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ON THE UNIQUENESS OF SOLUTIONS OF TWO INVERSE
PROBLEMS FOR THE SUBDIFFUSION EQUATION
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Abstract. Consider an arbitrary positive self-adjoint operator A defined in a separable Hilbert
space H . In the nonlocal boundary value problem DPu(r) +Au(t) = f(t) (0<p <1,0<t<
T), u(é) = au(0) + ¢ (a is a constant and 0 < & < T), where D; is the Caputo derivative,
assume that the right-hand side of the equation or the function ¢ is unknown. In this paper, we
study the inverse problems of determining these unknown functions. For both inverse problems,
u(&)) =V is taken as the over-determination condition. The main attention is paid to the study of
the influence of the constant o on the existence and uniqueness of the solution to the problems.
An interesting effect was discovered: when solving the forward problem, the uniqueness of the
solution u(z) was violated, while when solving the inverse problem for the same values of a,
the solution u(7) became unique.

1. Introduction

Consider an arbitrary positive self-adjoint operator A defined in a separable Hilbert
space H with the scalar product (-,-) and the norm ||-||. Let A have a complete in H
system of orthonormal eigenfunctions {v;} and a countable set of positive eigenvalues
Akt 0 <Ay < Ap- - — +oo. We will also assume that the sequence {A;} has no finite
limit points. For a vector-functions (or simply functions) & : R, — H, we define the
Caputo fractional derivative of order 0 < p < 1 as (see, e.g. [1])

L[ @)
th(t):l"(l—p)o/(t—é)/’dé’ t>0,

where T'(0) is Euler’s gamma function. Denote by C((a,b);H) the set of continuous
functions u(t) of ¢ € (a,b) with valuesin H.

Let f(t) € C((0,T];H) and ¢ € H. The main object studied in this work is the
following non-local boundary value problem:

Dlu(t) +Au(t)=f(r), 0<t<T;

(1
u(&o) = ou(0)+¢, 0<G<T,
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where o is a constant and & is a fixed point. Usually problem (1) is called forward
problem.

In the case when &y = T and parameter « is equal to zero: o = 0, this problem
is called the backward problem and it is well studied in the works [2]-[4] and [5]. And
if o« =0 and p =1, then we get a classical problem called the retrospective inverse
problem, which has been studied in detail by various specialists (see, e.g. Chapter 8.2
of [6] and literature therein).

It is well known that in most models described by differential (and pseudodiffer-
ential, see e.g., [7]) equations, an initial condition is used to select a single solution.
However, there are also processes where we have to use non-local conditions, for ex-
ample, the integral over time intervals (see, e.g. [8] for reaction diffusion equations
or [9] for fractional equations), or connection of solution values at different times, for
example, at the initial and final times (see, e.g. [10]-[11]). It should be noted that non-
local conditions model some details of natural phenomena more accurately, since they
take into account additional information in the initial conditions.

The non-local problem (1) in case of the diffusion equation, namely the following
problem

u'(t)+Au(t)=f(t), 0<t<T;
()
{u(éo) =u(0)+¢, 0<E<T,

actively studied by many researchers (see, for example, Ashiraliev A.O. et al. [10]—
[11]). As the authors of these papers showed, in contrast to the retrospective inverse
problem, problem (2) is solvable coercively in some spaces of smooth functions.

Let us return to the non-local problem (1). The authors of this paper in their
previous work [12] studied in detail the influence of parameter o # 0 on the correctness
of problem (1). It turned out that the critical values of parameter ¢ are in the interval
(0,1). In order to formulate the main result of work [12], we recall the definition of the
Mittag-Leffler function E, (z) with two parameters (see, e.g. [13], Chapter 1):

o n

EP#(Z) = ;m’

where u is an arbitrary complex number and if y = 1, then we have the classical

Mittag-Leffler function: E,(z) = Ep 1(z). Recall (see, e.g. [12]), Ey(—t) decreases
strictly monotonically as ¢ > 0 and, moreover, has the following estimate

0<Ep(—t)<1, t>0. 3)

In work [12] it is proved that if o € (0,1) and E,(—M4&F) # o for all k, then
the solution of problem (1) exists and is unique. But it may turn out that for some
eigenvalue 4y, of operator A, with multiplicity po (obviously, py is a finite number),
equality

Ep(—iy&) = o “)
will hold. Then, as proved in [12], in order for a solution to exist, one should require
orthogonality conditions of the following form

((P,Vk) =0, (f(t),vk) =0, forall >0, k € Kyp; Ko :{ko,k0+1,...,k0+p0— 1} ®))
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It should be emphasized that if the equality (4) holds, the solution will not be unique
[12].

The paper [12] also studies two inverse problems of determining the function ¢
from the non-local condition (1) and the source function f, i.e. the right-hand side of
the equation in (1) (in the latter case, it is assumed that f does not depend on ¢). It
is proved that if o« ¢ (0, 1), then the solutions of both inverse problems exist and are
unique. The main goal of this paper is to study these inverse problems for critical values
of parameter o € (0,1).

PROBLEM 1. Let o € (0,1). Find a pair {u(z), f} of function u(r) € C([0,T]; H)
and f € H such that D" u(t),Au(t) € C((0,T]; H) and satisfying the non-local problem
(1) (note, f does not depend on #) and the over-determination condition

u(é) =V, 0<& <&, (6)

where V is a given element of H.

In the case of & = & in (6), the non-local condition in (1) is the same as the
Cauchy condition u(0) = ¢; (note the o # 0). The resulting inverse problem is studied
in [14]. If the reverse inequality &, > &y holds, then it will be shown that the solution
may not be unique.

PROBLEM 2. Let o € (0,1). Find a pair {u(t), ¢} of function u(z) € C([0,T]; H)
and @ € H such that D{ u(t), Au(z) € C((0,T]; H) and satisfying the non-local problem
(1) and the over-determination condition

u(€2) =W, 0< §2 <T, 52 # éOa @)

where W is a given element of H .

If & =&, then the non-local condition u(&) = au(0) + ¢ is the same as the
Cauchy condition u(0) = @; (note o # 0) and we have the backward problem, consid-
ered in [2]-[4].

Everywhere below, for the vector - function A(¢t) € H (which may or may not
depend on 1) by the symbol /() we will denote the Fourier coefficients with respect
to the system of eigenfunctions {vi}: I (t) = (h(r),v).

THEOREM 1. Let @,V € D(A) and let the orthogonality conditions (5) be satis-
fied. Then Problem 1 has only one solution {u(t),f} and this solution has the form

iy o — Ey(—2EP) "
ko LEp (=280 )80 Ep pi1 (= i&8) + EP Ep ps1 (M) [0 — Ep (= M465)]
N Ep(—M&P)
Pre | Vis

Ep (=Ml )0 Ep p i1 (= &) + &P Ep 1 (=& )0 — Ep (—Au&5)]
®)
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Ey(—AtP
u(t) = kg,{o % [0k — [} &) Ep pit (= MEDN + fit P Ep o1 (— AatP) | vi

Ep (—MP) Vi Vk

Ly b ©)

keKy ( Ak&l )

Note that, due to the orthogonality condition (5), all Fourier coefficients f; vanish
for k € Ky. Obviously, Ky can also be an empty set; in this case the sum ;¢ is the
same as Y ;.

In order to formulate a result on Problem 2 we define for an arbitrary real number
T the power of operator A as

ATh = 2 A,]:hkvk,
k=1

where hy are the Fourier coefficients of & € H. The domain of definition of this operator
is determined from the condition A%k € H and has the form
DAY ={heH: Y A |h|* <}
k=1
In D(A") one can define the norm
1Rl = Z AL hyl? = |AThI

which turns D(A") into a Hilbert space.

THEOREM 2. Let W € D(A), f € C([0,T];D(A%)) for some € € (0,1) and let

the orthogonality conditions (5) be satisfied. Then Problem 2 has only one solution
{u(t), @} and this solution has the form

= %[Wk—wk(éz)]+wk(€o)] " w0
u)= Z MEP(_MZP)—F(M(I)] Vi (11D
ik, | Eo (&) — o
A,klp Wk
+k§(0 ( Ak&z ) vk

where

(1) =/n"*lEp,p(—lkn")fk(t—n)dn.
0

Note that for k € K all Fourier coefficients ¢y are equal to zero since the orthogonality
condition (5). When Kj is an empty set, then the sum 34, coincides with 37 .
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REMARK 1. It should be specially noted that, as was proved in [12] and noted
above, when equality (4) holds, the solution to the forward problem is not unique. But
it turns out that both inverse problems have a unique solution even under condition (4).

As far as we know, the inverse problem of determining the function ¢ in a non-
local condition was considered only in the paper [15]. The authors investigated this
problem for a subdiffusion equation with a fractional Caputo derivative, the elliptic
part of which is a differential expression with constant coefficients, defined in a two-
dimensional domain. On the other hand, it is not difficult to simulate a real process
in which we will face just such an inverse problem. For example, in the temperature
distribution process, the initial and final temperatures are not specified, and they are not
sought, but it is required to find the difference between the initial and final temperatures.

As for the inverse problems of determining the source function f with final time
observation, it is well studied, both for classical partial differential equations and for
equations of fractional order. Many theoretical studies have been published. Ka-
banikhin [6] and Prilepko et al. [16] should be mentioned as classical monographs
for integer-order equations. As for fractional differential equations, it is possible to
construct theories parallel to the works of [6], [16], and work in this direction is on-
going. In this note, we will pay attention to only some of them, referring interested
readers to a review paper [17]. Also note the works [12], [18, 19, 20], where there is a
review of recent work in this direction.

We note right away that no one has yet proposed a method for finding the right-
hand side given in the abstract form f(x,7). Known results concern the separated source
term f(x,¢) = q(¢)p(x). The correct choice of over-determination conditions depend
on whether ¢(¢) or p(x) is unknown.

Quite a lot of papers are devoted to the case considered in this article, namely
q(t) = 1 and the unknown is p(x). Subdiffusion equations with Au = u,, are con-
sidered, for example, in [18, 21, 22, 23]. The authors of [19, 20], studied the inverse
problem for multi-term subdiffusion equations in which A is either the Laplace opera-
tor or a second order differential operator. The inverse problem for an equation in (1)
with the Cauchy condition was studied in [14]. In recent papers [24]—-[25] the inverse
problem for equations with the Riemann-Liouville derivative has been studied.

The authors of [26] considered as A a non-self-adjoint differential operator (with
non-local boundary conditions), and the solution of the inverse problem was found
using a biorthogonal series.

The work [27] is devoted to the study of the inverse problem of the simultaneous
determination of the Riemann-Liouville derivative and the source function in the sub-
diffusion equation. To prove the correctness of this inverse problem, the authors used
the classical Fourier method.

It should be especially noted that in all the papers cited above, the Cauchy condi-
tion in time is considered (the exception is [28], where the integral condition is given
by the variable ¢). As far as we know, in the article [12], the inverse problem for the
subdiffusion equation with a time-nonlocal condition is considered for the first time.

More complicated are the inverse problems, in which the unknown is the function
q(t) (see the review article [17] and [3]). To determine the function ¢(¢) in such prob-
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lems, the relation u(xp,7) = uo() is taken as the over-determination condition. The
authors studied mainly the uniqueness of the inverse problem’s solution. In this re-
gard, we note the recent papers [29], [30] where the inverse problem for determining
the right-hand side of the form ¢(7) was studied for the Schrodinger equation. Taking
over-determination conditions of a rather general form Bu(-,7), where B: H — R is a
linear bounded functional, the authors proved both the existence and uniqueness of a
solution to the inverse problem.

The papers [31]-[32] consider the inverse problem of determining of the fractional
derivative’s order in the subdiffusion and wave equations, respectively.

2. Inverse Problem 1

2.1. Existence

Assume that all the conditions of Theorem 1 are satisfied, i.e. ¢,V € D(A) and
let the orthogonality conditions (5) be satisfied. Let us first prove the existence of
a solution and that the solution has the form (8) and (9). The fact that these series
converge in the norm H and in (9) the summation and operators DY and A can be
interchanged was proved in the work of the authors [12]. Therefore, it suffices to show
that the series (8) and (9) formally satisfy the equation and the initial condition (1), and
the over-determination condition (6). In order to do this, we rewrite the series (8) and
(9)in the form f =73 fyvx and u(t) = X uy(t)vi . Now, according to the Fourier method,
it suffices to show that the unknown coefficients f; and u(¢) satisfy equation

D7 u(t) + Aug (1) = fi (12)
the non-local condition
ur(So) = 0ur(0) + @y, (13)
and finally the over-determination condition
uk(&1) = Vi, (14)

forall k> 1.
Let us show that u;(7) and f; satisfy equation (12). Let k ¢ Ky. We have u; (1) =
up(t)+ui(t), where

Ep (=)

m [0 — &8 Ep p+1(— &)

up(t) =

and
ug(t) = fitP Ep p 1 (—2at).

It is known (see, e.g. [33], p. 174) that u}C (¢) is a solution to the homogeneous equation
(12) with the initial condition

_ Or — fké(?Ep,erl(_lké(?)
Ep(—M&f)—a

u (0)
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It is also known (see ibid.) that the function
t
out) = [ 1P Ep p(~3n®) file —m)an
0

from Theorem 2 is a solution to equation (12) with the right-hand side f;(z) and with
the initial condition @y (0) = 0. If in this formula f;(z) does not depend on ¢, then the
integral can be rewritten in the form (see e.g. [33], formula (4.4.4))

t

fk/ﬂp_lEp,p(—lknp)dn = fitP Ep p 1 (—MtP).
0

Therefore, the function u,%(t) is a solution to the inhomogeneous equation (12) with the

initial condition u2(0) = 0.
Now suppose that k£ € K. Then the function

. E,,(—?L;J”)Vk
uk(t)_ Ep(—lkgf))

is a solution of homogeneous equation (12) with the initial data

Vi
u(0) = ——-.
Ep(—MEL)
Thus, it is proved that the functions (8) and (9) really satisfy equation (12).
It remains to verify the fulfillment of the non-local condition (13) and the over-
determination condition (14).
Let k ¢ Ko. Since we have calculated u(0) = u} (0) +u3(0), we can write

OEp(—MEY) — 0 iV Ep pi1 (&)
Ep(—lkéé)) —u

our(0) + ¢ =

On the other hand, according to (9), uz(&y) has exactly the same value:

wn(&) = PEMED) — Wb Ep g1 (“Hus)
Ep(—M&)) —a :

Let now k € K. Then ¢, =0 (see (5)) and Ep(—kkéé)) = o. Therefore

oV

o (0) + ¢ = m,

and
Ep(—M&D) Vi _ oV

Ep(—M&f)  Ep(—Mél)

ur(&o) =
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Thus, the Fourier coefficients of function u(r), defined by formula (9), satisfy the non-
local condition (13) forall k > 1.

Let us check the fulfillment of the over-determination condition (14). Consider
again the case k ¢ K. By virtue of condition (14) we obtain:

Ep(—M&D)
Ep(—M&Y) —a

After simple calculations, we get

[0k — [l Ep pit (A& + il Ep pit (—MEP) = Vi

a—Ep(—lkéé))
Ep(—M&))E  Ep pi1 (—M&l) + EL Ep prt (— Ml ) ot — Ep (—Ai&Y)
Ep(—M&Ef)
Ep(—M&D)E Ep pr1 (=& + &L Ep p 1 (&) o — Ep(—M&J)]

and this coincides with the Fourier coefficients of the function (8).
If k € Ky, then

fi = ]Vk

+

(3

Ep (=& ) Vi _
Ep(—1E7)
Thus the existence of a solution to Problem 1 is proved.

up(&1) =

k-

2.2. Uniqueness

Let us proceed to the proof of the uniqueness of the solution of Problem 1.

We proceed in the standard way: assuming the existence of two solutions, we
obtain contradictions. In other words, let {u;(r), fi} and {ux(¢),f2} be two different
solutions. We show that u(t) = u(t) —ux(t) =0 and f = f1 — f» =0, i.e. we will
prove that the solution {u(t), f} of the inverse problem:

DPu(t) +Au(t)=f, t>0; (15)
u(8o) = ou(0), 0<&<T, (16)
u(81) =0, 0<& <&, (17)

where &y and &; are the fixed points, is identically zero.

Let {u(z),f} be a solution to this problem and denote ui(r) = (u(t),vx), fr =
(f,vk). Then, since A is the self-adjoint of operator, problem (15)—(17) becomes the
following inverse problem with respect to {ux (), f }:

DPup(t) + Ma(t) = frr  t>0;  w(&o) = aur(0),  wux(&) =0. (18)

Note that if £ € K then f; =0.
Let first k ¢ K. If f; is known, then the non-local condition implies (see, e.g.
[33], p.174)

_ [ESEp pr1 (—MEY)
o —Ep(—M&f)

ur(t)

Ep(=M2P) + fitPEp p 1 (—MatP).
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Scince u(&;) =0 we have

TE Ep p1 (=288 VEp (= M&P) + &P Ep ot (T ) (00 — Ep (—24&5)) = 0. (19)

Let us show that for &; < &, the square bracket is not equal to zero. To do this, we
introduce the notations: a(t) = tPE, p11(=AP) >0 and b(t) = Ep(—AtP) > 0. It
is known (see, e.g. [12]) that the function a(#) is increasing and the function b(¢) is
decreasing. Now let us rewrite the square bracket as

c(80,61) = a(80)b(G1) — a(51)b(Go) + atb(&o)-

Obviously, for & < & this expression is strictly positive. Therefore for all k ¢ Ky one
has fi =0 (see (19)).

It should be noted that if the inverse inequality & > & is satisfied, then the first
term in the expression for ¢(&p, &) becomes less than the second one and, as a result,
there is o € (0,1) that turns c(&y,&;) into zero. Therefore, in this case f; may not
vanish, i.e., the uniqueness f; for these o« and k is violated.

Let us now consider the case k € K. Denote u;(0) = b;. The differential equation
in (18) has a unique solution with this initial condition: u(t) = byE,(—AP) (see,
e.g. [33], p.174). Since E,(—M4&Y) = e in the considering case, then the non-local
condition is satisfied for an arbitrary by. But the over-determination condition u; (&) =
0 implies by =0 for k € K.

Therefore, due to the completeness of the system {v;} in H we get f =0 and
u(r) = 0. Thus the uniqueness and hence Theorem 1 is completely proved.

3. Inverse Problem 2

3.1. Existence

Suppose that W € D(A) and f € C(]0,T]; D(A%)) for some € € (0,1) and let
the orthogonality conditions (5) be satisfied. Let us first show that series (10) and
(11) are indeed solutions to Problem 2. The fact that u(r) € C([0,T];H) and ¢ €
H and have properties DY u(t),Au(t) € C((0,T];H) was proved in our previous paper
[12]. Therefore, it suffices to prove that (10) and (11) together are a formal solution to
Problem 2. In turn, for this it suffices to show that the Fourier coefficients @ and u; ()
of functions (10) and (11) respectively, satisfy equation (12), the non-local condition
(13) and the over-determination condition

ur(&2) = Wi (20)

It is easy to see that uy(z) is a solution of equation (12). Indeed, let first, k ¢ Kp.
We introduce the notation

_ o — o (o) _
)= p D e B M)
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Then u;(t) = u} (t) + @ (t). Here u}(¢) is the solution of the homogeneous equation
(12) with the initial condition

Ly Pc— o(So)
Y

and y(r) is the solution of equation (12) with zero initial condition (see, e.g. [33], p.
174).
If k € Ky, then according to the orthogonality conditions f; =0 and the function

Ep(—241P) W
Ep(—M&S)

is a solution of the homogeneous equation (12) with the initial condition

u(t) =

_ Wi
O = Eany

Thus we have shown that u;(¢) is a solution of equation (12).
Let us check the non-local condition (13). Consider first the case k ¢ K. We have

o — oy (&)

ou(0) + o = 0 ————F5
¢ B (—MED) —a

+ Q-
On the other hand,

&) = 0 Eo(AE) (&)
0
_ OEp(—2Ef) — oan(&o) _ % (Ep(—MEJ) — o) + pro— aan(&o)
Ep(—M&)) —a Ep(—M&)) —a
o — o (o)

—a— 0 .
E,,(—?Lkéé’)—a

Now consider the case k € Ky. Note in this case E,(—A4&)) = o and all Fourier
coefficients ¢y are equal to zero since the orthogonality condition (5). Therefore,

oy (0)+ g = — Ep(-haf) e (&)
p

k
Ep(—M&7) (&)
Let us move on to checking the over-determination condition (20). Let k ¢ Kp.
Then
o — ax(&o)

Ey(—1El)—a Ep(—M480) + (&) = Wi,

or
E,,(—?Lké(’)’) -

Ep(— &) Wi — on(S2)] + o (S0),

Or =
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and this coincides with the Fourier coefficients of the function (10).
If k € Ky, then
Ep(—ME5) Wi _
Ep(—M&F)

Thus the existence of a solution to Problem 2 is proved.

k-

ue(&) =

3.2. Uniqueness

Obviously, to prove the uniqueness of the solution to Problem 2, it suffices to show
that the solution {u(z), @} to the following inverse problem:

DYu(t) +Au(t)=0, t>0;
u(o) = au(0)+¢, 0<&H<T,

I/L(éz) =0, 0< 52 <T, §2 # 507

is identically zero: u(r) =0 and ¢ =0.
Let {u(t),p} be a solution of this problem and let u(r) = (u(z),v;) and ¢ =
(@,vi). Then

DPug(t) + M (1) =0, t>0;  w(&) = oug(0) + @p, up (&) =0.  (21)
Let k ¢ Ky. Then it is not hard to verify that the following function

Ep (=)

“) = ChE) -a

(3

is the only solution to the equation and non-local condition in (21). The over-determi-
nation condition in (21) implies

Ep(—M&7)

W g

(pk:().

Since Ep(—MEY) # o and Ep(—M&Y) # 0, then we have ¢ = 0 and therefore
u(t) =0 forall k ¢ Ky.

Now consider the case k € Ky. Denote u;(0) = by. The differential equation in
(21) has a unique solution with this initial condition: uy(t) = biEy(—A2P) (see, e.g.
[33], p.174). Since Ep(—kkéé’) = o and @ = 0 in the considering case, then the non-
local condition is satisfied for an arbitrary b;. But the over-determination condition
ur(&) =0 implies by = 0 and therefore uy(t) =0 for k € Kp.

Therefore, due to the completeness of the system {v;} in H we get ¢ =0 and
u(r) = 0. Thus the uniqueness and hence Theorem 2 is completely proved.
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4. Conclusion

In the previous paper of the authors [12] it is proved that for o ¢ (0,1) the solu-
tions of the forward and two inverse problems of determining f and ¢ exist and are
unique. If o € (0,1) and equality (4) holds for some k € Kp, then to ensure the exis-
tence of the solution to the forward problem, it is necessary to require the orthogonality
condition (5). However, in this case the solution is not unique and it is determined up
to the term

> biEp (=Mt ) vy,
keKy

where by are arbitrary numbers.

In this paper, we consider the above two inverse problems for critical values of pa-
rameter o € (0, 1). An interesting effect arises here: when solving the forward problem
the uniqueness of solution u(¢) was violated, while when solving the inverse problem
for the same values of o, solution u(r) became unique. What is the matter here? It
turns out, as follows from the main results of this paper, the over-determination condi-
tion

u(t)=VvV

can be rewritten in the form of two groups of conditions with respect to the Fourier
coefficients
ur(t) = Vi, k ¢ Ko,

and
(1) = Vi, k € Ko.

With the help of the first group, the unique solutions of inverse problems are singled
out, and since the coefficients f; and ¢ are equal to zero for k € Ky, the conditions
from the second group are not used in this case. And the conditions from the second
group ensure the uniqueness of the solution u(¢), namely, they determine uniquely the
above arbitrary coefficients by.
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