; — 0. Thus, &%,(By) is equicon-
tinuous. So, by the Arzela-Ascoli theorem, &2, (By) is a relatively compact set. Hence
P, is compact. Moreover, the continuity of f implies that &2, is continuous.

Sep 3. 2, is contraction. Let x,y € B, . Then, we have
[(Z1%) (1) — (Z1y) (V)]

o T o—p-1
<rag b (oog) M9yl

(logT)ulA—1] [T/ T\*FPmnt ds
L (log;) X(9) — y(s)| &

B _ oa—p-p-1
(logT) (1 —w)[A -1 T(|09T> x(8) — y(5)| =

AMT(—B—1) L s
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AT(o—B+1) AAT (00 =B —n+1)
a—B-p+lq _ _
(logT) (1—p)A—1] } Xy

_ {(logT)“—ﬁ A—1]  (logT)* P % pja —1]

AAT(a—B—72+1)
:QlHX_yna
which is contraction, since Q; < 1.

From the above three steps, we conclude by the Krasnoselskii fixed point theorem
that & has a fixed point which is a mild solution of the problem (1). O

Our second result is based on the Banach fixed point theorem.

THEOREM 3.2. Let f :Jx R — R be a continuous function. Assume that
(H3) There exists a constant L > 0 such that

F(tX) - F(ty)| <Lix—yl, forted, xyeER.

LQy +Qy < 1, (10)

where Q; and Q, are given by (7) and (9), respectively, then the problem (1) has a
unique mild solutionon J.

Proof. Choosing
NQ + 15[ (logT) /A
1-1LQ;—Q; 7

where N = sup,;|f (t,0)| and A is given by (4). We prove that 2’Br C Br, where

R>

Br={xcC:|x| <R}

For any x € Bg, we have

|(5”x)(t)|\‘/l(l 1))/t( )"‘“x(sw'_s

IN'oa—-p S
t
R Clk
(Iogt /,L(l epn-l o gs
g ( :) s
(logt) (1— ) (A —1) Pl gs
 AAT(a—B—p) / ( ) X5

logt u T T\*Pnt ds
A (YS‘ AT(o— 1) J <'°9§> fex(E)
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(1—p) [T/, T\**! ds
_7/1r(a—yz)/1 (Iogg> f(s,x(s))§>'

a=By _ a—B-n+1 -
<IN ((IogT) -1 (logT) ulA 1]

AT(o—B+1) AAT (00 =B —n+1)

(logT)* P2t (1 1)ja —1]\ . |x|logT
AAT (o —B—p+1) A

+(Lx||+N)<('°9T)°‘ (logT)* "y (logT)awl(l_m)

AT(a+1)  AAT(0—p+1)  AAT(a—p+1)

[y3/log T
A

This means that ||.27X|| < R, which leads to &’Bg C Bg.
Next, we let x,y € C. Then, for t € J, we have

(X))~ (2y) )]
(A-1) a—p-1 ds
ma B)/( ) |x<s>—y<>\g

< (Q1+LQ) R+NQ, + <R

o (00])" T Itex(s) - f(sye) T
(Iogt A—1) [T/ T\*FPmnt ds
el (logg) () - y(9) S
(logt) (1—p)(A—1) T/ T\ P2 ds
e | (Iogg) () (9] =

logt u T\* Pt
+T<7@—m [ (lag) " Itexe) - ey

— o-r-l
+%[(mg£) f(s,x(s))—f(s,y(8)>|dgs>

(logT)* . (logT)* "*'y  (logT)* »** (1)
AT(a+1)  AAT(e—n+1) AAT(a—p+1)

(logT)* P 1A —1]  (logT)* Pty |y 1
Al(a—B+1) AT (x—B—1+1)
(logT)* P2 (1 — A 1
A (e —B—1r+1)
< (LQ2 + Q1) [[x—Y][,

<LX—yII[

+x=yl

+

which implies that
127x—= 2|l < (L2 + Q1) [[x— ]|
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From (10), it follows that & is a contraction. Therefore, by the Banach fixed point
theorem, we see that &2 has a fixed point which is a unique mild solution of the problem
(1. O

4. Two examples
In this section, we give two examples to illustrate our main results.

ExAaMPLE 4.1. Consider the following fractional boundary value problem

i t 4
{§@”50+%®W5w SN L4 tepne

1/4 17/5—H v
X(1) =0, 507 "x(e) + 3Dy "x(e) = 3.

Here A =35/38, . =8/5, B =6/5, u=14/30, 1 =1/4, »=1/5, 3 =4/5,
T=eand f(t,x) = 35 +4/5. Observe that 0 < y1,7%» < 2/5= o — . Itis obvious
that

(11)

1 4
f(t <o—+ ==Vt
f(tX)] < 775+ = V),
which satisfies the condition (H1) of Theorem 3.1. In addition, we get
Q1 ~0.757 < 1.

Hence, by Theorem 3.1, the fractional boundary value problem (11) has at least one
mild solution. Also, we have

(X~ Ty < g Ixy,
so, L=1/8, Q, ~1.581 and
LQy 4+ Qg ~0.955 < 1.
Then by Theorem 3.2, the problem (11) has a unique mild solution.

ExXAMPLE 4.2. Consider the following fractional boundary value problem

130y5/3, 4/3, X(t) +cosx(t) 5
{%@ K0 + 4o = XU L 2 v,

X(1) =0, §27°x(e)+ E7 x(e) = §.
Here A =43/45, a =5/3, B =4/3, u=17/40, y1 =1/6, » =1/7, 15 = 6/7,

T=eand f(t,x) = X%* +5/7. Observe that 0 < 71,7%» < 1/3=a — 8. We have

(12)

1
[T(t,x) — f(ty)] < 5 =yl

which satisfies the condition (H3) of Theorem 3.2 with L = 1/2. Also, we obtain
Q; ~0.0997, Q, ~ 1.4321 and

LQ, + Qg ~0.8157 < 1.

Hence, by Theorem 3.2, the problem (12) has a unique mild solution.
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5. Conclusion

The Caputo-Hadamard type fractional boundary value problem is considered. So,

we have studied the existence and uniqueness of mild solutions. The main tool of this
work is the Krasnoselskii and Banach fixed point theorems. However, by introducing
new fixed mappings, we obtain new existence conditions. Besides, two examples are
exhibited to validate the effectiveness of our results. The obtained results have a con-
tribution to the related literature, and they extend the results in [ 18] from the case of
Riemann-Liouville type fractional boundary value problems to that case with Caputo-
Hadamard type fractional boundary value problems.
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