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Abstract. In this paper, we study the existence and uniqueness results of Impulsive fractional
neutral pantograph integro-differential equations with delay. The results are obtained by using
the Krasnoselskii fixed point theorem. Finally examples are given to illustrate the main result
obtained in this article.

1. Introduction

Fractional calculus is the mathematical analysis which deals with the investiga-
tion and applications of integrals and derivatives of arbitrary order [22, 29]. In recent
years, it is extensively applied to various fields such as viscous elastic mechanics, power
fractal networks, electronic circuits [4, 21]. In [23], one can find some recent develop-
ments in the fields of fractional dynamics. Fractional Differential Equations emerged
as a new branch of applied mathematics which has been used for many mathematical
fields such in science and engineering. Benson [8], presented some applications of frac-
tional calculus in the study of convective and diffusion of solutes in natural porous or
fractured media. In [25, 26], we can see applications of fractional differential equa-
tions in complex dynamics, biological tissues, viscoelastic materials, signal process-
ing, thermal systems and heat conduction. Concerning the development of theory and
applications of fractional calculus, we refer to the monographs of [22, 28, 29] and pa-
pers [31, 32, 5, 6, 30]. Some recent results on the existence of solutions for fractional
integro-differential and fractional differential equations can be found in [1, 2, 11, 12]
and the references therein. Fractional delay differential equations arise in many appli-
cations, such as automatic control, long transmission lines, economy and biology [26].
The fractional pantograph equations, as a kind of fractional delay differential equations,
plays an important role.

Impulsive differential equations are suitable mathematical model to simulate the
evolution of large classes of real process. The impulsive differential equations arising
from the real world problems to describe the dynamics of process in which sudden,
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discontinuous jumps occur. Such processes are naturally seen in biology, physics, en-
gineering [24, 17].

Neutral differential equation appear in many areas of physical mathematics and,
for this reason, these equations have received much attention over the last few decades.
Some good literature for ordinary neutral functional differential equations are the books
of Benchohra et al. [7], Graef et al. [14], and the references therein. On the other hand,
for partial neutral functional differential equations we refer the reader to Balachandran
[9], Hale [16].

In this paper we consider the following impulsive fractional neutral pantograph
integro-differential equation of the form

CDα[u(t)−A(t)u(t−1)
]
= F (t,u(t),u(λ t))+

∫ qt

0
G1(t,s,u(s))ds

+
∫ t

0
G2(t,s,u(s))ds, t ∈ J := [0,T ], t �= tk

Δu|t=tk = Ik(u(tk)); k = 1,2, . . . ,m (1.1)

u(0) = u0,

u(t) = φ(t), t ∈ [−1,0]

where 0 < α, λ , q < 1, CDα is the Caputo fractional derivative and F : J×R×R →
R and Gi : J × J ×R → R are continuous for i = 1,2. A(t) and Ik : X → X are
continuous function for k = 1,2, . . . ,m. Here 0 = t0 < t1 < t2 < .. . < tm < tm+1 =
T , Δu(tk) = u(t+k )− u(t−k ), u(t+k ) = limh→0 u(tk + h) , u(t−k ) = limh→0 u(tk − h), k =
1,2, . . . ,m represent the right and left limits of u(t) at t = tk , respectively.

Pantograph type equations have been studied extensively owing to the numerous
application in which these equation arise. The name pantograph originated from the
work of Ockendon and Taylor [27] on the collection of current by the pantograph head
of an electric locomotive. The pantograph type equations are appeared in modelling of
various problems in engineering and sciences such as biology, economy, control and
electrodynamics [3]. Balachandran and Kiruthika [10] studied the existence of solu-
tions of abstract fractional pantograph equations by using the fractional calculus and
fixed point theorems. Yüzbasi et al. [33] investigated the numerical solution of gener-
alized pantograph equation with a linear functional argument by virtue of introducing a
collocation method based on the Bessel polynomials for the approximate solution of the
pantograph equations. For some applications of this equation we refer [18, 19, 20, 15].
Due to its importance in many applied fields, it is interesting to study the fractional
model of the pantograph equations.

Motivated by the above mentioned works, the main aim of this paper is to establish
the existence and uniqueness solutions for the neutral pantograph integro differential
equation with impulsive condition and delay (1.1) by using contraction mapping the-
orem and the fixed point theorem of Krasnoselskii. To best of our knowledge there is
some new results in this paper.

The organization of the paper is as follows. In Section 2, we recall some basic
well known results and some notations. In Section 3, we discuss the existence and
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uniqueness results. In Section 4 two examples are given to illustrating our results is
presented.

2. Preliminaries

In this section we need some basic definitions and properties of fractional calculus
that are used in this article. Let X be a Banach space and [a,b] ⊂ R be a finite interval
and assume that α,β ,γ ∈ C and R(z) = Real(z) for z ∈ C . C(J,X) be the Banach
space of continuous functions u(t) with u(t) ∈ J for t ∈ J := [0,T ] .

For convenience of the reader, we need to introduce some notations and properties
of fractional calculus which will be used in the proof of our results. Let N be the set of
natural numbers, and let R be the set of real numbers and R+ = (0,∞) .

Use the notations

t−1

∏
l=1

f (l) = 1,

t

∏
l=t−n

f (l) = f (t −n) f (t−n+1) . . . f (t),

t−1

∏
τ=t

f (τ) = 0, (2.1)

t

∏
τ=t−n

f (τ) = f (t −n)+ f (t−n+1)+ . . .+ f (t)

for n∈N , t ∈R+ and arbitrary real function f . The difference operator Δ is defined by
Δ f (t) = f (t +1)− f (t) , where the function f (t) is defined for t ∈R+ . The difference
operator Δt is defined by Δt g(t,a) = g(t +1,a)−g(t,a) , where the function g(t,a) is
defined for a, t ∈ R+ .

Let t0 be a positive real number and set

t−1 = min{inf{λ (s) : s � t0}, t0−1},
tn = inf{s : λ (s) > tn−1} (2.2)

for n = 1,2, . . . . Then {tn} is an increasing sequence such that

lim
n→∞

tn = ∞,

∞⋃
n=1

[tn−1,tn) = [t0,∞), (2.3)

λ (t) ∈
n⋃

i=0

[ti−1,ti), tn � t < tn+1, n = 0,1,2, . . .

Fix a point t such that tn � t < tn+1 , define the natural number K(t) such that t −
K(t)−1 < tn and t−K(t) � tn , and the set T (t) is defined by

T (t) = {t−K(t),t−K(t)+1, . . . ,t −1,t}. (2.4)
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A solution of (1.1) is a function u(t) which is defined for t � t−1 and satisfies (1.1) for
t � t0 . For a given a real bounded continuous function φ on t−1 � t < t0 , (1.1) has a
unique solution u(t) satisfying the initial condition u(t) = φ(t) .

DEFINITION 2.1. [22] The Riemann-Liouville fractional integral of order α ∈ C

are defined by

(I α
a+F )(u) =

1
Γ(α)

∫ u

a

F (s)
(u− s)1−α ds, u > a, R(α) > 0, (2.5)

where Γ(.) is the gamma function.

DEFINITION 2.2. [22] The Riemann-Liouville fractional derivative of order α ∈
C are defined by

(Dα
a+F )(u) =

1
Γ(n−α)

dn

dun

∫ u

a

F (s)
(u− s)α−n+1 ds

=
dn

dun (I n−α
a+ F )(u), u > a, R(α) � 0, (2.6)

respectively, where n = [R(α)]+1 when α /∈N0 = {0,1, . . .} ( [α] denotes the integer
part of α ).

DEFINITION 2.3. [22] The Caputo fractional derivative of order α on [a,b] is
defined by

(CDα
a+y)(u) =

(
Dα

a+

[
y(t)−

n−1

∑
k=0

y(k)(a)
k!

(t −a)k

])
(u). (2.7)

When a = 0 we denote I α
a+y and CDα

a+y by I αy and CDαy . The semigroup
properties of the fractional integral operator I α

a+ and the composition relation between

the fractional integral operator I α
a+ and the fractional differentiation operator Dβ

a+ are
given by the following Lemma (see [22], Lemma 2.9).

LEMMA 2.1. [22] Lemma 2.9 Let R(α),R(β ) > 0 and F (u) ∈ C[a,b] . Then
for any u ∈ [a,b] the following assertions are true:

(a)
(I α

a+I β
a+F )(u) = (I α+β

a+ F )(u). (2.8)

(b)
(Dα

a+I α
a+F )(u) = F (u). (2.9)

(c) If R(α) > R(β ) , then

(Dβ
a+I α

a+F )(u) = (I α−β
a+ F )(u). (2.10)
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(d) Let n = [R(α)] + 1 for R(α) /∈ N and Fn−α(u) = (I n−α
a+ F )(u) ∈ Cn[a,b] ,

then

(I α
a+Dα

a+F )(u) = F (u)−
n

∑
k=1

F
(n−k)
n−α (a)

Γ(α − k+1)
(u−a)α−k. (2.11)

Let Cγ [a,b] be the space of functions F given on (a,b] such that (u−a)γF (u) ∈
C[a,b] with the norm

∥∥F∥∥
Cγ =

∥∥(u−a)γF (u)
∥∥

C
:= sup

u∈[a,b]

∣∣(u−a)γF (u)
∣∣.

Notice that for γ = 0, Cγ [a,b] = C[a,b] . The following Lemma ([22] Lemma 2.8 (a)) is
concerning with the continuity of the fractional integral operator I α

a+ from the space
Cγ [a,b] into C[a,b] .

LEMMA 2.2. [22] Lemma 2.8(a) Let R(α) > 0 and 0 � R(γ) � 1 . If R(γ) �
R(α) , then the fractional integration operator I α

a+ is bounded from Cγ [a,b] into
C[a,b]:

∥∥I α
a+F

∥∥
C

� K0
∥∥F∥∥

Cγ
,

K0 = (b−a)R(α−γ) Γ(R(α)|Γ(1−R(γ))|
|Γ(α)|Γ(1+R(α − γ))

.

The following result ([22] Lemma 2.21 , part (a)) mentions that the Caputo fractional
differentiation operator CDα

a+ is the left inverse of the Riemann Liouville fractional
integration operator I α

a+ when R(α) /∈ N0 or α ∈ N .

LEMMA 2.3. Let α ∈ C with R(α) > 0 and y(u) ∈ C[a,b] . If R(α) /∈ N or
α ∈ N , then

(CDα
a+I α

a+y)(u) = y(u). (2.12)

THEOREM 2.4. [13] Let E be a closed convex and nonempty subset of a Banach
space X . Let A and B be two operators such that

(i) Au+Bv∈ E whenever u,v ∈ E ,

(ii) A is compact and continuous,

(iii) B is a contraction mapping.

Then there exists z ∈ E such that z = Az+Bz.
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3. Existence and uniqueness results

Consider the Banach Space C(J) with the norm
∥∥u∥∥

C
= supt∈J |u(t)| . By defining

(G1u)(t) :=
∫ qt

0
G1(t,s,u(s))ds, (3.1)

(G2u)(t) :=
∫ t

0
G2(t,s,u(s))ds, (3.2)

we will introduce an integral equation corresponding to problem (1.1) in the next lemma.

LEMMA 3.1. Let F : J×R×R → R and Gi : J× J×R → R , i = 1,2 be con-
tinuous function. Then the function u ∈ C(J) satisfies problem (1.1) if and only if u is
a solution of the fractional integral equation

u(t) = u0− (I α
0+A(t)u(t−1))+ (I α

0+F (s,u(s),u(λ s)))(t)
+ (I α

0+((G1u)(s)+ (G2u)(s)))(t) (3.3)

+
m

∑
k=1

Iq(t− tk)(I α
0+Ik(u(tk))).

Proof. Let u ∈ C(J) satisfy the problem (1.1). Then using Lemma 2.1 (d), the
definition of the Caputo fractional derivative and by applying the operator I α to both
sides of equation (2.5) we have

[u(t)−u0] = (I α
0+A(t)u(t−1)+ (I α

0+F (s,u(s),u(λ s)))(t)
+ (I α

0+((G1u)(s)+ (G2u)(s)))(t)

+
m

∑
k=1

Iq(t− tk)(I α
0+Ik(u(tk))).

Conversely, assume that u ∈ C(J) satisfies (3.3). From (3.3) and Lemma 2.2, we have
u(0) = u0 . Using Lemma 2.3 by applying CDα to both sides of equation (3.3) and the
fact that the Caputo fractional derivative of constant functions is zero, we deduce that
u satisfies (1.1). �

Define

Δ =
{
(t,s) : 0 � s � t

}
, Δq =

{
(t,s) : 0 � s � qt

}
.

We consider the following assumptions:
(H1) 0 < A(t) < 1 and A(0) = 0.
(H2) There exists continuous real function λ (t) which satisfies the following :

when t > 0, 0 < λ (t) < t − δ (t), where 0 < δ ′
(t) < 1 and limt→∞λ (t) = ∞ ; when

t = 0, δ (0) = 0, which implies λ (0) = 0.
(H3) F : J ×R×R → R is continuous and there exists a continuous function

a : J → [0,∞) such that∣∣F (t,x,y)−F (t,z,w)
∣∣ � a(t)

(∣∣x− z
∣∣+ ∣∣y−w

∣∣),
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for all t ∈ J and all x,y,z,w ∈ R .
(H4) Gi : J× J×R → R , i = 1,2 are continuous and there exist a1 : Δq → [0,∞)

and a2 : Δ→ [0,∞) such that b1(t) :=
∫ qt
0 a1(t,s)ds∈C(J), b2(t) :=

∫ t
0 a2(t,s)ds∈C(J)

and ∣∣Gi(t,s,x)
∣∣� ai(t,s)(1+ |x|).

(H5) The function Ik : X → X are continuous and there exists a constant ρ > 0
such that ∥∥Ik(u)

∥∥� ρ
∥∥u∥∥ for all u,v ∈ Br0 and k = 1,2, . . . ,m.

(H6) There are positive constant δk > 0 such that∥∥Ik(u)−Ik(v)
∥∥� δk

∥∥u− v
∥∥.

(H7)

‖u0‖+
Tα

Γ(α +1)
(
∥∥b1 +b2

∥∥
C

+2
∥∥a∥∥

C
)+

m

∑
k=1

ρ‖u‖ < 1.

Let Br ⊂ C(J) be the closed ball centered at 0 with radius r and put

F̃ := sup
{∣∣F (t,0,0)

∣∣ : t ∈ J
}
, (3.4)

r0 :=
1+ |u0|+ Tα

Γ(α+1) (
∥∥b1 +b2

∥∥
C

+ F̃ )

1− Tα
Γ(α+1) (

∥∥b1 +b2
∥∥

C
+2
∥∥a∥∥

C
)

, (3.5)

and define

(A u)(t) :=
(
I α

0+((G1u)(s)+ (G2u)(s))
)
(t).

LEMMA 3.2. Let the assumptions (H3) , (H4) and (H7) be satisfied. Then the
operator A maps Br0 into itself and A : Br0 → Br0 is continuous and compact.

Proof. By (H4) and Lemma 2.2, we have A u∈ C(J) . Now we proceed the proof
by the following steps.

Step 1. A (Br0) ⊂ Br0 .
Let u ∈ Br0 . Using assumption (H4) and (H7) , for t ∈ J we have∣∣(A u)(t)

∣∣� (I α
0+
(∣∣(G1u)(s)

∣∣+ ∣∣(G2u)(s)
∣∣))(t)

�
(
I α

0+

(∫ qs

0
a1(s,τ)dτ +

∫ s

0
a2(s,τ)dτ

)
|u(s)|

)
(t)

+
(
I α

0+

([∫ qs

0
a1(s,τ)dτ +

∫ s

0
a2(s,τ)dτ

]∣∣u(s)
∣∣))(t)

� T α

Γ(α +1)
(∥∥b1 +b2

∥∥
C

)
+ r0

Tα

Γ(α +1)
(∥∥b1 +b2

∥∥
C

)
� r0. (3.6)
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Step 2. A : Br0 → Br0 is continuous.
Fix ε > 0 and take arbitrarily u,v ε Br0 such that

∥∥u−v
∥∥� ε . For t ∈ J we have

∣∣(Giu)(t)− (Giv))(t)
∣∣� ∫ t

0

∣∣Gi(t,s,u(s))−Gi(t,s,v(s))
∣∣ds � Wr0(Gi,ε)T, (3.7)

where

Wr0(Gi,ε)

= sup
{∣∣Gi(t,s,u1)−Gi(t,s,u2)

∣∣ : t,s ∈ J u1,u2 ∈ [−r0,r0],
∣∣u1−u2

∣∣� ε
}
,

for i = 1,2. Then using (3.7) we have∣∣(A u)(t)− (A v)(t)
∣∣� (I α

0+
(∣∣(G1u)(s)− (G1v)(s)

∣∣+ ∣∣(G2u)(s)− (G2v)(s)
∣∣))(t)

�

(
Wr0(G1,ε)+Wr0(G2,ε)

)
T α+1

Γ(α +1)
. (3.8)

By the uniform continuity of Gi, i = 1,2 on bounded subsets of J×R×R , we conclude
that Wr0(Gi,ε) → 0 as ε → 0. Thus, the inequality (3.8) implies that A : Br0 → Br0
is continuous.

Step 3. A (Br0) is an equicontinuous subset of C(J) .
Assumption (H4) implies that, for any u ∈ Br0 and s ∈ J we have

∣∣(G1u)(s)
∣∣� ∫ qs

0

∣∣G1(s,τ,u(τ))
∣∣dτ �

∫ qs

0
a1(s,τ)

(
1+
∣∣u(τ)

∣∣)dτ

�
(
1+ r0

)
b1(s), (3.9)

and similarly ∣∣(G2u)(s)
∣∣� (1+ r0

)
b2(s). (3.10)

Now let T1,T2 ∈ J and T1 < T2 . By (3.9) and (3.10), for any u ∈ Br0 we have∣∣(A u)(T1)− (A u)(T2)
∣∣� ∣∣∣(I α

0+
(
G1u

)
(s)
)
(T1)−

(
I α

0+
(
G1u

)
(s)
)
(T2)

∣∣∣
+
∣∣∣(I α

0+
(
G2u

)
(s)
)
(T2)−

(
I α

0+
(
G2u

)
(s)
)
(T2)

∣∣∣
� r0 +1

Γ(α)

∫ T1

0

(
b1 +b2

)
(s)
( 1

(T1 − s)1−α − 1
(T2− s)1−α

)
ds

+
r0 +1
Γ(α)

∫ T2

T1

(
b1 +b2

)
(s)

(T2 − s)1−α ds

�
∥∥b1 +b2

∥∥
C

Γ(α +1)

(
2
(
T2−T1

)α +Tα
2 −Tα

1

)(
r0 +1

)
. (3.11)

The right hand side of inequality (3.11) tends to zero as T1 → T2 . So, by Step 1–
Step 3 and Arzela-Ascoli theorem, we conclude that A : Br0 →Br0 is continuous and
compact. �
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THEOREM 3.3. Under assumptions (H1)–(H7) , problem (1.1) has at least one
solution in the space C(J) .

Proof. Define the operator C ,D on C(J) by

(C u)(t) :=
[
u0−

(
I α

0+(A(t)u(t−1))
)]

+
(
I α

0+F
(
s,u(s),u(λ s)

))
(t). (3.12)

(Dw)(t) :=
m

∑
k=1

Iq(t − tk)I α
0+Ik(u(tk)). (3.13)

Due to the continuity of F and by Lemma 2.2, the operator C ,D are well defined and
C u ∈ C(J), Du ∈ C(J) for any u ∈ C(J) .

By assumption (H1)-(H7) and inequality (3.6), for any u,v ∈ Br0 and t ∈ J we
have∣∣(A u)(t)+ (C v)(t)+ (Dw)(t)

∣∣
�
∣∣(A u)(t)

∣∣+ ∣∣u0
∣∣− (I α

0+
∣∣A(0)v(−1)

∣∣)+ (I α
0+
∣∣(F (s,v(s),v(λ s))−F (s,0,0)

∣∣))(t)
+
(
I α

0+
∣∣F (s,0,0)

∣∣)(t)+
∣∣ m

∑
k=1

Ik(v(tk)
∣∣

�
∣∣u0
∣∣+ (I α

0+
[
b1 +b2

])
(t)+ r0

(
I α

0+
[
b1 +b2

])
(t)+2r0

(
I α

0+a
)
(t)

+
(
I α

0+
∣∣F (s,0,0)

∣∣)(t)+
( m

∑
k=1

ρ [
∣∣v∣∣])(t)

� 1+
∣∣u0
∣∣+ Tα

Γ(α +1)

(∥∥b1 +b2
∥∥

C
+2
∥∥a∥∥

C

)
r0

+
T α

Γ(α +1)

(∥∥b1 +b2
∥∥

C
+ F̃

)
+
( m

∑
k=1

ρ [
∣∣v∣∣])(t)

� r0.

Thus, A u+C v+Dv ∈ Br0 for any u,v ∈ Br0 . Also using (H1) , (H3) and (H6) ,
for u,v ∈ C(J) we obtain

∣∣(C u)(t)− (C v)(t)
∣∣� (I α

0+a(s)
[∣∣u(s)− v(s)

∣∣− ∣∣u(λ s)− v(λ s)
∣∣]))(t)

� 2
Tα

Γ(α +1)

∥∥a∥∥
C

∥∥u− v
∥∥

C
, t ∈ J. (3.14)

Assumption (H7) and inequality (3.14) implies that C ,D is a contraction mapping.
Then by Lemma 3.2, assumptions of Theorem 2.4 are satisfied and there exists z∈ C(J)
such that A z+C z+Dz = z . By the fact that the fixed points of A +C +D are the
solutions of integral equation (3.3), we conclude that (3.3) has at least one solution
in C(J) . Finally Lemma 3.1 implies that problem (1.1) has at least one solution in
C(J) . �

In the next theorem we will prove the existence of a unique solution for problem
(1.1).
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THEOREM 3.4. Let (H1) and (H7) be satisfied and the following assumption
hold (H4)

′
: Gi : J× J×R → R , i = 1,2 are continuous and there exist ai : J× J →

[0,∞) , i = 1,2 such that

b1(t) :=
∫ qs

0
a1(t,s)ds ∈ C(J),

b2(t) :=
∫ t

0
a2(t,s)ds ∈ C(J),

and

∣∣Gi(t,s,x)−Gi(t,s,y)
∣∣� ai(t,s)

∣∣x− y
∣∣. (3.15)

The problem (1.1) has a unique solution on J .

Proof. By Lemma 3.1, it is enough to prove that integral equation (3.3) has a
unique solution. Define the operator F on C(J) as

(Fu)(t) := u0−I α
0+
(
A(t)u(t−1)

)
+
(
I α

0+F (s,u(s),u(λ s))
)
(t)+

(
I α

0+

((
G1u)(s)+

(
G2u

)
(s)
))

(t)

+
m

∑
k=1

Iq(t− tk)I α
0+Ik(u(tk)). (3.16)

By the continuity of F ,G1,G2 and by Lemma 2.2, one can easily find that Fu ∈ C(J)
for any u∈ C(J) . Obviously, the fixed points of F are the solutions of integral equation
(3.3). In the sequel we prove that F is a contraction mapping and then by the Banach
contraction principal, F has a unique fixed point. Let u,v ∈ C(J) . By (H1) , (H4)

′
,

for any t ∈ J we have∣∣∣(Fu)(t)− (Fv)(t)
∣∣∣� (A(t)

)[
u(t−1)− v(t−1)

]
+

1
Γ(α)

∫ t

0

∣∣F (s,u(s),u(λ s))−F (s,v(s),v(λ s))
∣∣

(t− s)1−α ds

+
1

Γ(α)

∫ t

0

∣∣(G1u)(s)− (G1v)(s)
∣∣+ ∣∣(G2u)(s)− (G2v)(s)

∣∣
(t− s)1−α ds

+
m

∑
k=1

Iq(t − tk)
∣∣(Ik(u(tk)))− (Ik(v(tk)))

∣∣.
� A(t)

∥∥u− v
∥∥

C

+2
∥∥u− v

∥∥
C

(
I α

0+a
)
(t)+

∥∥u− v
∥∥

C

(
I α

0+
(
b1 +b2

))
(t)

+
m

∑
k=1

δk

∥∥u− v
∥∥

C
(I α

0+)(t).
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Therefore

∥∥Fu−Fv
∥∥� T α

Γ(α +1)

[(
A(t)+2

∥∥a∥∥
C

+
∥∥b1 +b2

∥∥
C

)
+
( m

∑
k=1

δk
)]∥∥u− v

∥∥
C
.

∥∥Fu−Fv
∥∥�℘

∥∥u− v
∥∥

C
,

where ℘= Tα

Γ(α+1)

(
A(t)+ 2

∥∥a∥∥
C

+
∥∥b1 + b2

∥∥
C

)
+
(

∑m
k=1 δk

)]
, ℘< 1. Assumption

(H7) , shows that F is a contraction mapping and its completes the proof. �

3.1. Examples

Consider the following fractional neutral impulsive integro-differential equation
with initial condition

CD0.7u(t) =
tanh(u(t)+u( 1

3)(t))
16(1+ t2)

+
∫ 1

5

0

u(s)
1+32

√
(t − s)

ds

+
∫ t

0

(u(s)sin(t− s)
8

+
t − s

8

)
ds, t ∈ [0,2] (3.17)

u(0) = 2 (3.18)

Δu
(1

2

)
= 1, (3.19)

Put

F (t,x,y) =
tanh(u+ v)
16(1+ t2)

, T = 2, α = 0.7, λ =
1
3
, q =

1
5
,

G1(t,s,x) =
x

1+32
√

(t − s)
, G2(t,s,x) =

xsin(t − s)
8

+
t− s
8

,

a(t) =
1

16(1+ t2)
, a1(t,s) =

1

32
√

(t − s)
, a2(t,s) =

t − s
8

,

|Ik(u)−Ik(v)| = 0.

Then

∣∣F (t,x,y)−F (t,z,w)
∣∣ � a(t)

(∣∣x− z
∣∣+ ∣∣y−w

∣∣),∣∣G1(t,s,x)
∣∣� a1(t − s)

∣∣x∣∣, i = 1,2,∣∣G2(t,s,x)
∣∣� a2(t − s)

(
1+
∣∣x∣∣)∥∥Ik(u)−Ik(v)

∥∥� δk‖u− v‖
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b1(t) =
∫ qt

0
a1(t,s)ds =

(
1−
√

4
5

16

)
√

t,

b2(t) =
∫ t

0
a2(t,s)ds =

t2

16
,

Tα

Γ(α +1)

(
A(t)+2

∥∥a∥∥
C

+
∥∥b1 +b2

∥∥
C

)
+

m

∑
k=1

ρ‖u‖ ≈ 0.6685 < 1.

The above inequalities and calculations show that the assumptions (H1)–(H7) are
satisfied. Hence using theorem 3.3, problem (3.17)–(3.19) has at least one solution in
C[0,2] .

3.2. Example

Consider the following nonlinear fractional integro-differential equation

cD0.8u(t) =
t2(u(t)+u( 1

2t))
16(1+(u(t)+u( 1

2t))
2)

+
∫ 1

4

0
(t + s)u(s)ds+

∫ t

0

ln(1+u2(s))
8(1+ t + s)

ds, t ∈ [0,1], (3.20)

u(0) = −1.

Put

F (t,x,y) =
t2(x+ y)

16(1+(x+ y)2)
, T = 1, α = 0.8, λ =

1
2
, q =

1
5
,

G1(t,s,x) = (t + s)x, G2(t,s,x) =
ln(1+ x2)
8(1+ t + s)

,

a(t) =
t2

8
, a1(t,s) = t + s, a2(t,s) =

1
4(1+ t + s)

,

|Ik(u)−Ik(v)| = 0.

Then

|F (t,x,y)−F (t,z,w)| � a(t)(|x− z|+ |y−w|).
|Gi(t,s.x)−Gi(t,s,y)| � ai(t,s)|x− y|, i = 1,2,

b1(t) =
∫ qt

0
a1(t,s)ds =

t2

5
+

t2

50
,

b2(t) =
∫ t

0
a2(t,s)ds =

ln(1+2t)
4

,

T α

Γ(α +1)

(
2
∥∥a∥∥

C
+
∥∥b1 +b2

∥∥
C

)
≈ 0.89146 < 1.

According to the above calculation, it is easy to see that all assumptions of Theorem
3.4 are satisfied. Then problem has a unique solution in C[0,1] .
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4. Conclusion

We proved the existence and uniqueness of solutions for impulsive fractional neu-
tral integro-differential equation of pantograph type. The results are obtained by using
fractional calculus and fixed point theorems. We provided two examples to illustrate
the obtained results.
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