
Fractional
Differential

Calculus

Volume 12, Number 1 (2022), 1–12 doi:10.7153/fdc-2022-12-01

EXISTENCE OF MILD SOLUTIONS FOR SEMILINEAR EVOLUTION

EQUATION USING HILFER FRACTIONAL DERIVATIVES

BANDITA ROY AND SWAROOP NANDAN BORA ∗

(Communicated by C. Cuevas)

Abstract. In this article, we discuss the existence of solutions of a class of Cauchy-type fractional
semilinear evolution equation involving Hilfer fractional derivative. A nonlocal Cauchy prob-
lem is also discussed for evolution equations. The results are obtained by using various results
of fractional calculus and fixed point theorems in the weighted space of continuous functions.
Examples are presented to illustrate the derived theory.

1. Introduction

The theory of fractional differential equations is considered as an important branch
of differential equation and hence it has been emerging as an important area of inves-
tigation in the last few decades due to its growing number of applications in various
areas of applied sciences and engineering [11, 12, 14, 15]. This subject is as old as
classical calculus, that is, around the time (17th century) when Newton and Leibnitz
independently developed differential and integral calculus.

The primary advantage of fractional calculus over classical calculus very well lies
in the fact that fractional derivatives provide an excellent tool for describing memory
and hereditary properties of various materials and processes, and make the fractional
order models more realistic than the integer order models. Recently, many models have
been reformulated and expressed in terms of fractional differential equations so that
their physical meaning can be incorporated in the mathematical models more realisti-
cally. For quite some time now, fractional differential equations are being considered
as an alternative model to the nonlinear differential equations.

Many processes can be described accurately by using systems of differential equa-
tions containing different types of fractional derivatives. There are many possible gen-

eralizations of the n -th order operator
dn

dxn to the case when n is not an integer, named

as Riemann-Liouville, Caputo, Grünwald-Letnikov, Hadamard’s etc. These operators
interpolate between integer order differential operators. The most popular among them
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are the derivatives expressed in the Riemann-Liouville and Caputo sense. In [11], Hil-
fer proposed a new definition of fractional derivative, called Hilfer fractional deriva-
tive, which includes both Riemann-Liouville fractional derivative and Caputo fractional
derivative.

In [7], Furati et al. took up an initial value problem for a class of nonlinear frac-
tional differential equation involving Hilfer fractional derivative. Wang and Zhang [17]
investigated the following nonlocal initial value problem:

Dα ,β
a+ x(t) = f (t,x(t)), α ∈ (0,1), β ∈ [0,1], t ∈ (a,b],

I1−γ
a+ x(a+) =

m

∑
i=1

λix(τi), γ = α + β −αβ , τi ∈ (a,b],

where Dα ,β
0+ denotes the Hilfer derivative of order α and type β which will be defined

in the next section. Some more problems involving Hilfer derivative can be found in
[1, 2, 16].

Hilfer derivative is notably more general than Riemann-Liouville and Caputo frac-
tional derivatives and so the results that are obtained are also more general than the
known results. The facts that fractional differential equations encompass more at-
tributes and that Hilfer derivative is more general in nature motivate us to pursue studies
in this area.

In this article, we study the existence and uniqueness of mild solutions of the
following semilinear evolution equation:

Dα ,β
0+ x(t) = A(t)x(t)+ f (t,x(t)),

α ∈ [0,1], β ∈ (0,1), t ∈ (0,b] = J′,

with initial condition

I1−γ
0+ x(0) = x0,

and nonlocal condition

I1−γ
0+ x(0)−g(x) = x0,

where A(t) is a bounded linear operator on R for each t ∈ J = [0,b] , 1− γ = (1−
α)(1−β ) and x0 ∈ R . f : J×R −→ R is a given nonlinear function and g is a given
function satisfying some assumptions which will be specified later. For more details
related to the above class of differential equations, the readers are referred to [3, 10, 13].

Nonlocal conditions are introduced to extend the study of classical initial value
problems. The study of nonlocal conditions was initiated by Byszewski [4] when he
proved the existence and uniqueness of mild and classical solutions of nonlocal Cauchy
problems. As remarked by Byszewski and Laksmikantham [5], the nonlocal condi-
tions can be more useful than the standard initial condition in describing some physical
phenomena.
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2. Preliminaries

In this section we present the following definitions and theorems which will be
used in establishing our results.

DEFINITION 1. [7, 17] Let −∞ < a < b < ∞ and C[a,b] be the Banach space of
all continuous functions from [a,b] into R with the norm ‖ f‖C = supt∈[a,b] | f (t)| . For
0 � 1− γ < 1, the weighted space C1−γ [a,b] of continuous functions f on (a,b] is
defined as

C1−γ [a,b] = { f : (a,b] → R : (t−a)1−γ f (t) ∈C[a,b]}.
Then C1−γ [a,b] is a Banach space with the norm

‖ f‖C1−γ
= ‖(t−a)1−γ f (t)‖C , C0[a,b] = C[a,b].

By L1[a,b] , we denote the space of all Lebesgue-integrable functions f : [a,b] →
R with the norm

‖ f‖1 =
∫ b

a
| f (t)|dt.

DEFINITION 2. [8] The left-sided Riemann-Liouville fractional integral Iα
a+ f of

order α > 0 is defined by

(Iα
a+ f )(t) :=

1
Γ(α)

∫ t

a
(t− s)α−1 f (s)ds, t > a,

provided that the integral exists. Here Γ(.) is the gamma function. When α = 0, we
define I0

a+ f = f .

DEFINITION 3. [8] The left-sided Riemann-Liouville fractional derivative Dα
a+ f

of order α (0 < α < 1) is defined by

(Dα
a+ f )(t) :=

d
dt

(I1−α
a+ f )(t),

provided the right-hand side exists.

DEFINITION 4. [6, 18] The left-sided Caputo fractional derivative CDα
a+ f of or-

der α � 0 is defined by
CDα

a+ f = In−α
a+ Dn f ,

where n is the least integer � α , whenever Dn f ∈ L1[a,b] .

DEFINITION 5. [9] The left-sided Hilfer fractional derivative of order 0 � α � 1
and type 0 < β < 1 of a function f (t) with lower limit a is defined as

Dα ,β
a+ f (t) = Iα(1−β )

a+ DI(1−α)(1−β )
a+ f (t), where D :=

d
dt

.
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In order to solve our problem, the following function spaces are considered:

Cα ,β
1−γ [0,b] = { f ∈C1−γ [0,b],Dα ,β

0+ f ∈C1−γ [0,b]}
and

Cγ
1−γ [0,b] = { f ∈C1−γ [0,b],Dγ

0+ f ∈C1−γ [0,b]}.
Since Dα ,β

0+ f = Iα(1−β )
0+ Dγ

0+ f , it follows from [7], Theorem 11 that

Cγ
1−γ [0,b] ⊂Cα ,β

1−γ [0,b].

THEOREM 1. (Banach fixed point theorem) [12] Let (X ,d) be a nonempty com-
plete metric space. Let T : X → X be a map such that for any x,y ∈ X ,

d(Tx,Ty) � kd(x,y), 0 � k < 1

holds. Then the operator T has a unique fixed point x∗ ∈ X .

THEOREM 2. (Krasnoselskii’s fixed point theorem) [3] Let S be a nonempty
closed, convex subset of a Banach space X . Let P and Q be two operators such
that

(1) Px+Qy∈ S for every pair x,y ∈ S ,
(2) P is a contraction mapping,
(3) Q is compact and continuous.
Then there exists z ∈ S such that z = Pz+Qz.

THEOREM 3. (Schauder’s fixed point theorem) [18] Let X be a Banach space
and S ⊂ X a convex, closed and bounded set. If T : S → S is a continuous operator
such that TS ⊂ X is relatively compact, then T has at least one fixed point in S .

3. Semilinear evolution equation

Consider the fractional semilinear evolution equation

Dα ,β
0+ x(t) = A(t)x(t)+ f (t,x(t)), α ∈ [0,1], β ∈ (0,1), t ∈ (0,b],

I1−γ
0+ x(0) = x0,

}
(1)

where A(t) is a bounded linear operator on R and x0 ∈ R .

THEOREM 4. Assume that
(i) A(.)x(.) ∈C1−γ [0,b] for any x ∈C1−γ [0,b] ,
(ii) f (.,x(.)) ∈C1−γ [0,b] for any x ∈C1−γ [0,b] , hold.
Then x ∈Cγ

1−γ [0,b] is a solution of the Cauchy problem (1) if and only if x satis-
fies the integral equation

x(t) =
x0

Γ(γ)
tγ−1 +

1
Γ(β )

∫ t

0
(t − s)β−1[A(s)x(s)+ f (s,x(s))]ds, t ∈ J′. (2)
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Proof. We refer to Theorem 23 in [7] which has been modified and presented
above in conformation with our proposed problem. The proof follows in a similar
pattern. �

Now we proceed to state our problem and establish the result.
First we introduce the following assumptions:
(H1) A(t) is a bounded linear operator on R for each t ∈ [0,b] . The function

t → A(t) is continuous in the uniform operator topology.

(H2) A(.)x(.) ∈Cα(1−β )
1−γ [0,b] for any x ∈C1−γ [0,b] ,

(H3) f : (0,b]×R → R is a function such that f (.,x(.)) ∈Cα(1−β )
1−γ [0,b] for any

x ∈C1−γ [0,b] . For all x,y ∈ R , there exists a constant L > 0 such that

| f (t,x)− f (t,y)| � L|x− y|.

Let M = supt∈[0,b] ‖A(t)‖ and set F(t) = f (t,0) .
The following existence result for problem (1) will be established by using Ba-

nach fixed point theorem.

THEOREM 5. Assume that (H1)–(H3) hold. If

ξ1 = (M +L)
B(γ,β )
Γ(β )

bβ < 1,

then there exists a unique solution for the Cauchy type problem (1) in Cγ
1−γ [0,b] ⊂

Cα ,β
1−γ [0,b] .

Proof. According to Theorem 4, it is sufficient to prove the existence result for the
equivalent integral equation (2). Define T1 : C1−γ [0,b]→C1−γ [0,b] by

(T1x)(t) =
x0

Γ(γ)
tγ−1 +

1
Γ(β )

∫ t

0
(t− s)β−1[A(s)x(s)+ f (s,x(s))]ds, t ∈ (0,b].

Let φ1 = |x0|
Γ(γ) + B(γ,β )

Γ(β ) bβ‖F‖C1−γ
. Choose r � φ1

1−ξ1
. Then we can show that

T1Br ⊂ Br where Br = {x ∈C1−γ [0,b] : ‖x‖C1−γ
� r} .

Let x ∈ Br . Then we get

t1−γ(T1x)(t) =
x0

Γ(γ)
+

t1−γ

Γ(β )

∫ t

0
(t− s)β−1A(s)x(s)ds

+
t1−γ

Γ(β )

∫ t

0
(t − s)β−1 f (s,x(s))ds.
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Therefore,

|t1−γ(T1x)(t)|

� |x0|
Γ(γ)

+
t1−γ

Γ(β )

∫ t

0
(t− s)β−1‖A(s)‖|x(s)|ds

+
t1−γ

Γ(β )

∫ t

0
(t− s)β−1[| f (s,x(s))− f (s,0)|+ | f (s,0)|]ds

� |x0|
Γ(γ)

+
Mt1−γ

Γ(β )

∫ t

0
(t− s)β−1|x(s)|ds+

Lt1−γ

Γ(β )

∫ t

0
(t− s)β−1|x(s)|ds+

t1−γ

Γ(β )

×
∫ t

0
(t− s)β−1|F(s)|ds

� r.

Now, take x,y ∈C1−γ [0,b] . Then we get

|t1−γ((T1x)(t)− (T1y)(t))|

� Mt1−γ

Γ(β )

∫ t

0
(t− s)β−1|x(s)− y(s)|ds+

Lt1−γ

Γ(β )

∫ t

0
(t− s)β−1|x(s)− y(s)|ds

� M +L
Γ(β )

t1−γ
∫ t

0
(t− s)β−1|x(s)− y(s)|ds

� M +L
Γ(β )

B(γ,β )bβ‖x− y‖C1−γ
,

which gives

‖T1x−T1y‖C1−γ
� (M +L)

Γ(β )
B(γ,β )bβ‖x− y‖C1−γ

.

Thus, T1 is a contraction mapping on C1−γ [0,b] . By applying Banach fixed point
theorem, we know that the operator T1 has a unique fixed point on C1−γ [0,b] . Then by
repeating the process of the proof carried out in Theorem 25 of [7], one can show that
the solution is actually in Cγ

1−γ [0,b] . �

4. Nonlocal problem

In this section, we discuss the existence of solution of the nonlocal problem

Dα ,β
0+ x(t) = A(t)x(t)+ f (t,x(t)), α ∈ [0,1], β ∈ (0,1), t ∈ (0,b],

I1−γ
0+ x(0)−g(x) = x0,

}
(3)

where g : C1−γ [0,b] → R is a continuous function satisfying the following condition:
(H4) there exists a constant N > 0 such that

|g(x)−g(y)|� N‖x− y‖C1−γ
for all x,y ∈C1−γ [0,b].
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THEOREM 6. Assume that (H1)–(H4) hold. If

ξ2 =
N

Γ(γ)
+ (M +L)

B(γ,β )
Γ(β )

bβ < 1,

then there exists a unique solution for equation (3) in Cγ
1−γ [0,b]⊂Cα ,β

1−γ [0,b] .

Proof. Define T2 : C1−γ [0,b]→C1−γ [0,b] by

(T2x)(t) =
x0 +g(x)

Γ(γ)
tγ−1 +

1
Γ(β )

∫ t

0
(t− s)β−1[A(s)x(s)+ f (s,x(s))]ds, t ∈ (0,b].

Choose r � φ2
1−ξ2

, where φ2 = |x0|+|g(0)|
Γ(γ) + B(γ,β )

Γ(β ) bβ‖F‖C1−γ
. Then we can show

that T1Br ⊂ Br where Br = {x ∈C1−γ [0,b] : ‖x‖C1−γ
� r} .

Let x ∈ Br . Then we get

t1−γ(T2x)(t) =
x0 +g(x)

Γ(γ)
+

t1−γ

Γ(β )

∫ t

0
(t− s)β−1A(s)x(s)ds+

t1−γ

Γ(β )

∫ t

0
(t − s)β−1

× f (s,x(s))ds.

Therefore,

|t1−γ(T2x)(t)|

� |x0|+ |g(x)|
Γ(γ)

+
t1−γ

Γ(β )

∫ t

0
(t− s)β−1‖A(s)‖|x(s)|ds+

t1−γ

Γ(β )

∫ t

0
(t − s)β−1[| f (s,x(s))

− f (s,0)|+ | f (s,0)|]ds

� |x0|
Γ(γ)

+
|g(x)−g(0)|+ |g(0)|

Γ(γ)
+

Mt1−γ

Γ(β )

∫ t

0
(t− s)β−1|x(s)|ds+

Lt1−γ

Γ(β )

×
∫ t

0
(t − s)β−1|x(s)|ds+

t1−γ

Γ(β )

∫ t

0
(t− s)β−1|F(s)|ds

� |x0|
Γ(γ)

+
N‖x‖C1−γ

Γ(γ)
+

|g(0)|
Γ(γ)

+
M +L
Γ(β )

‖x‖C1−γ
B(γ,β )tβ +

‖F‖C1−γ

Γ(β )
B(γ,β )tβ

� r.

Let x,y ∈C1−γ [0,b] . Then

|t1−γ((T2x)(t)− (T2y)(t))| � |g(x)−g(y)|
Γ(γ)

+
Mt1−γ

Γ(β )

∫ t

0
(t− s)β−1|x(s)− y(s)|ds

+
Lt1−γ

Γ(β )

∫ t

0
(t− s)β−1|x(s)− y(s)|ds

� N
Γ(γ)

‖x− y‖C1−γ
+

M +L
Γ(β )

t1−γ
∫ t

0
(t− s)β−1|x(s)− y(s)|ds

�
[ N

Γ(γ)
+

M +L
Γ(β )

B(γ,β )bβ
]
‖x− y‖C1−γ

.
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By applying Banach fixed point theorem, we get the desired result. �
Our next result will be established by employing Krasnoselskii’s fixed point theo-

rem. Here, we replace (H3) by (H3)′ with the following linear growth condition:

(H3)′ f : (0,b]×R → R be a function such that f (.,x(.)) ∈Cα(1−β )
1−γ [0,b] for any

x ∈C1−γ [0,b] . There exist constants L > 0 and K � 0 such that

| f (t,x)| � L|x|+K, for all x ∈ R.

THEOREM 7. Assume that the hypotheses (H1) , (H2) , (H3)′ and (H4) are sat-
isfied and ξ2 < 1 . Then nonlocal problem (3) has at least one solution in Cγ

1−γ [0,b] ⊂
Cα ,β

1−γ [0,b] .

Proof. Choose

r � φ3

1− ξ2
, where φ3 =

|x0|+ |g(0)|
Γ(γ)

+
K

Γ(β )
bβ+1−γ ,

and define the operators P and Q on Br as

(Px)(t) =
x0 +g(x)

Γ(γ)
tγ−1 +

1
Γ(β )

∫ t

0
(t − s)β−1A(s)x(s)ds,

and

(Qx)(t) =
1

Γ(β )

∫ t

0
(t− s)β−1 f (s,x(s))ds.

We subdivide the proof into several steps.
Step 1: To show Px+Qy ∈ Br for every x,y ∈ Br .
For x ∈ Br , we get

‖Px‖C1−γ
�

|x0|+ |g(0)|+N‖x‖C1−γ

Γ(γ)
+

MB(γ,β )
Γ(β )

bβ‖x‖C1−γ
,

and

‖Qx‖C1−γ
� LB(γ,β )

Γ(β )
bβ‖x‖C1−γ

+
Kbβ+1−γ

Γ(β +1)
.

Therefore, for every x,y ∈ Br ,

‖Px+Qy‖C1−γ
� ‖Px‖C1−γ

+‖Qy‖C1−γ
� r.

Step 2: To show that P is a contraction mapping.
It can be easily shown that, for any x,y ∈ Br ,

‖Px−Py‖C1−γ
� ξ2‖x− y‖C1−γ

.
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Step 3: To show that Q is compact and continuous.
Q is continuous: Let (xn) be a sequence such that xn → x in C1−γ [0,b] . Then for

each t ∈ (0,b] ,

|t1−γ((Qxn)(t)− (Qx)(t))| � t1−γ

Γ(β )

∫ t

0
(t − s)β−1| f (s,xn(s))− f (s,x(s))|ds

� bβ

Γ(β )
B(γ,β )‖ f (.,xn(.))− f (.,x(.))‖C1−γ

,

which implies

‖Qxn−Qx‖C1−γ
� bβ B(γ,β )

Γ(β )
‖ f (.,xn(.))− f (.,x(.))‖C1−γ

.

Therefore, Q is continuous.
Q maps bounded sets into bounded sets in C1−γ [0,b] : It is enough to show that,

for any r∗ > 0, there exists a s∗ > 0 such that for each x ∈ Br∗ , we have Qx ∈ Bs∗ .
We have,

‖Qx‖C1−γ
� LB(γ,β )

Γ(β )
bβ‖x‖C1−γ

+
Kbβ+1−γ

Γ(β +1)
� LB(γ,β )

Γ(β )
bβ r∗ +

Kbβ+1−γ

Γ(β +1)
:= s∗.

Q maps bounded sets into equicontinuous sets of C1−γ [0,b] : Let 0 < t1 < t2 � b , and
x ∈ Br , then we have

|t1−γ
2 (Qx)(t2)− t1−γ

1 (Qx)(t1))|

=
∣∣∣ t1−γ

2

Γ(β )

∫ t2

0
(t2 − s)β−1 f (s,x(s))ds− t1−γ

1

Γ(β )

∫ t1

0
(t1 − s)β−1 f (s,x(s))ds

∣∣∣
�

∣∣∣ 1
Γ(β )

∫ t2

0
[t1−γ

2 (t2 − s)β−1− t1−γ
1 (t1 − s)β−1] f (s,x(s))ds

+
t1−γ
1

Γ(β )

∫ t2

t1
(t1− s)β−1 f (s,x(s))ds

∣∣∣
which tends to zero as t2 → t1 . So by Arzelà-Ascoli theorem, Q is compact. Hence by
Krasnoselskii’s fixed point theorem, the problem defined by equation (3) has at least
one solution in C1−γ [0,b] . �

Our next result is based on Schauder fixed point theorem. Here we replace (H4)
by the following condition:

(H4)′ there exists a constant N′ > 0 such that

|g(x)| � N′ for each x ∈C1−γ [0,b].

THEOREM 8. Assume that (H1) , (H2) , (H3)′ and (H4)′ hold. If ξ1 < 1 , then

(3) has at least one solution in Cγ
1−γ [0,b] ⊂Cα ,β

1−γ [0,b] .
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Proof. Choose

r � φ4

1− ξ1
, where φ4 =

|x0|+N′

Γ(γ)
+

K
Γ(β +1)

bβ+1−γ.

Then by using the techniques of Theorem 7, it can be easily shown that T :C1−γ [0,b]→
C1−γ [0,b] defined by

(Tx)(t) =
x0 +g(x)

Γ(γ)
tγ−1 +

1
Γ(β )

∫ t

0
(t− s)β−1[A(s)x(s)+ f (s,x(s))]ds, t ∈ (0,b]

is continuous and TBr is relatively compact. Hence, it follows from Schauder’s fixed
point theorem that (3) has a solution in C1−γ [0,b] . �

5. Examples

For evolution equation:
Consider

D
1
5 , 3

5
0+ x(t) =

1
10

e−tx(t)+
(
t−8/25 +

|x(t)|
2

)
, t ∈ (0,1],

I
8
25
0+x(0) = x0.

⎫⎪⎬
⎪⎭ (4)

Here

f (t,x(t)) = t−8/25 +
|x(t)|

2
for t ∈ (0,1], A(t) =

1
10

e−t I,

where I is the identity operator. It is obvious that A(.)x(.), f (.,x(.)) ∈C 8
25

[0,1] . More-

over, | f (t,x)− f (t,y)|� 1
2 |x−y| for all x,y∈ R . Hence (H3) holds with L = 1

2 . Here,
M = 1

10 and it can be found, after some elementary computation, that

ξ1 =
( 1

10
+

1
2

)B( 17
25 , 3

5 )

Γ( 3
5 )

≈ 0.88654 < 1.

Here B(., .) denotes beta function.
Thus, all the assumptions in Theorem 5 are satisfied and therefore, we can con-

clude that (4) has a unique solution in C 8
25

[0,1] .
For nonlocal condition:
Now in equation (4), if we replace the initial condition I1−γ

0+ x(0) = x0 by the non-

local condition I1−γ
0+ x(0)−g(x) = x0 (from equation (3)), where g(x) = cx( 1

2 ), c ∈ R ,

then g satisfies (H4) with N = |c|2 8
25 . By choosing c small enough so that ξ2 < 1

holds, Theorem 6 ensures the existence of solution in C 8
25

[0,1] .
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6. Conclusion

The existence of solutions of a class of Cauchy-type fractional semilinear evolu-
tion equation involving Hilfer fractional derivative is discussed. A nonlocal Cauchy
problem is also discussed for evolution equations. The results are obtained by using
various results of fractional calculus and fixed point theorems in the weighted space
of continuous functions. Examples are constructed to illustrate the derived theory for
fractional semilinear evolution equation and for nonlocal condition.

Our future work will be devoted to the study of the following non-autonomous
evolution equation:

Dα ,β
0+ x(t) = A(t)x(t)+ f (t,x(t)), t ∈ (0,b] = J′,

I1−γ
0+ x(0) = x0,

where α ∈ [0,1] , β ∈ (0,1) , {A(t)}t∈[0,b] is a family of closed linear operators defined
on a dense domain D(A) (independent of t ) and is such that R(λ ,A(t)) , the resolvent
of A(t) , exists for any λ with ℜ(λ ) � 0 and f is a nonlinear function. Sufficient
conditions for the existence of solutions shall be established by using fractional calculus
and fixed point theorems.
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