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QUASI-BOUNDARY METHOD FOR A
FRACTIONAL ILL-POSED PROBLEM

CLAIRE JOSEPH* AND MARYSE MOUTAMAL

(Communicated by J. Blackledge)

Abstract. A quasi-boundary method is used to study an ill-posed, time-fractional diffusion equa-
tion involving the fractional Riemann-Liouville derivative. In particular, we consider an ill-posed
problem for a family of well-posed problems, and prove, by means of eigenfunction expansions,
that the solutions of the latter problems converge to the solutions associated with the former
problem. The analysis presented includes providing conditions for the rate of the convergence.

1. Introduction

Let d € N* and Q be a bounded open subset of R?, for a boundary 9Q of class
C?. For T >0,weset Q=Qx(0,T), 2= 09Qx (0,T) and consider the fractional
diffusion equation:

D%Ly(xat)_Ay(xJ):f(x:t) in Qa
o) =0 on, )
Moy T) =y(x)  on®,

where 0 < o < 1, f € L*(Q), y' € H} (Q). The operators I' =%y and D%,y are, respec-
tively, the Riemann-Liouville fractional integral of order 1 — «, and the left Riemann-
Liouville fractional derivative of order o of y.

The fractional diffusion equation has been of significant interest for many decades.
The equation (specifically the time-fractional diffusion equation) is obtained by re-
placing the first order time derivative of the classical diffusion equation with a time
fractional derivative. In comparison with the conventional first order derivative, Left
Riemann-Liouville fractional derivatives are characterised by a convolution integral
(see Definition 6). This shows that the (fractional) derivative depends on the behav-
ior of function y over the interval [0,7]. This is the reason why researchers speak about
the memory effect associated with a fractional derivative, and why, in this context frac-
tional derivatives are used in other fields such as Physics, Biology or Economics, where
the memory association of a field is mandatory.
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The model compounded in Equation (1), can be used to investigate environmen-
tal phenomenon. In such cases, one might not have all the necessary information on
complete the model. In the case considered here, the initial condition is missing so that
Equation (1) appears as an ill-posed backward time-fractional diffusion equation. The
problem compounded in Equation (1) does not satisfies the Hadamard conditions. This
is because we cannot prove that (1) admits a unique solution which depends contin-
uously of y'. Nowadays, there are many methods such as inverse methods that may
be used to approach such ill-posed problems. In this paper, we use a Quasi-boundary
method which was originally introduced by the quasi-reversibility method developed in

[8].

The quasi-boundary method is based on perturbing the final condition. Some re-
searches on the topic have shown that this method gives better numerical results than
the quasi-reversibility method.

For example, in [20], Yang et al. apply the quasi-boundary method to approximate
an inverse problem for identifying the initial data for a time-fractional diffusion equa-
tion on a pherically symmetric domain. Jayakumar [5] use a modified quasi-boundary
method to solve a non-homogeneous time fractional diffusion problem involving the
left fractional Caputo derivative. More recently, Huynh et al. [3] applied a modi-
fied quasi-boundary method for a fractional diffusion equation involving the Caputo-
Fabrizio fractional derivative.

We referto [6, 9, 16, 18, 1, 10, 17, 19] and references therein for more information
in regard to the quasi-reversibility method and quasi-boundary method. In this context,
the Riemann-Liouville and Caputo based fractional derivatives are closely related. The
best of the authors’ knowledge, and, judging from the open literature available, there are
no studies on the quasi-boundary method for fractional diffusion equations involving
the Riemann-Liouville fractional derivative. In this paper, we approach the ill-posed
problem compounded in Equation (1) through a family of well-posed problems. More
precisely, we consider, for any f3 > 0, the following quasi-boundary value problem:

D%Lyﬁ(x7t)_Ayﬁ(x7t) = f(xat> (xat) €0,
yp(o,t) =0 (0,1) € X,

Il""yﬁ (x,T) —|—[311’°‘yﬁ (x,07) =y'(x) x€Q,

and prove that the family of solutions yg converge to the solution of Equation (1) in an
appropriate Hilbert space, specifying the rate of convergence.

This paper is structured as follows: In Section 2, we provide some definitions
on fractional operators, examples of their properties and some preliminary results. In
Section 3, we use the spectral method to prove the existence and uniqueness of the
solution of the problem. The convergence results are provided in Section 4.
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2. Preliminaries

In this section, we recall some basic definitions and results on fractional integration
and derivative.

DEFINITION 1. [7, 13] Let z be a complex number such that Re(z) > 0. Then
the Gamma function is given by

I'(z) = / rF e ds.
0
REMARK 1. It follows from the definition above that
I(z+1)=z(z).

DEFINITION 2. [7, 13] Let x and y be two complex numbers such that Re(x) >0
and Re(y) > 0. The Beta function is given by

1
Blx,y) = / PN =Y s,
0
REMARK 2. One can prove [7, 13] that
B(x,y) = @)

DEFINITION 3. [7, 13] Let oo > 0 and 8 > 0. Then, the two-parameter Mittag-
Leffler function is given by

oo k
7
Eyp(z) = —— z€eC. 3)
ap(?) kgg)r(aﬂﬁ)
Thus, we have
oo k
Z
E =Y ——— z¢eC. 4
) kg;)l"(oclﬁ—(x) ‘ )

In what follows, we set
Eq1(t) =Eq(t).
THEOREM 1. [13,15] Let 0 < o0 < 2 and B € R. We consider that | satisfies

o

5 <K< min{x,wo}.

In this case, there exists a constant C = C(cot,3,10) > 0, such that

C
E < :
Eap@I< 73

u < arg(z)| <.
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DEFINITION 4. [2, 7] Let o,f,p € C such that Re(o) > 0 and Re(f3) > 0.
Then, the generalized Mittag-Leffler function is defined by

oo n
o . (p)nt
g“7ﬁ(t)_n§)7l"(an+ﬁ)n!’ forallt € C,

where (p),=p(p+1)...(p+n—1).
REMARK 3. Note that, when p =1 we obtain
Eap(t) = Eqpl1),
where Ey, g is the classical Mittag-Leffler function defined in (3).

The following result gives the Laplace transform of the generalized Mittag-Leffler
function.

LEMMA 1. [2] Let o,f,p be complexes such that Re(o.) > 0, Re(p) > 0 and
Re(B) > 0. Then, we have

p—1 +oo
371 Sist = Zaip — kt(afﬁ)kgk+l _btoc 5
{so‘ +asP+b } ]Zz)( a) a,a+(a—/3)k—p+1( ), (5

where |asP /(s* +b)| <1 and £~ is the inverse Laplace transform.

DEFINITION 5. [7, 13] Let f:R; — R be a continuous function, and o > 0.
Then, the expression

19 f(t) = / =) f(s)ds, 1> 0,

1
I'(a) Jo
is called the Riemann-Liouville integral of order  of the function f.

DEFINITION 6. [7, 13] Let f: R4+ — R. The left Riemann-Liouville fractional
derivative of order o € (0,1) of f is defined as

1 d [
DRSO = gyt Jp €9 s, 10,

I'l—o

provided that the integral exists.

REMARK 4. From Definition 5, we see that:

d

D f(t) = 21" f(0). (6)

We also with the right Caputo fractional derivative given by:
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DEFINITION 7. [7,13] Let f: Ry — R, 0 < o < 1. The right Caputo fractional
derivative of order ¢ of f is defined by

T
DEf(1) = ) /t (s—1)"%f(s)ds, 0<i<T, 7

INl—o
provided that the integral exists.

We consider a result obtained through integration by parts, which involves the left
Riemann-Liouville fractional derivative and the right Caputo fractional derivative.

LEMMA 2. [11] Let O< a <1, ye €=(Q) and ¢ € €=(Q). Then, we have,

[ [ 0hsten) s
:/Q(p(x7T)117°‘y(x,T)dx—/Q(p(x,O)Ilfay(x,O)dx
(8)
+/OT agy(c,t)g—(f(a,t)dadt—/oT/aQ%(G,t)qo(oyt)dadt
T
+/Q/O V06 1) (=D& (x, 1) — Ag(x,1))dxd,

where & is the right Caputo fractional of order 0 < o < 1.

COROLLARY 1. [11] Let D(0,T) be the set of C* functions on (0,T) with com-
pact support. Then for all ¢ € D(0,T),

T T
| piwwewa == [0 7E o0,
where & is the right fractional Caputo derivative.

THEOREM 2. [12] Let 1/2 < o < 1, y° € HY(Q) and f € L*(Q). Then, the
problem

Dipy(x,1) = Ay(x,1) = f(x,2)  inQ,
y(o,t) =0 onx,
1'=%(x,0) = »° in Q.
has a unique solution y € L*((0,T),H}(Q)). Moreover, I'"%y € C([0,T],H} (Q)),

and, there exists a constant C > 0, such that the following estimations hold:
I 2 0.7):m2 () < A <HyOHH(;(Q) + Hf”LZ(Q)) ; €))

IS lego i <1l + 17120 Y
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with
27201 c\/ﬁ
A= C{| =——, =1/
max ZOC—I’OC 2,1 ’
and
Py
= CV2,Cy ) ——
sup [ V2, =)

On other hand, it is well-known that (—A) is a symmetric uniform elliptic operator.
Thus, it admits real eigenvalues, 0 < A} < A; < A3 < ... with 4 — o when k — .
Moreover, there exists an orthonormal basis {wy}7_; of L*(Q), where wy € H}(Q) is
an eigenfunction corresponding to A;: —Awy = A4;wy . Further, we have,

[ VoW Vyar=A [ owwidr,  VpeH(@). (11)
In what follows, for all ¢,y € LZ(Q), we denote
(0. W) = [ 0¥z,

as the inner product in L?(Q) and ||¢|| 12(q) as the associated norm.
We set

alp.y) = [ Vol Vy(dx, Yo,y e H)(Q). (12

Then, the bilinear functional a(.,.) defines an inner product on Hj(€2), and we have

9113 ) = a(@. @), (13)

which is a norm on HJ(Q). Since {ﬁ is an orthonormal basis of H] () for

7.,

the inner product a(.,.), we can write
2 < 2 1
H(PHH(}(Q) :Zli(¢7wi)L2(Q), Vo GH()(Q) (14)
i=1

3. Approximate problem

In this section, using eigenfunctions expansions of the Laplace operator, we prove
the existence and uniqueness of solution to the approximate problem given by

D%Lyﬁ(x’t) _Ayﬁ(x7t) = f(x7t) (x7t) €0,
yﬁ(67t) =0 (G7t) € 27 (15)
1'%y (x, T) + BI'%yp (x,07) = y' (x) x€Q,
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where 1/2<a <1, f€L*(Q), y' € H}(Q) and I' %yg(x,07) = 1i§)111—°‘y,3 (x,2).
t

Let us assume that (15) has a solution yg € C>(Q). If we multiply the first equa-
tion in (15) by a function v € H{ (€2) and integrate by parts over €2, we obtain

LDgLyﬁ(x,t)v(x)dx—F/QVyﬁ(x,t)~Vv(x)dx:/Qf(x,t)v(x)dx. (16)

Observing that (Dg;yg(t),v) = Dy, (vg(t),v) and using (12), problem (15) becomes
forall 1 € (0,T):
D (vp (1)) 2() +alyp(t),v) = (f(1),v)2q) inQ, Vv € Hy(Q),
yp(t) =0 on <, (17)
"%y (x,T) + BI' %yg(x,07) = y! in Q.

We can then consider the following problem : Given 1/2 < o < 1, y' € H}(Q) and
feL*)), find

g € L*((0,T),Hy (Q)), (18a)
I'"%yp € C([0,T]; Hy (Q)), (18b)

such that
D%L(yﬁ(t) ) ( )—|-(1(yﬁ(t) V) = (f(t)aV)LZ(Q) vt € (OaT)7 Yy € H(}(Q)a (193)
Il—a ( )+ﬁ11 oc (O+) 1 in Q. (19b)

In this context, the following existence and uniqueness theorems hold.

THEOREM 3. Let 1/2 < oo < 1 and a(.,.) be the bilinear form defined by (12).
Then, the approximate problem (18)—(19) has a unique solution yg € L*((0,T), H} ()
given by

yp(t) =3 0 — 1" Eg o (—Ait%)
= B+ Ea(—AT%) (20)

+/O’(z—s)°‘*1Ea,a(— i(t—5))fi(s)d }

where A; is the eigenvalue of the operator —A corresponding to the eigenfunction w.
Eq.q as given in (4), y! = (y',wi) and fi(t) = (f(t),w;) are respectively, the i-th
component of y' and f(t) in the orthonormal basis {w;}7., of L*(Q). Moreover
1'~%yg € C([0,T],H}(Q)) and there exists a constant C > 0 such that,

181l 20,7410 @) < T (||ylHH(;(Q) + ||fHL2(Q)> ; 2D
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and
1=l )y e < © (I lgien + 1 200)) -
where
201"\ B2(1-0) 20— 1) a1
and

2c \/2C4T1°‘ 20T
© = sup

B\ BPi-o -«
Proof. 1f we replace v by w; in (19a) and use the fact that
a(yp(t),wi) = Ai(yp (1), wi)12(q) = Aivpi,
we deduce from (19) that yg; is a solution of the ordinary differential equation

{ Dy ypi(t) +Aypi(t) = fi(t), t€(0,T),
Il o

23
ypi(T)+ BI'%ypi(0F) = yl, @9

where y! = (y!,w;).
Now, using the Laplace transform, we obtain from the first equation of (23) that,

D& ypi(s) + Aypi(s) = fils), (24)

where

D ypis) = £ (Dfyypi(1))(s),
ypi(s) = Z(vp ( ))(S)
Fils) = Z(£i(1)(s)

and .Z denotes the Laplace transform operator.
From (6), we have

D ypi(s) = —1'"""ygi(07) +s%ypi(s),
which, combining with (24), gives
—1ypi(07) + s7Vpils) + Ai(s) = fils).

Hence,

Ypils) =1'"%pi(0") x + fils) x

and it follows from (5) that

s%+ A s“+7L,-’

ypi(t) = Il_ayﬁi(OJr)ta_lEa,a(_Ma) +/Ot(f —5)*  Eqa(—2i(t —5)*) fi(s)ds
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Therefore,

I'%ypit) = 1" (1" *ypi(0)r* ' Eg o (—Ait "))

w1 ([ 9 Bl =51 )s6)a5).
=A-+B

where
A=1"%1"%i(0) " Eq o (—it™)),

B ([ -9 B~ (0 )

Let us now compute A and B. We have,

A=1"%1""pi(0)t" ' Ega(—2it%))
= I“"‘yﬁ,-(o) x %t Eg o (— M%)

= I'"%pi(0) x (ﬁ/ot(t —s)asalEma(—?L,-sa)ds)

_ Iliayﬁi(o) < (_xi)k ! —o 01 o
- T(l-a) kzg)l"(ock+oc)/o(t_s) s

_ Ilia}’ﬁi(o) < (_Ai)ktak_l /1(1 —u)_aua_1+aktdu
Fl-o) & T(ak+a) Jo

B Ilfayﬁi(o) +oo (—li)ktak

- T(l-a) & T(ak+a)

B(1—o,0k+ o),

which in view of (2) gives
A= [lfay (0) Jio Lﬂa)k — [lfay (0)Eq (—Ait%) (25)
PR & Tlak+ 1) A
On the other hand,

lel_o‘</ot(t—S)a_1Ea,a( Mi=9)f(5ds )

1

_ m/ot(t—s)*a (/O'Y(s—u)alEm( Ails —u)® )f,(u)du) ds

- ﬁ/otfi(u) (/MI(I—S)“(S—u)"‘1Ea,a(—7t,-(s—u)a)ds> I
B %/tﬁ(”) Jrzoj l"(((;kil—fl;c) (/Mt(t_s)_a(s—u)o‘_H“kds du

k=0

e E R (e
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/ fi(u ( &Xé—t+_(it))m{3(l—a,ak+a)> du
_ it —u)*)*

_/f’ (k < T(ok+1) )d"

—/f, VEq(—Ai(t —u)%)du.

Thus,
B= / Fi(0) Ea (=it — 0)®)du (26)
Finally, adding (25) to (26), we obtain

!

1'=9y5i(t) = I %y1(0) Eol(— M) + /O FEa(=Ailt —0)%)du.  (27)
Hence,

1 1 T

1'=0y5(T) = 1'%y, (0)Eq (— A T%) + /O Fi ) Ea(=2(T — u)®)du.
From (23),, we have that,
T
I'""%ygi(0)Eq (—AT®) +/0 [i(w)Eq(—Ai(T —u)*)du+ BI'™%ypi(0) = y},

from which, we deduce that

(28)

Finally, we obtain

T
— | Eal=A(T =) fiw)d
B+ Ea(—AT*)

yﬁi(t) = t"“lEma(—?L,-tO‘)

+ [ =9 Baa(—hile =) fls)ds

The rest of proof can be done in three steps.
Step 1: We give the formulation of a solution to an approximate problem associated
to Equations (18)—(19).
Let V,, be a subspace of H(} (Q) generated by the wi,wy,...,wy,.
Consider the following approximate problem associated to Equations (18)—(19):
Find yg 11 € (0,T] — ygm(t) € Vin, the solution of

D1 (ypm(t),v)12() +a(ypm(1),v) = (f(),v)12(0)> ¥V € Vi, (29)
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1"y (T) + By

=Y = 2}’/3; Wi (30)
As ygm(t) € Vin, we have

m

ypm(t) = 2, ((0),wi) 2 @ Zyﬁ

i=1

Proceeding as per the computation of yg, we show that yg,, is a solution of the problem
given by Equations (29) — (30) and obtain,

e / Eo(~2(T =) fiwdu e
m tOH Eaa - ita i
Yﬁ = B+Ea( AT , w

3D
+z{/ 5 Bl lt =I5 .

Step 2: We show that the sequences (yg) and (1 l_o‘y,;m) are respectively, Cauchy
sequences in L2((0,7); H}(R)) and C([0,T];H} (Q)).

Let m and p be two integers such that p > m > 1. Then, from (31)

P
Ypp(1) =ypm(1) = X, vpi(t)wi
i=m+1
T
o= [ Eal= 2T~ 0)) fla)du
Set b; = 0 BT Eal(— AT . Then, we have that,
a(yﬁp(t)_yﬁm(t)vyﬁp(t)_yﬁm(t))
P
> Ailygi()]
= m+l
<2 2 Mit**2Eg (=it ®)|bil?
i= m+1

+2l %lx {/ ) Eq.a(—Ai(t —5)%)fi(s)d }2

Hence,

T
”yﬁp(t)_yﬁm(t)”iZ((QT);Hé(Q)) :/0 a(yﬁp(t)_yﬁm(t)7yﬁp(t)_yﬁm(t))dt

<A, +B,,
with

—2 3 Alb / PO (A ®)di

i=m+1

p—zl%/ AL 09" B9 }2
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Note that from Theorem 1, we know that there exists a generic constant C > 0 such

that ) .
A,=2 % b / PO (A ®)d
i=m+1 0
P T
<202 Y Aifbi) / 2 2at
0

i= m+1

< 2¢? 2 Mb\2

t2a 17T 2C2T2°‘ 1 p
<
i=m+1

Y Ailbil.
l0

i=m+1

REMARK 5. From the latter estimation, we see that we have to take 1/2 < a < 1
to give a sense to our computation.

Using again Theorem 1 and noting that 1 — o # 0, we obtain

2
o [ Eal AT~ ) )
Ai|bil?
t%—l " = 1m+1 ﬂ+Ea( AT)
1 2
< ﬂ— / Ea(=24(T —u)®) fi()du
2 p 2 [04 g
< 2 M+ 3 / Ea(~A(T = )% f ()
ﬁ i=m+1 zm+l
2 & 2C2 [—(T -
< = liy-l2+—[ ] / fi(w)*du.
ﬁzi:%rl ‘l‘ ﬁZ l—OC 0 i=m+1 |
Consequently,
S AP < S AP 2C2T1 : / |fi(w)*d (32)
- i u.
i=m+1 ﬁ i=m+1 . ﬁZ i=m+1
and we have that
, < AP+ / filu)Pau . (33)
e IR i e 1 D)

On the other hand, using the Cauchy-Schwartz inequality,

B=2 3 ["a{ [0 Bua-ate-9500a }2

i=m+1

=2 %1/ {/ (=) F Eqa(~At —5))] [~ ) 3fi(s)]ds}2dt

Sl R R AR O

i=m+1

N\Q
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which in view of Theorem 1 gives

B, <2 ¥ /OT [/Ot(t—s)lﬁds] V(t—s)a%f,-(s)ﬁds dr

i=m+1
<42 ¥ / / (1 — )3 |fi(s) Pdsdr
i= m+1
_icri Y / (s |2/ — ) 3drds
) i= m+1
4C T"‘
> [ lopras
2 i=m+1
Thus,
4C2T°‘

3 / 1fi(s)Pds (34)

i=m+1

Adding (33) to (34), we obtain

||y/317(t) _yﬁm(t)”iz((O,T);H&(Q))

<A,+B,
4c2T2O( 1 5
< B 2a—1) Z Ailyi|
i=m—+1
4C2T°‘ 4C2T°‘

Pl-a)Ce—1) o

Therefore,

”yﬁp(t) _yﬁm(t)”Lz((QT),Hé(Q))

1/2
2C T2oc 1 P
N \/7<l %ﬂfl\y, I2> .
1)2
ac’Te 4C2T .
+\/B2(1—a)(2a—1) a1 ( ;ﬂ/ | fi(s) ds> ,

In view of Equation (27), we have

Il_a(yﬁp( ) = ypm(1))

2 |bi| Eg 1 (— it * )wi + 2 {/f, VEa,1(— l(t_u)a)du}wi,

i=m+1 i=m—+1
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from which we deduce that,

1112 0) =m0 ) < Al (6) =y (1)), = (33, 6) =y (1))

P
<2 Z 7L,-\b,-|2E§71(—7L,-t“)
i= m+1

2y A{/f, VEo.1 (— (t—u)a)du}z.

i=m+1
If we set »
Cp =2 2 li|bi|2Eé7l(—lila),
i= m+1
2
z,-2 % A {/ Fi(u)Equ (- (t—u)a)du} ,
i=m+1
we have from Theorem 1, (32) and the Cauchy-Schwartz inequality that,

P
Cp <2C* Y Ailbil?
i=m+1

2c T1 o
<zc2< > abli+ -3 [t %m)
i=m+1 i=m+1
4c4T1 o
<35 X ablp+ (2 [ it 2du>
i=m—+1 i=m+1

and

Z, 2”+1)L,</E (= u)® ></|f, 2du>
<2C i (/0 (t—u)_o‘du) (/ |f,-(u)|2du)

i=m+1

2Ct1 o
< ( / filu 2du)
lm+l

Using the estimations of C), and Z,,, we obtain

111 =Yg By g

2, 4ciri=* 20t~ 0‘) P
Bz,%l“" <ﬁ2(1—a>+1 ,mH/'f’ o

Thus,
sup (|17 (v p (1) = ypm (1))l 1 (@)
t€[0.T]
1/2 1/2
20 & 4ciT! 2CTl *
<= Y Al +\/ 5 Z /|fz )|2du .
ﬂ i=m+1 ﬁ (1_ ) i=m+1
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Asy' € H}(Q) and f € L*(Q),
» O 1/2 P ) 1/2
lim Ally! ~ lim / (W)Pdu| =0
, Jim iz%l ilvi| pJm 13,“ | 1fiGw)]

Then, from Equation (35) and Equation (36), we obtain

T
. 2 o
tim [ (1) =y 1)y gt =0

m,p—-teo

and

sup [[1'7%(yp p(t) = ypm (1))l g1 ) = O-
t€[0.7]

Consequently, (yg) and (I'"%yg,,) are Cauchy sequences in L2((0,T);Hj(£2)) and
C([0,T],H} (Q)) respectively. This implies that

Ypm —yp  inL*((0,T);Hy(Q)), 37)

and
I'"%ygm— & inC([0,T];Hy (Q)).

Since yg € L*((0,T),Hy (L)) and I'~*yg are continuous, we have & =I'"%yg and
1'%y —1'""yg i C([0,T]: Hy (). (38)

Step 3: We show that yg satisfies (18) —(19).
Let ¢ € D(0,7) and p > 1 an integer. Then, from (29), we have for all m > u,

T T
| G0)0@00)d = [ Df (5 (0).1)1210 00
T
+/0 a(ypm (1)) @()dr, v €V,
which according to Corollary 1 implies that,
T T o
| 000000 = = [ Gpnlt), )20 200
T
+/0 a(ypm(t).V)@()dr, W E V.
Therefore, passing to the limit and using (37), we obtain
T T
| GO0 @end == [ 050120 2800

T
+/0 alyg (1), v)@(0)dt, W € V.
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Since Uy>1Vy is dense in H} () because (w;) is a base of H} (), we have for all
v € H}(Q) that

[ G000 =~ [ 550020 ZE 001
+/0Ta(yl3(t)7v)(p(t)dt, Vv € HY(Q).
Using, once again, Corollary 1, we can write
[ G000 = [ D500 000
+/0Ta(y,3(t),v)(p(t)dt, W e HY(Q).

This implies that for all v € H} (Q),
(f(0):v)120)@ (1) = DR (g (1),) 2(0) (1) + alyp (1), v) (1), Vi € (0,T).

From (38), we have

I'"%ygu(0) = I'"%yg(0) in Hy(Q),

and
1" %ypu(T) —1'"%yp(T)  in Hy ().
But
m +oo
1'%y (T) + BI' ypm(0) = Y yiwi — Y yiw; =y
i=1 =
Thus,

1" %yp(T) + 1" %yp(0) = y'.
To complete the proof of Theorem 3, we need to prove Equation (21) and Equation
(22). Since yg is the solution of (18)—(19), we have

(y, R

a—1 oy 4
7p(0) ﬂ—l—Ea( ) £ Ea o= Ail”)

+/ 9% Eal 2t =5)" >ﬁ<>>

Proceeding as above for estimations on YBm, We can prove that there exists a constant
C > 0 such that

2C T2O¢ 1 ) 1/2
H)’/}(Z)||L2((o,r);ﬂg(g)) < B EMM

/2
AC2T™ 4C2T® )
+\/ﬁ2(1—(x)(2a—1)+ a1 ( 1/ |fi(s |ds>
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and

1/2
sup (113 (0 < 5 (zx ) |2>

t€[0.T]

4ciT! @ 2CTl o ) i
T S [ )

from which we deduce, respectively, Equation (21) and Equation (22). [

4. Convergence results
In this section we provide some convergence results.

THEOREM 4. Forall y' € H}(Q), we have

lim |[I'~%yg(T) —y'|| = 0.
fim 11~y () '
That is Il_o‘y,;(T) converges to y' in H}(Q).
Proof. Since y' € H}(Q), we know that

Ve > 0, IN, € N such that 2 Ay <
i=Ng+1

Also, since f € L*>(Q), we know that
4o LT €
Ve >0, 3N € Nsuch that ) / |fi(s))%ds < =.
i=Ne+170 2

Let € > 0 and choose N > 0 such that

< 12 _ € < /7 2 €
S apblP<E and Y / fi(s)Pds < E.
i=N+1 2 i=N+170 2

Then, we have
111255(T) =5 [y ) = @ (=BI"~ 3 (0). —BI' =y (0)
_ B2 2/1 |b; ‘2
<A +B
where

i=1 (ﬁ +Ea(_liTa))2 .
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5 2
_9p2 o
B Z{(ﬁ-FEa —NT%)) (/ Eo(~ ) )ﬁ(u)du> .
We firstly have,
> hbyi S 2yt
- : +2 j
tg (B + Eq(—AiT%))2 B i=§l1 BT EL( AT
Yooyl P foo
<PB*Y e 2 iyl P
B;a( AT) I%HH

N 12
22ily; |
g 2 1
A ZI EZ(=AT?)

+ €.

Secondly, using the Cauchy-Schwartz inequality, we can write

—2ﬁ2;(ﬁ+Ea e (] Bat- —u)“)ﬁ(u)du)2

C2T1 o
2 2
<2 l.z(l—a Eq(—AT%)) (/ il d”)

) )(B+

N 2c2T1—O£ 5 C2Tl—a
<Y e () Pan) + GG

(1-a)

Finally, using the estimations of A and B, we have

l1-o 12
113 (T) =" Iy

N N S "
<P LXIEgg(—liTO‘)—’_i:ZI(I— Q) E2(— AT (/ | fi(u du)

+<l+%)s.

Since
& 2Nyt s

2 B (AT

1

we choose 3 such that

)+21(1_2§2T1 O;LTa (/ |fi(u 2du> oo,

-1

N 12 N
2iy; |
B> <e 4
ZI EG(=AT®) z‘ (
THEOREM 5. Supposing there

&Ml

2C2T1 o
1(l-a —ATY) </ A 2du>]

exists € € (0,2) such that

T
2
—of too (s)|°ds
2C2T1 o+ ~/O |f( )‘

b= 22E5 (AT 1—o “~ E5(—ATY)

converges, then |[I'~%yg —y! HH&

() converges to zero with order €2 BE.

O
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Proof. Let € € (0,2) such that D converges and k € (0,2). We fix a natural
integer i, and define
ﬁk

$O) = i E AT

Differentiating g; with respect to 3, we obtain

oy (K=2)B 4+ kB Eo (AT )
gl(ﬁ) - [ﬁ""Ea(_liTa)P
_ ity k2B RE(AT)
[B+ Eo(=AT*)P

Observing that g/(8) =0 if =0 or (k—2)B +kEq(—AT*) = 0. We have

(k=2)B4+kEq(—AT*)=0< B = Tk Eoq(—AT?%).
As gi(B) >0, gi(0) =0 and lim g;(8) =0. Indeed,
——+oo
. B 1
ﬁliToogi(ﬂ) B ﬁliTwW B ﬁl—lg}wﬁz =0

We know that g; achieves its maximum at fy = Eo(—24T%). Hence, we have,

2—k

(Bo)*
[Bo+ Ea(—AT))?

k \* "
©&lB) S R CATR

o alB) < (%)kE’&%_)LI-Ta).

gi(B) <sgi(Bo) & gi(B) <

Since we can write

l—oy, 1112
”I yp—Yy ”Hé(Q)

Aily!
zﬁz,zl (Bt Eol— /l-Ta))2

12873, s ([ Bl - i)

2
_ mzf’f;xﬂngi(ﬁ) +2ﬁ“§xi ( /0 Eo(— (T —u)“)ff(u)du> «i(B).
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it follows that

Ilfoc _ o112
” yg—y HH&(Q)

+oo 2 l—o +oo
<20 Z A Pa() + 26 S 3 ([ 1) s8)
i=1

<pt (55) S amipes 2 a
2 k “ )i o 1

zc2T1—oc oo T
e X (/0 |ﬁ(u>|2du> E{;*(-A,-Ta)] ,

i=1

If we choose, k =2 — € (then € =2 — k), we then obtain
_e 2—¢ 400
I gy < B°(355)  [2Z APz (AT
21— oc+°°
i (/ i 2du) e AT“)]
p(2) [zzzwy-”Ee(—A-T“)
e pA i|Yi o i
21— oc+°<>
X X ([ 1) (- m)]

Since D converges, there exists a constant K > 0 such that

N

oo 2C2T1 oc+°<>
25 Aot P (AT + 2 3 ([ VP (AT ) <.
i=1

which implies that

. 2\ .
Iy (1)~ 3y < B° (2) K= k) e e
It then suffices to take K’ = 4K to achieve the proof. [J

THEOREM 6. Forall y' € Hé (Q), the problem compounded in Equation (1) has
a solution y if and only if the sequence I 1_°‘yﬁ (0T) convergesin H}(Q). Furthermore,

we have that yg convergesto y as [ tends to zero in L*((0,T); HY(Q)).

Proof. We proceed in two steps.
Step 1: We show that if I'~%yg(0) converges in Hy (L), then the problem (1)
admits a solution.
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Assume that éim ' %yg(0) =y exists. Since y° € H}(Q), we can write
—0

~+oo
W=D Wwi where ¥ = (%,wi).
i=1
Let y the solution of the following equation
D%Ly(xat)_Ay(xJ):f(xJ) in Q7
y(o,1) =0 onZ,
I'~%y(x,0) = y° in Q.

where 1/2 < o < 1. Then, from Theorem 2, we know that y € L*((0,7); H}(Q)) is
given by

1) = 3 {1 B+ [ (1= B =561

i=1

Moreover, I' =%y € C([0,T],H3(Q)). Thus, I'~%y(T) € H}(Q) exists.
Now, let 7 € [0,T], we have

yp(1) =y(t)

[Il_“yﬁi(O)t“_lEa,a(—kit“)+/Ot(t—s)°‘_1Ea,a( Ai(t —$)) fi(s )ds] wi

+
8

Il
—_

Mér

[yo t*E, al— lito‘)—k/ot(t—s)a*lEa?a( Ai(t —$)) fi(s )ds] w;

—

(Il_ayﬁi(o) —y?) 1 Eg o(—Ait*)w;i

I
MY

Il
—_

consequently,

T
158 =310 1)y = [, @B =3(0.3p(0) —3(0)s
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This implies that yg convergesto y in L*((0,T); Hj (Q)) because éin})ll_o‘yﬁ (0) =»°.

On the other hand, we have

l—o,. _ .0 _r.To r _1. —_1\¥ F
1T = Eal AT + [ Ea(=Au(T = 1)) fiu)du

and

1) = 1y OB AT) + [ Eal (T — 1)) i)

Hence, we obtain
~+oo
_ 2
Hll_o‘yﬁ(T)—Il_ay(T)||12q(;(g) = 24 (I %ypi(0) =) Eg(~AT®)

<C[1*y5(0) =iy

This implies that
1'%y (T) — I'*y(T) strongly in Hy (€2)
and since, from Theorem 4
Ilfo‘yﬁ (T) — y' strongly in H} (Q),
the uniqueness of the limit allows us to conclude that I'~%y(T) = y! and y is a solution
of the problem compounded in Equation (1).

Step 2: We show that if the problem given by Equation (1) admits a solution y
then 1'~%yg(0) converges in Hj(Q).

Let y be a solution of the problem associated with Equation (1), then as in the
proof of existence in Theorem 3, we know that y; = (y(t),wi);2(q) is a solution of the
ordinary differential equation

Dppyi(t) + Aiyi(t) = fit), ¢ €[0,T],
1'=%y,(T) = y;.

Using the Laplace transform of the first equation in Equation (39), we obtain

(39)

y,-(z):Il—ay,-(O)t“—lEa,a(—/lit“)+/Ot(t—s)°‘—1Ea7a( it —$)*) fi(s)ds.  (40)

Observing that
It Eg o (—Mit®)) = Eq(—Ait®)

and

110‘</[(t—s)°‘1Ea7a( At —5)° ) /f, VEo(—As(t — u)®)du,

0
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we have
1-9yi(0) = 1'%y, (0)Eg (— M%) +/ Fi(W)Ea(—Ailt — ) )du.
and because I'~%y;(T) =y}, we can write

1" %(0)Eq (— T +/ F(0) Ea(—A(T — 1) ®)du = !,

from which, we deduce that

/ﬁ VEo(—M(T — u)*)du

lO(
! Eal— W)

Thus, we can write

y(t) = o ¢ lEoc,a( Ait%) pw

i=1 Ea(_liT ) (41)
too (gt
—s5)! o, - i
3 { [ 0= Bl e s o
and
Vi — | Ea(=A(T —u)®) fi(u)du

1" %(t) = { / Falo AT“) Eq(—At%)

+/ fi(W)Eq(—Ai(t —u)* )du}wi. (42)

Let B,y > 0. Then, from (28), we have

T
(=B (51~ [ Bal-h(T — )i
By+(B+7Ea(-AT)+Eq(—AT)

I'=%yp(0) = I'~“yy(0) =

As I'"%y(0) € H} (), we choose N > 0 such as

+oo

_ €
Ve >0, '_Z I %yi(0)]? < 3
i=N+1
This means that
2

W [ BT )|
Ve > O, <z,
i N+1 Eq(=AT* ) 2
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and we have

1%y (0) = I'=%y(0) szq(} @

T 2
|08 (o= [ Ea- 2T st
:gki By+ (B+7)Ea(-AMT*)+EZ(=AT*) |

(r—B)° 3 A <y} —~ /OT Eq(—2(T — ”)a)fi(”)d”> 2~

Br)? 4
2
R (ot [ Bt —wpwa)
(B+Y)2i N+1 EZ(—AT?)
2 _R)2
\(7 B > ( /Ea —u)a)fi(u)du> +Eg+€§2;

Finally, we obtain

171 %yp(0) = 1'~%y,(0) H;} (@)

<(%) (ziaiwuxf_#i I |ﬁ|2<u>du> (12) e
<(g+2) (22M,2 2508 [t >+Ze.

N 2C2T1 o N
<2Z/L-y}|2 / A1 <o
=1

2 2
lim [ —-+— ) =0,
V.B—ee (ﬁz Y2>

i 550 =150, 0.

This implies that the sequence {I'~%yg(0)} is of Cauchy and thus it converges in
Hj(Q). O

and

we deduce that

5. Conclusion

In this work, we have considered an ill-posed problem associated with a family
of well-posed problems and prove, using spectral methods, that the solutions of the
latter problems converge to the solution of the former problem in an appropriate Hilbert
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space. This analysis is useful if we want to control an ill-posed problem which will be
the subject of future work. Moreover, the convergence results obtained can be used to
find a numerical solution for problem compounded in Equation (1).
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