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Abstract. The m -point non-local problem is considered for the partial differential equation of
mixed-type with singular coefficients, namely fractional wave equation involving the right-hand
side bi-ordinal Hilfer derivative and sub-diffusion equation with the regularized Caputo-like
counterpart hyper-Bessel differential operator. The main technique of solving the problem is
based on the method of separation variables. Also, the connection between the given data and
the uniquely solvability of the problem is established and an explicit solution is represented by
Fourier-Bessel series in the given domain.

1. Introduction

Fractional differential equations plays a significant role, because of its multiple
applications in engineering, chemistry, biology and other parts of science and modeling
the real-life problems [32, 28, 22]. Studying boundary value problems for linear and
non-linear fractional differential equations with the Riemann-Liouville and the Caputo
fractional derivative have becoming interesting targets simultaneously [5, 13, 26, 6].

The quality and the types of articles have been changed when the generalized
Riemann-Liouville differential operators (later called Hilfer derivative) used in the sci-
entific field with its interesting application [20, 21]. To tell the truth, the generalization
of the Riemann-Lioville fractional differential operators was already announced by M.
M. Dzherbashian and A. B. Nersesian [16] in 1968, but because of some reasons it
was not familiar with many mathematicians around the globe till the translation of this
work published in the journal of Fract. Calc. Appl. An. [15]. We also refer some
papers [2, 10] devoted studying some problems with the Dzherbashian-Nersesian dif-
ferential operator which has the following form

Dσn
0x g(x) = I1−γn

0x Dγn−1
0x . . .Dγ1

0xD
γ0
0x, n ∈ N, x > 0 (1)

where Iα
0x and Dα

0x are the Riemann-Liouville fractional integral and the Riemann-
Liouville fractional derivative of order α respectively, σn ∈ (0,n] which is defined by

σn =
n

∑
j=0

γ j −1 > 0, γ j ∈ (0,1].
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V. I. Bulavatsky considered specific generalization of Hilfer fractional deriva-
tive [12], the particular case of the Dzherbashian-Nersesian differential operator which
forms as follows [25]:

D(α ,β )μ
0± g(t) = Iμ(n−α)

0±

(
± d

dt

)n

I(1−μ)(n−β )
0± g(t) (2)

This operator is similar to Hilfer derivative in terms of its interpolation concept between
the Riemann-Liouville and Caputo fractional derivatives, specifically, i.e.

D(α ,β )μ
a+ g(t) =

⎧⎨
⎩

Dβ
a+g(t), μ = 0,

CDα
a+g(t), μ = 1.

In [25] the Cauchy problem is investigated for the ordinary differential equation
involving the right-sided bi-ordinal Hilfer fractional derivative:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D(α ,β )μ
0− u(t) = λu(t)+g(t),

lim
t→0−

I2−γ
0− u(t) = ξ0,

lim
t→0−

d
dt I

2−γ
0− u(t) = ξ1,

(3)

where 1 < α,β � 2, γ = β + μ(2−β ) , ξ0,ξ1 ∈ R, g(t) is the given function.

LEMMA 1. Let g(t)∈C[−T,0], g′(t) ∈ L1(−T,0) . Then the solution of the prob-
lem (3) as follows:

u(t) = ξ0(−t)γ−2Eδ ,γ−1[λ (−t)δ ]− ξ1(−t)γ−1Eδ ,γ [λ (−t)δ ]

+
0∫

t

(z− t)δ−1Eδ ,δ

[
λ (z− t)δ

]
g(z)dz,

(4)

where δ = β + μ(α −β ) , γ = β + μ(2−β ) .

We notice that while have been investigated the initial-boundary value or non-local
problems involving popular class of differential operators like the Riemann-Liouville,
Caputo [4,3], Hilfer fractional derivatives, Hadamard [7], Hilfer-Hadamard, Prabhakar,
Atangana-Baleanu [11] the interest to another type of the differential operators is in-
creased by many scientists, for instance, the hyper-Bessel differential operator [30, 34]
is becoming main target of research. The importance of the hyper-Bessel differential
operator is increasing since introduced by Dimovski [14] because of its applications
in science. For example, in [18] authors used hyper-Bessel differential operator to
investigate heat diffusion equation for describing the Brownian motion. In [17] it is in-
vestigated fractional relaxation equation the regularized Caputo-like counterpart of the
hyper-Bessel operator which has the following form

C
(
tθ d

dt

)α
f (t) = (1−θ )αt−α(1−θ)D−α ,α

1−θ ( f (t)− f (0)) (5)
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where

Dγ,δ
β f (t)

n

∏
j=1

(
γ + j +

t
β

d
dt

)(
Iγ+δ ,n−δ
β f (t)

)
,

is a Erdelyi-Kober fractional derivative and Iγ,δ
β is a Erdelyi-Kober (E-K) fractional

integral defined as [29]

Iγ,δ
β f (t) =

t−β (γ+δ )

Γ(δ )

∫ t

0
(tβ − τβ )δ−1τβ γ f (τ)d(τβ ),

which can be reduced up with weight to Iq
0+ f (t) Riemann-Liouville fractional integral

at γ = 0 and β = 1. In [8] Fatma Al-Musalhi, et al. considered direct and inverse prob-
lems for the fractional diffusion equation with the regularized Caputo-like counterpart
of the hyper-Bessel operator and proved the theorem of existence and uniqueness of the
solution.

Several local and nonlocal boundary value problems for mixed-type equations,
ie, elliptic-hyperbolic and hyperbolic type equations were published [1, 24, 23]. The
interesting point is that the conjugation conditions are taken according to the considered
mixed-type equations and domains [27, 9].

2. Formulation of the problem

In the present work, we investigate the following fractional differential equation
of mixed type involving the regularized Caputo-like counterpart of the hyper-Bessel
operator and the bi-ordinal Hilfer derivative in Ω = Ω1∪Ω2∪Q domain:

f (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

C
(

tθ ∂
∂ t

)α1

u(x,t)− 1
x
ux(x,t)−uxx (x,t) , (x,t) ∈ Ω1,

D(α2,β2)μ
0− u(x,t)− 1

x
ux(x,t)−uxx (x,t) , (x,t) ∈ Ω2,

(6)

where Ω1 = {(x, t) : 0 < x < 1, 0 < t < T} , Ω2 = {(x,t) : 0 < x < 1, −T < t < 0} ,

Q = {(x, t) : 0 < x < 1, t = 0}, 0 < α1 � 1, θ < 1, 1 < α2,β2 � 2, 0 � μ � 1, D(α2,β2)μ
0−

is the right-sided bi-ordinal Hilfer fractional derivative in the form (2) and C
(
tθ d

dt

)α1

is the regularized Caputo-like counterpart of the hyper-Bessel fractional differential
operator defined as (5).

PROBLEM. Find a solution of eq. (6) in Ω , which satisfies the following regularity
conditions

u(x,t) ∈C(Ω\Q), u(·,t) ∈C2(Ω1∪Ω2),

C
(
tθ ∂

∂ t

)α1
u(x,t) ∈C(Ω1), D(α2,β2)μ

0− u(x,t) ∈C(Ω2)

along with the boundary conditions

lim
t→0+

xux(x,t) = 0, u(1,t) = 0, −T � t � T, (7)
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non-local condition

m

∑
i=1

ζiI
(1−μ)(2−β2)
0− u(x,ξi) = u(x,T ), 0 � x � 1, (8)

and the gluing conditions

lim
t→0−

I(1−μ)(2−β2)
0− u(x,t) = lim

t→0+
u(x,t), 0 � x � 1, (9)

lim
t→0−

d
dt

I(1−μ)(2−β2)
0− u(x,t) = lim

t→0+
t1−(1−θ)α1ut(x, t), 0 < x < 1, (10)

where −T � ξ1 < ξ2 < .. . < ξm < 0, f (x,t) is a given function.

3. Method of investigation

Using the separation variables method we obtain the following spectral problem

X ′′(x)+
1
x
X ′(x)+ λ 2X(x) = 0, (11)

lim
x→0+

xX(x) = 0, X(1) = 0, (12)

(9) is a Bessel equation of order zero; furthermore, (9), (10) is a self-adjoint prob-
lem and its eigenfunctions are the Bessel functions given as follows

Xk(x) = J0(λkx), k = 1,2, . . . , (13)

and the eigenvalues λk , are the positive zeros of J0(x) , i.e.

λk = πk− π
4

.

The system of eigenfunctions {Xk} forms an orthogonal basis in L2(0,1) (see [19],
p. 40),, hence we can write sought function and given function in the form of series
expansions as follows:

u(x,t) =
∞

∑
k=1

uk(t)J0(λkx), (14)

f (x,t) =
∞

∑
k=1

fk(t)J0(λkx), (15)

where uk(t) is not known yet, and fk(t) is the coefficient of Fourier-Bessel series, i.e.

fk(t) =
2

J2
1 (λk)

1∫
0

x f (x,t)J0(λkx)dx.



ON SOLVABILITY OF THE NON-LOCAL PROBLEM 67

Let us introduce new notations:

lim
t→0−

I(1−μ)(2−β2)
0− u(x,t) = ϕ(x), 0 � x � 1, (16)

lim
t→0−

d
dt

I(1−μ)(2−β2)
0− u(x,t) = ψ(x), 0 < x < 1, (17)

lim
t→0+

u(x,t) = τ(x), 0 � x � 1, (18)

here ϕ(x), τ(x) and ψ(x) are unknown functions to be found later.
Further, after substituting (14) and (15) into the Eq. (6) and initial conditions (16),

(17), (18), we obtain the following problems

⎧⎨
⎩

C
(
tθ d

dt

)α1
uk(t)+ λ 2

k uk(t) = fk(t),

uk(0+) = τk,
(19)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D(α2,β2)μ
0− uk(t)+ λ 2

k uk(t) = fk(t),

I(1−μ)(2−β2)
0− uk(0−) = ϕk,

d
dt

I(1−μ)(2−β2)
0− uk(0−) = ψk,

(20)

in Ω1 and Ω2 respectively.
The problem (19) was studied in [8] and we can write the solution of the considered

problem in Ω1 :

u(x,t) =
∞

∑
k=1

[
τkEα1,1

(
− λk

2

pα1
t pα1

)
+Gk(t)

]
J0(λkx), (21)

here p = 1−θ and

Gk(t) =
1

pα1Γ(α1)

∫ t

0

(
t p− τ p)α1−1

fk(τ)d(τ p)

− λk
2

p2α1

∫ t

0

(
t p− τ p)2α1−1

Eα1,2α1

[
− λk

2

pα1
(t p− τ p)α1

]
fk(τ)d(τ p),

where τk is not known yet.
As we mentioned above the problem (20) studied in [25] and using the Lemma 1

we can write the solution of (20) and then, considering (14) the solution of considered
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problem in Ω2 domain can be represented in the following form

u(x, t) =
+∞

∑
k=1

ϕk(−t)γ2−2Eδ2,γ2−1[−λ 2
k (−t)δ2 ]J0(λkx)

−
+∞

∑
k=1

ψk(−t)γ2−1Eδ2,γ2
[−λ 2

k (−t)δ2 ]J0(λkx)

+
+∞

∑
k=1

0∫
t

(z− t)δ2−1Eδ2,δ2
[−λ 2

k (z− t)δ2 ] fk(z)dzJ0(λkx), (22)

where γ2 = β2 + μ(2−β2) , δ2 = β2 + μ(α2−β2) and ϕk , ψk are not known yet.
After substituting (21) and (22) into gluing conditions with considering (14), (15)

we obtain the following system of equations with respect to τk , ϕk and ψk :

⎧⎨
⎩

ψk = − λ 2
k

Γ(α1)
τk,

τk = ϕk

(23)

Considering non-local condition (8) and from (23) we find unknowns as follows

τk = ϕk =
Fk

Δk
, (24)

ψk =
−λ 2

k

pα1Γ(α1)
Fk

Δk
, (25)

where

Δk =
m

∑
i=1

ζi

[
Eδ2,1(−λ 2

k (−ξi))+
λ 2

k ξi

pα1Γ(α1)
Eδ2,2(−λ 2

k (−ξi))
]
−Eα1,1

(
− λ 2

k

pα1
Tα1 p

)

Fk = Gk(T )−
m

∑
i=1

ζi

0∫

ξi

(s− ξi)δ2−γ2+1Eδ2,δ2−γ2+2(−λ 2
k (s− ξi)δ2) fk(s)ds,

Gk(T ) =
1

pα1Γ(α1)

∫ T

0

(
T p− τ p)α1−1

fk(τ)d(τ p)

− λk
2

p2α1

∫ T

0

(
T p− τ p)2α1−1

Eα1,2α1

[
− λk

2

pα1
(T p− τ p)α1

]
fk(τ)d(τ p).

If Δk �= 0, then we can find τk , ϕk , ψk unknowns uniquely.
First we show that Δk �= 0 for sufficiently large k . For this intention we use the

following lemma obtained from the properties of Wright-type function studied by A.
Pskhu in [33].
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LEMMA 2. [33] If π � |argz| > πα
2 + ε , ε > 0 , then the following relations are

valid for z → ∞:
lim
|z|→∞

Eα ,β (z) = 0,

lim
|z|→∞

zEα ,β (z) = − 1
Γ(β −α)

.

By using the Lemma 2, we can calculate the behavior of Δk at k → ∞

lim
k→+∞

Δk = lim
|z1|→+∞

m

∑
i=1

ζi
[
Eδ2,1(z1)+

1
Γ(α1)pα1

z1Eδ2,2(z1)
]− lim

|z2|→+∞
Eα1,1(z2)

=
m

∑
i=1

ζi

Γ(α1)pα1Γ(2− δ2)
,

where z1 = −λ 2
k (−ξi) , z2 = − λ 2

k
pα1 Tα1 p , λk = πk− π

4 .

If
m

∑
i=1

ζi

Γ(α1)pα1Γ(2− δ2)
> 0 and from the last equality it is seen that Δk > 0 for

sufficiently large k .

3.1. Uniqueness of the solution

To show the uniqueness of the solution, it is enough to prove that homogeneous
problem has a trivial solution.

Let us first consider the following integral

uk(t) =
2

J2
1 (λk)

1∫
0

xu(x,t)J0(λkx)dx, k = 1,2,3, . . . , (26)

Then we introduce another function based on (26)

vε(t) =
2

J2
1(λk)

1−ε∫
ε

xu(x,t)J0(λkx)dx, k = 1,2,3, . . . , (27)

Applying C
(
tθ ∂

∂ t

)α1
and D(α2,β2)μ

0− to (27) and using the equation (6) in homoge-

neous case with respect to t

C
(
tθ ∂

∂ t

)α1
vε(t) =

2

J2
1 (λk)

1−ε∫
ε

C
(
tθ ∂

∂ t

)α1
u(x,t)xJ0(λkx)dx

=
2

J2
1 (λk)

1−ε∫
ε

[
uxx(x,t)+

1
x
ux(x,t)

]
xJ0(λkx)dx

=
−2λ 2

k

J2
1 (λk)

1−ε∫
ε

u(x,t)xJ0(λkx)dx
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D(α2,β2)μ
0− vε(t) =

2

J2
1(λk)

1−ε∫
ε

D(α2,β2)μ
0− u(x,t)xJ0(λkx)dx

=
2

J2
1(λk)

1−ε∫
ε

[
uxx(x,t)+

1
x
ux(x, t)

]
xJ0(λkx)dx

=
−2λ 2

k

J2
1(λk)

1−ε∫
ε

u(x,t)xJ0(λkx)dx

and integrating by parts twice the right sides of the equalities on t ∈ (0,T ) and t ∈
(−T,0) , respectively, and passing to the limit on ε → +0 yield

⎧⎨
⎩

C
(
tθ d

dt

)α1
uk(t)+ λ 2uk(t) = 0, t > 0,

D(α2,β2)μ
0− uk(t)+ λ 2uk(t) = 0, t < 0.

(28)

Considering conditions in (19), (20) in homogeneous case, (28) has a solution
uk(t) = 0 if Δk �= 0. Then from (26) and the completeness of the system Xk(x) in the
space L2(0,1) , u(x, t)≡ 0 in Ω . This completes the prove of uniqueness of the solution
of the main problem.

3.2. Existence of the solution

In the below, we present the well-known lemma about the upper bound of the
Mittag-Leffler function and the theorem related to Fourier-Bessel series for showing
the existence of the solution.

LEMMA 3. [28] Let α < 2, β ∈R and πα
2 < μ <min{π ,πα} , M∗ > 0 . Then,the

following estimate hold

|Eα ,β (z)| � M∗

1+ |z| , μ � |argz| � π , |z| � 0.

THEOREM 1. [31] Let f (x) be a function defined on the interval [0,1] such that
f (x) is differentiable 2s times (s � 1) and

• f (0) = f ′(0) = . . . = f (2s−1)(0) = 0

• f (2s)(x) is bounded (this derivative may not exist at certain points)

• f (1) = f ′(1) = . . . = f (2s−2)(1) = 0

then the following inequalities satisfied by the Fourier-Bessel coefficients of f (x):

| fk| � M

λ 2s− 1
2

k

.
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Considering above Lemma 3 and Theorem 1, we show the upper bound of Gk(t) :

| Gk(t) | �
t∫

0

|t p− τ p|α1−1| fk(τ)|d(τ p)

+
λ 2

k

p2α1

t∫
0

|t p− τ p|2α1−1|Eα1,2α1

[
− λ 2

k

pα1
(t p− τ p)α1

]
|| fk(τ)|d(τ p)

� 1
pα1Γ(α1)

t∫
0

|t p− τ p|α1−1 M

λk
7/2

d(τ p)

+
λ 2

k

p2α1

t∫
0

pα1 |t p− τ p|2α1−1M∗

pα1 + λ 2
k |t p− τ p|α1

M

λk
7/2

d(τ p)

�
[ M

λk
7/2pα1Γ(α1)

+
M∗M

pα1λk
7/2

] t∫
0

|t p− τ p|α1−1d(τ p)

� 1

λk
7/2

[ M
pα1Γ(α1)

+
M∗M
pα1

] |t|α1p

α1

� M1

λk
7/2

|t|α1p � M1

λk
7/2

|T |α1 p,

M1 =
M

pα1Γ(α1 +1)
+

M∗M
α1pα1

,

By using the last inequality, Lemma 3 and Theorem 1, we can write the upper
bound of Fk :

|Fk| � |Gk(T )|+
m

∑
i=1

ζi

0∫

ξi

|s− ξi|δ2−γ2+1|Eδ2,δ2−γ2+2(−λk
2(s− ξi)δ2)|| fk(s)|ds

� M1T α1p

λk
7/2

+
m

∑
i=1

ζi

0∫

ξi

|s− ξi|δ2−γ2+1 M∗

1+ λ 2
k |s− ξi|δ2

M

λ 7/2
k

ds

� M1T α1p

λk
7/2

+
m

∑
i=1

ζi

0∫

ξi

|s− ξi|1−γ2
MM∗

λ 11/2
k

� M1T α1p

λk
7/2

+
m

∑
i=1

ζi
(−ξi)2−γ2

(2− γ2)
MM∗

λ 11/2
k

� M2

λ 7/2
k

,

M2 = M1T
α1p +

m

∑
i=1

ζiMM∗(−ξi)2−γ2

(2− γ2)λk
2 ,
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or

|Fk| � M2

λ 7/2
k

, (29)

Now considering (29) and Δk �= 0 then, we write upper bounds of τk , ϕk , ψk in
(24) and (25).

|τk| = |ϕk| �
∣∣∣ 1
Δk

∣∣∣|Fk| � M2

|Δk|λ 7/2
k

, (30)

|ψk| =
∣∣∣ −λ 2

k

pα1Γ(α1)

∣∣∣∣∣∣ Fk

Δk

∣∣∣ � M2

pα1Γ(α1)|Δk|λ 3/2
k

. (31)

For proving the existence of the solution, we need to show uniform convergence of

series representations of u(x,t) , ux(x,t) , uxx(x,t) , C
(
tθ ∂

∂ t

)α
u(x,t) and D(α2,β2)μ

0− u(x,t)
by using the solution (21) and (22) in Ω1 and Ω2 respectively.

According to the last inequality and Theorem 1, then we can present the existence
of the solutions in both domains.

|u(x,t)| =
∞

∑
k=1

|uk(t)||J0(λkx)| �
∞

∑
k=1

|uk(t)|

�
∞

∑
k=1

[
|τk||Eα1,1(−

λ 2
k

pα1
tα1 p)|+ |Gk(t)||

]

�
∞

∑
k=1

( pα1

pα1 + λk
2|t pα1 |

M2

|Δk|λ 7/2
k

+
M1T α1 p

λk
7/2

)
.

One can shows that the series representation of u(x,t) is bounded by convergent nu-
merical series and by Weierstrass M-test, the series of u(x,t) converges uniformly in
Ω1 .

Now we remind some properties of Bessel functions [31]: J′0(x) = −J1(x) ;

2J′1(x) = J0(x)− J2(x) and asymptotic formula |Jν(λkx)| � 2A√
λkx)

, ν > −1/2,

A = const.
It is not difficult to see that the series representation of uxx(x,t) is bigger than

ux(x,t) hence it is enough to show the uniform convergence of uxx(x,t) . By using
these properties we have

|uxx(x, t)| �
∞

∑
k=1

|uk(t)|
∣∣∣ d2

dx2 J0(λkx)
∣∣∣ =

∞

∑
k=1

|uk(t)|
λ 2

k

2

∣∣∣J2(λkx)− J0(λkx)
∣∣∣

And as a similar way of u(x,t) we can show that

|uxx(x, t)| �
∞

∑
k=1

( pα1

pα1 + λk
2|t pα1 |

M2

|Δk|λ 7/2
k

+
M1T α1p

λk
7/2

) 2A√
λkx)

.
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From the last inequality we can see that the series representation of uxx(x,t) is
bounded by convergent series. According to Weierstrass M-test, the series of uxx(x,t)
converges uniformly in Ω1 .

The uniform convergence of C
(
tθ ∂

∂ t

)α
u(x,t) which is defined as

C
(

tθ ∂
∂ t

)α
u(x,t) = uxx(x,t)− 1

x
ux(x,t)+ f (x,t)

is similar to the way of showing convergence of the series representation of uxx(x,t) .
In Ω2 domain it is enough to show the uniform convergence of uxx(x, t) which

is bigger than other series. Hence the convergence of the series of u(x,t) , ux(x, t) ,
D(α2,β2)μ

0− u(x, t) can be derived from the uniform convergence of uxx(x, t) .
From Theorem 1 and Lemma 3, in Ω2 we can have

|uxx(x, t)| �
∞

∑
k=1

|uk(t)|
λ 2

k

2

∣∣∣J2(λkx)− J0(λkx)
∣∣∣

�
∞

∑
k=1

λ 2
k |ϕk||(−t)γ2−2||Eδ2,γ2−1(−λ 2

k (−t)δ2)|

+
∞

∑
k=1

λ 2
k |ψk||(−t)γ2−1||Eδ2,γ2

(−λ 2
k (−t)δ2)|

+
+∞

∑
k=1

λ 2
k

0∫
t

|z− t|δ2−1|Eδ2,δ2
[−λ 2

k (z− t)δ2 ]|| fk(z)|dz

�
∞

∑
k=1

[ λ 2
k M2

|Δk|λ 7/2
k

|(−t)γ2−2|M∗

1+ λ 2
k |(−t)δ2 | +

λ 2
k M2

|Δk|λ 3/2
k pα1Γ(α1)

|(−t)γ2−1|M∗

1+ λ 2
k |(−t)δ2 |

]

+
+∞

∑
k=1

λ 2
k

0∫
t

|z− t|δ2−1 M∗

1+ λ 2
k |(z− t)δ2 |

M

λ 7/2
k

dz

�
∞

∑
k=1

1

λ 3/2
k

[ M2M∗T γ2−2

|Δk|(1+ λk
2T δ2)

+
M2M∗T γ2−δ2−1

|Δk| +
MM∗ ln(1+ λ 2

k T δ2)
δ2λ 2

k

]

�
∞

∑
k=1

M3

λ 3/2
k

where lim
λk→∞

ln(1+λ 2
k Tδ2 )

δ2λ 2
k

< ∞ according to l’Hopital’s rule. It can be seen that the se-

ries representation of uxx(x,t) is bounded by convergent numerical series and due to
Weierstrass M-test, the series of uxx(x,t) converges uniformly in Ω2

Using (30), (31) and Theorem 1, Lemma 3, we can show the uniform convergence

of u(x, t) , ux(x, t) , and D(α2,β2)μ
0− u(x,t) in a similar method used for uxx(x,t) .



74 B. TOSHTEMIROV

4. Main results

Finally, we have proved the uniqueness and existence of the solution to the con-
sidered problem as stated in the following theorem.

THEOREM 2. Let Δk �= 0 and
m

∑
i=1

ζi

Γ(α1)pα1Γ(2− δ2)
> 0 , and also the following

conditions hold for f (x,t) ∈C(Ω) such that

• f (0, t) = f ′x(0,t) = . . . = f ′′′x (0,t) = 0 ;

• f (1, t) = f ′x(1,t) = f ′′x (1,t) = 0 ;

• ∂ 4

∂x4 f (x, t) is bounded;

then, there exist the unique solution of the considered problem which is represented by

u(x,t) =
∞

∑
k=1

Uk(t)J0(λkx)

where

Uk(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τkEα1,1

(
− λk

2

pα1
t pα1

)
+Gk(t), t > 0,

ϕk(−t)γ2−2Eδ2,γ2−1[−λ 2
k (−t)δ2 ]−ψk(−t)γ2−1Eδ2,γ2

[−λ 2
k (−t)δ2 ]J0(λkx)

+
0∫

t

(z− t)δ2−1Eδ2,δ2
[−λ 2

k (z− t)δ2 ] fk(z)dz, t < 0

here p = 1−θ and

Gk(t) =
1

pα1Γ(α1)

∫ t

0

(
t p− τ p)α1−1

fk(τ)d(τ p)

− λk
2

p2α1

∫ t

0

(
t p− τ p)2α1−1

Eα1,2α1

[
− λk

2

pα1
(t p− τ p)α1

]
fk(τ)d(τ p),
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