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IMPULSIVE NABLA FRACTIONAL DIFFERENCE EQUATIONS
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Abstract. This article deals with the study of impulsive nabla fractional difference equations.
First, we present a first-order initial value problem (IVP) on impulsive nabla difference equations
and write its equivalent sum equation. To illustrate the proposed procedure, we provide an
example. In this line, we propose a particular class of IVPs for α th -order (0 < α � 1) impulsive
nabla difference equations in the Caputo sense and establish its equivalent sum equation. We
furnish an eigenvalue problem to demonstrate the proposed method. Next, we introduce a special
class of α th -order (0< α � 1) impulsive nabla boundary value problems (BVPs) and analyse its
solutions, using fixed point theorems. Finally, we support this analysis through a few examples.

1. Introduction

Classical theory of differential equations with impulses is a prominent area of
research due its applicability in modelling a variety of the real world problems. In line
with its continuous counterpart, study of classical impulsive difference equations also
gained momentum and as a result many research articles were reported. For the theory
and applications of these equations, we refer [6, 7, 8, 12, 15, 16, 21].

Recently, many researchers have studied impulsive differential equations of frac-
tional order rigorously and explored many aspects of these equations. An interest-
ing remark on these equations is that fractional impulsive differential equations cannot
be considered as a trivial generalization of classical impulsive differential equations
due to the non-locality of fractional derivatives. Many important results on impul-
sive fractional differential equations are available in the literature. For example, see
[3, 10, 19, 20, 22, 23].

On the other hand, the study of impulsive fractional difference equations was ini-
tiated very recently. In [22], the authors introduced the notion of impulsive delta frac-
tional difference equations and discussed asymptotic stability and impulsive Mittag–
Leffler stability for a particular class of impulsive delta fractional difference equations.
But, articles on the theory of impulsive fractional difference equations in nabla perspec-
tive is not yet reported. Motivated by this discussion, we initiate the study of impulsive
nabla fractional difference equations, by following the technique proposed in [10] and
[22].
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We organize this article in the following manner: In section 2, we present prelimi-
naries of discrete fractional calculus. In sections 3 and 4, we propose particular classes
of IVPs for first-order and α th -order (0 < α � 1) impulsive nabla difference equations,
respectively. Section 5 contains a study on a special class of α th -order (0 < α � 1) im-
pulsive nabla fractional BVPs. We conclude this article with a few examples in Section
6.

2. Preliminaries

We shall utilize the following preliminaries [9, 11, 13] throughout the article. De-
note by Nc = {c,c+1,c+2, . . .} and N

d
c = {c,c+1,c+2, . . . ,d} , for any real numbers

c and d such that d− c ∈ N1 . The backward jump operator ρ : Nc+1 → Nc is defined
by ρ(t) = t − 1, for all t ∈ Nc+1 . The μ th -order nabla fractional Taylor monomial is
defined by

Hμ(t,a) =
(t−a)μ

Γ(μ +1)
=

Γ(t−a+ μ)
Γ(t−a)Γ(μ +1)

, μ ∈ R\ {. . . ,−2,−1},

provided the right-hand side exists. Here Γ(·) denotes the Euler gamma function.

DEFINITION 1. (See [11]) Let u : Na+1 → R and ν > 0. The ν th -order nabla
sum of u based at a is given by

(
∇−ν

a u
)
(t) =

t

∑
s=a+1

Hν−1(t,ρ(s))u(s), t ∈ Na,

where by convention
(
∇−ν

a u
)
(a) = 0.

We collect a few of the properties of nabla fractional Taylor monomials in the next
lemma.

LEMMA 1. The following hold provided the expressions in this lemma are well-
defined.

1.
t

∑
s=a+1

Hμ(t,ρ(s)) = Hμ+1(t,a) .

2. ∇−ν
a Hμ(t,a) = Hμ+ν(t,a) .

3. ∇Hμ(t,a) = Hμ−1(t,a) .

DEFINITION 2. (See [4]) Assume u : Na → R and 0 < ν � 1. The ν th -order
Caputo nabla difference of u : Na → R is given by

(
∇ν

a∗u
)
(t) =

(
∇−(1−ν)

a
(
∇u

))
(t), t ∈ Na+1.



IMPULSIVE NABLA FRACTIONAL DIFFERENCE EQUATIONS 117

THEOREM 1. (See [11]) Assume 0 < ν � 1 . Consider the IVP{(
∇ν

a∗u
)
(t) = h(t), t ∈ Na+1,

u(a) = u0,
(1)

where u0 ∈ R and h : Na+1 → R . The unique solution to the IVP (1) is given by

u(t) = u0 +
(
∇−ν

a h
)
(t), t ∈ Na. (2)

Let λ , u0 ∈ R and 0 < ν � 1. We study the following IVP{(
∇ν

a∗u
)
(t) = λu(t−1), t ∈ Na+1,

u(a) = u0.
(3)

THEOREM 2. The solution of the IVP (3) is uniquely determined.

Proof. We use the definition of the ν th -order Caputo nabla difference of u to
obtain the following iteration schema. Consider

λu(t−1) =
(
∇ν

a∗u
)
(t)

=
(

∇−(1−ν)
a

(
∇u

))
(t) (By Definition 2)

=
t

∑
s=a+1

H−ν(t,ρ(s))
(
∇u

)
(s) (By Definition 1)

=
t

∑
s=a+1

H−ν(t,ρ(s)) [u(s)−u(s−1)]

= u(t)+
t−1

∑
s=a+1

H−ν(t,ρ(s))u(s)−
t

∑
s=a+1

H−ν(t,ρ(s))u(s−1),

implying that

u(t) = λu(t−1)−
t−1

∑
s=a+1

H−ν(t,ρ(s))u(s)+
t

∑
s=a+1

H−ν(t,ρ(s))u(s−1), t ∈ Na+1.

This iteration schema ensures that the solution of the IVP (3) is uniquely determined. �

THEOREM 3. The unique solution to the IVP{(
∇ν

0∗u
)
(t) = λu(t−1), t ∈ N1,

u(0) = u0,
(4)

is given by

u(t) = u0

t

∑
n=0

λ nHnν(t,ρ(n)), t ∈ N0. (5)
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Proof. Denote by
v(t) = u0Ẽλ ,ν(t), t ∈ N0,

where

Ẽλ ,ν(t) =
t

∑
n=0

λ nHnν(t,ρ(n)), t ∈ N0. (6)

We show that v satisfies the IVP (4). That is,{(
∇ν

0∗v
)
(t) = λv(t−1), t ∈ N1,

v(0) = u0.

Since Ẽλ ,ν(0) = 1, v satisfies the initial condition. Consider

∇Ẽλ ,ν(t) = Ẽλ ,ν(t)− Ẽλ ,ν(t−1)

=
t

∑
n=0

λ nHnν(t,ρ(n))−
t−1

∑
n=0

λ nHnν(t −1,ρ(n))

= λ t +
t−1

∑
n=0

λ n [Hnν(t,ρ(n))−Hnν(t−1,ρ(n))]

= λ t +
t−1

∑
n=0

λ n∇Hnν(t,ρ(n))

= λ t +
t−1

∑
n=1

λ nHnν−1(t,ρ(n)) (By Lemma 1)

=
t

∑
n=1

λ nHnν−1(t,ρ(n)). (7)

Now, consider

∇ν
0∗

[
Ẽλ ,ν(t)

]
= ∇−(1−ν)

0 ∇
[
Ẽλ ,ν(t)

]
(By Definition 2)

= ∇−(1−ν)
0

[
t

∑
n=1

λ nHnν−1(t,ρ(n))

]
(By (7))

=
t

∑
s=1

H−ν(t,ρ(s))

[
s

∑
n=1

λ nHnν−1(s,ρ(n))

]
(By Definition 1)

=
t

∑
n=1

λ n
[ t

∑
s=n

H−ν(t,ρ(s))Hnν−1(s,ρ(n))
]

=
t

∑
n=1

λ n
[
∇−(1−ν)

ρ(n) Hnν−1(t,ρ(n))
]

(By Definition 1)

=
t

∑
n=1

λ nHnν−ν(t,ρ(n)) (By Lemma 1)

= λ
t−1

∑
n=0

λ nHnν(t −1,ρ(n)) = λ Ẽλ ,ν(t−1),
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implying that
∇ν

0∗
[
u0Ẽλ ,ν(t)

]
= λu0Ẽλ ,ν(t −1), t ∈ N1.

That is, (
∇ν

0∗v
)
(t) = λv(t−1), t ∈ N1.

Uniqueness of this solution follows from Theorem 2. �

3. Classical impulsive nabla difference equation

In this section, we introduce the notion of first-order impulsive nabla difference
equations of the form(

∇u
)
(t) = f (t,u(t−1)), t ∈ N1 \ {t1,t2,t3, · · ·}, (8)

u(t j) = u(t j)+ c j, j ∈ N1, (9)

u(0) = u0. (10)

Here f is a continuous real-valued function defined on N1 ×R , {c1,c2,c3, · · ·} are
constants, and {t1, t2,t3, · · ·} ⊆ N2 are fixed impulsive points with 0 = t0 < t1 < · · · <
t j−1 < t j < · · · such that t j − t j−1 ∈ N2 , and

u(t j) = u(t j −1)+ f (t j,u(t j −1)), j ∈ N1. (11)

THEOREM 4. The equivalent sum equation of (8)–(11) is given by

u(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u0 +
t

∑
s=1

f (s,u(s−1)), t ∈ N
t1−1
0 ,

u0 +
j

∑
i=1

ci +
t

∑
s=1

f (s,u(s−1)), t ∈ N
t j+1−1
t j , j ∈ N1.

(12)

Proof. First, we consider the IVP{(
∇u

)
(t) = f (t,u(t−1)), t ∈ N

t1−1
1 ,

u(0) = u0.
(13)

The equivalent sum equation of (13) is given by

u(t) = u0 +
t

∑
s=1

f (s,u(s−1)), t ∈ N
t1−1
0 , (14)

which is the first expression on the right-hand side of (12). From (9) and (11), we obtain

u(t1) = u(t1)+ c1 = u0 + c1 +
t1

∑
s=1

f (s,u(s−1)) = u1, say. (15)
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Now, consider the IVP{(
∇u

)
(t) = f (t,u(t−1)), t ∈ N

t2−1
t1+1,

u(t1) = u1.
(16)

The equivalent sum equation of (16) is

u(t) = u1 +
t

∑
s=t1+1

f (s,u(s−1)) = u0 + c1 +
t

∑
s=1

f (s,u(s−1)), t ∈ N
t2−1
t1 , (17)

which is the second expression on the right-hand side of (12) for j = 1. Proceeding in
a similar way, we achieve (12). The proof is complete. �

REMARK 1. A careful observation of (9) and (11) reveal that the expression for
u(t j) is obtained by replacing t j −1 with t j in the expression of u(t j −1) . We have

u(t j −1) = u0 +
j−1

∑
i=1

ci +
t j−1

∑
s=1

f (s,u(s−1))

= u0 +
j−1

∑
i=1

ci +
[
∇−1 f (t,u(t−1))

]
t=t j−1 , j ∈ N1. (18)

Then,

u(t j) = u0 +
j−1

∑
i=1

ci +
[
∇−1 f (t,u(t −1))

]
t=t j

, j ∈ N1. (19)

Consequently, from (9), we have

u(t j) = u0 +
j

∑
i=1

ci +
[
∇−1 f (t,u(t −1))

]
t=t j

, j ∈ N1. (20)

EXAMPLE 1. Consider (8)–(11) with

f (t,u(t−1)) = λu(t−1), t ∈ N1, λ ∈ R.

Then, the unique solution of (8)–(11) is

u(t) =

⎧⎪⎨
⎪⎩

u0(1+ λ )t , t ∈ N
t1−1
0 ,

u0(1+ λ )t +
j

∑
i=1

ci (1+ λ )t−ti , t ∈ N
t j+1−1
t j , j ∈ N1.

(21)

Proof. First, we consider the IVP{(
∇u

)
(t) = λu(t−1), t ∈ N

t1−1
1 ,

u(0) = u0.
(22)
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The unique solution of (22) is given by

u(t) = u0 (1+ λ )t , t ∈ N
t1−1
0 , (23)

which is the first expression on the right-hand side of (21). From (9), (11) and Remark
1, we have

u(t1) = u(t1)+ c1 = u0 (1+ λ )t1 + c1 = u1, say. (24)

Now, consider the IVP {(
∇u

)
(t) = λu(t−1), t ∈ N

t2−1
t1+1,

u(t1) = u1.
(25)

The unique solution of (25) is given by

u(t) = u1 (1+ λ )t−t1 = u0 (1+ λ )t + c1 (1+ λ )t−t1 , t ∈ N
t2−1
t1 , (26)

which is the second expression on the right-hand side of (21) for j = 1. Proceeding in
a similar way, we achieve (21). The proof is complete. �

4. Impulsive nabla fractional difference equation

Analogous to (8), (9), (19) and (10), in this section, we introduce the notion of
impulsive nabla fractional difference equations of the form(

∇α
0∗u

)
(t) = f (t,u(t−1)), t ∈ N1 \ {t1,t2,t3, · · · }, (27)

u(t j) = u(t j)+ c j, j ∈ N1, (28)

u(0) = u0, (29)

where 0 < α � 1, f : N1×R → R is continuous,

{c1,c2,c3, · · · } ⊆ R,

and {t1, t2, t3, · · · } ⊆ N2 are fixed impulsive points with

0 = t0 < t1 < · · · < t j−1 < t j < · · ·
such that t j − t j−1 ∈ N2 , and

u(t j) = u0 +
j−1

∑
i=1

ci +
[
∇−α

0 f (t,u(t−1))
]
t=t j

, j ∈ N1. (30)

THEOREM 5. The equivalent sum equation of (27)–(30) is

u(t) =

⎧⎪⎨
⎪⎩

u0 + ∇−α
0 f (t,u(t−1)), t ∈ N

t1−1
0 ,

u0 +
j

∑
i=1

ci + ∇−α
0 f (t,u(t −1)), t ∈ N

t j+1−1
t j , j ∈ N1.

(31)
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Proof. First, we consider the IVP{(
∇α

0∗u
)
(t) = f (t,u(t −1)), t ∈ N

t1−1
1 ,

u(0) = u0.
(32)

From Theorem 1, the equivalent sum equation of (32) is given by

u(t) = u0 + ∇−α
0 f (t,u(t −1)), t ∈ N

t1−1
0 , (33)

which is the first expression on the right-hand side of (31). From (28) and (30), we have

u(t1) = u(t1)+ c1 = u0 + c1 +
[
∇−α

0 f (t,u(t −1))
]
t=t1

= u1, say. (34)

Now, consider the IVP{(
∇α

0∗u
)
(t) = f (t,u(t −1)), t ∈ N

t2−1
t1+1,

u(t1) = u1.
(35)

From Theorem 1, the equivalent sum equation of (35) is given by

u(t) = u0 + ∇−α
0 f (t,u(t−1))

= u1−
[
∇−α

0 f (t,u(t −1))
]
t=t1

+ ∇−α
0 f (t,u(t −1))

= u0 + c1 + ∇−α
0 f (t,u(t −1)), t ∈ N

t2−1
t1 , (36)

which is the second expression on the right-hand side of (31) for j = 1. Proceeding in
a similar way, we achieve (31). The proof is complete. �

EXAMPLE 2. Consider (27)–(30) with

f (t,u(t)) = λu(t−1), t ∈ N1, λ ∈ R.

Then, the unique solution of (27)–(30) is

u(t) =

⎧⎪⎨
⎪⎩

u0Ẽλ ,α(t), t ∈ N
t1−1
0 ,

u0Ẽλ ,α(t)+
j

∑
i=1

ci
Ẽλ ,α(t)
Ẽλ ,α(ti)

, t ∈ N
t j+1−1
t j , j ∈ N1.

(37)

Proof. First, we consider the IVP{(
∇α

0∗u
)
(t) = λu(t−1), t ∈ N

t1−1
1 ,

u(0) = u0.
(38)

From Theorem 3, the unique solution of (38) is given by

u(t) = u0Ẽλ ,α(t), t ∈ N
t1−1
0 , (39)
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which is the first expression on the right-hand side of (37). From (28) and (30), we have

u(t1) = u(t1)+ c1 = u0Ẽλ ,α(t1)+ c1 = u1, say. (40)

Now, consider the IVP{(
∇α

0∗u
)
(t) = λu(t−1), t ∈ N

t2−1
t1+1,

u(t1) = u1.
(41)

From Theorem 3, the unique solution of (41) is given by

u(t) = u0Ẽλ ,α(t)

=
u1

Ẽλ ,α(t1)
Ẽλ ,α(t)

=
u0Ẽλ ,α(t1)+ c1

Ẽλ ,α(t1)
Ẽλ ,α(t)

= u0Ẽλ ,α(t)+ c1
Ẽλ ,α(t)
Ẽλ ,α(t1)

, t ∈ N
t2−1
t1 , (42)

which is the second expression in the right-hand side of (37) for j = 1. From (28) and
(30), we have

u(t2) = u(t2)+ c2 = u0Ẽλ ,α(t2)+ c1
Ẽλ ,α(t2)
Ẽλ ,α(t1)

+ c2 = u2, say. (43)

Now, consider the IVP{(
∇α

0∗u
)
(t) = λu(t−1), t ∈ N

t3−1
t2+1,

u(t2) = u2.
(44)

From Theorem 3, the unique solution of (44) is given by

u(t) = u0Ẽλ ,α(t)

=
u2

Ẽλ ,α(t2)
Ẽλ ,α(t)

=
u0Ẽλ ,α(t2)+ c1

Ẽλ ,α (t2)
Ẽλ ,α (t1) + c2

Ẽλ ,α(t2)
Ẽλ ,α(t)

= u0Ẽλ ,α(t)+ c1
Ẽλ ,α(t)
Ẽλ ,α(t1)

++c2
Ẽλ ,α(t)
Ẽλ ,α(t2)

, t ∈ N
t3−1
t2 , (45)

which is the second expression in the right-hand side of (37) for j = 2. Proceeding in
a similar way, we achieve (37). The proof is complete. �



124 J. M. JONNALAGADDA

5. Impulsive nabla fractional boundary value problem

Assume 0 < α � 1 and consider the impulsive nabla fractional BVP(
∇α

0∗u
)
(t) = f (t,u(t −1)), t ∈ N

T
1 \ {t1,t2,t3, · · · ,tk}, (46)

u(t j) = u(t j)+ c j, j ∈ N
k
1, (47)

au(0)+bu(T) = c, a+b �= 0, (48)

where T ∈ N1 , a , b , c ∈ R , {c1,c2,c3, · · · ,ck} ⊆ R , f : N
T
1 ×R → R is continuous,

{t1,t2, t3, · · · , tk}⊆N2 are fixed impulsive points with 0 = t0 < t1 < · · ·< tk < tk+1 = T ,
such that t j+1− t j ∈ N2 , and

u(t j) = u0 +
j−1

∑
i=1

ci +
[
∇−α

0 f (t,u(t−1))
]
t=t j

, j ∈ N
k
1. (49)

THEOREM 6. The equivalent sum equation of (46)–(49) is given by

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
a+b

[
c−b

k

∑
i=1

ci −b∇−α
0 f (T,u(T −1))

]
+ ∇−α

0 f (t,u(t−1)), t ∈ N
t1−1
0 ,

1
a+b

[
c−b

k

∑
i=1

ci −b∇−α
0 f (T,u(T −1))

]

+
j

∑
i=1

ci + ∇−α
0 f (t,u(t −1)), t ∈ N

t j+1−1
t j , j ∈ N

k−1
1 ,

1
a+b

[
c−b

k

∑
i=1

ci −b∇−α
0 f (T,u(T −1))

]

+
k

∑
i=1

ci + ∇−α
0 f (t,u(t −1)), t ∈ N

T
tk .

(50)

Proof. Consider (46), (47) and (49). From Theorem 5, we have

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u(0)+ ∇−α
0 f (t,u(t−1)), t ∈ N

t1−1
0 ,

u(0)+
j

∑
i=1

ci + ∇−α
0 f (t,u(t −1)), t ∈ N

t j+1−1
t j , j ∈ N

k−1
1 ,

u(0)+
k

∑
i=1

ci + ∇−α
0 f (t,u(t −1)), t ∈ N

T
tk .

(51)

We notice that there exist no impulsive points between tk+1 − 1 and tk+1 . So, the last
expression in (51) is valid for t ∈ N

tk+1
tk instead of t ∈ N

tk+1−1
tk . From the boundary

condition au(0)+bu(T) = c , we have

u(0) =
1

a+b

[
c−b

k

∑
i=1

ci−b∇−α
0 f (T,u(T −1))

]
. (52)



IMPULSIVE NABLA FRACTIONAL DIFFERENCE EQUATIONS 125

Substituting the expression for u(0) from (52) in (51), we obtain (50). The proof is
complete. �

Note that any solution u : N
T
0 → R of (46)–(49) can be viewed as a real (T +1)-

tuple vector. Consequently, u ∈ R
T+1 . We use the fact that R

T+1 is a Banach space
equipped with the maximum norm

‖u‖ = max
t∈N

T
0

|u(t)|,

for any u ∈ R
T+1 . Denote by

Br = {u ∈ R
T+1 : ‖u‖ � r}.

5.1. Existence and uniqueness of solutions

In this subsection, we establish sufficient conditions on existence and uniqueness
of solutions of (46)–(49) using Banach fixed point theorem. First, we recall the state-
ment of Banach fixed point theorem.

THEOREM 7. [2, 18] (Banach fixed point theorem) Let S be a closed subset of a
Banach space X . Assume T : S → S is a contraction mapping. That is, there exist a
constant λ , 0 < λ < 1 , such that

‖Tx−Ty‖� λ‖x− y‖,
for all x , y in S . Then, T has a unique fixed point z in S .

THEOREM 8. Assume

(C1) f satisfies Lipschitz condition with respect to the second variable on N
T
0 ×R

with Lipschitz constant K .

If

KHα(T,0)
(

1+
∣∣∣ b
a+b

∣∣∣) < 1, (53)

then the boundary value problem (46)–(49) has a unique solution in R
T+1 .

Proof. Define T : R
T+1 → R

T+1 by

(
Tu

)
(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
a+b

[
c−b

k

∑
i=1

ci−b∇−α
0 f (T,u(T −1))

]
+

j

∑
i=1

ci

+∇−α
0 f (t,u(t −1)), t ∈ N

t j+1−1
t j , j ∈ N

k−1
0 ,

1
a+b

[
c−b

k

∑
i=1

ci−b∇−α
0 f (T,u(T −1))

]
+

k

∑
i=1

ci

+∇−α
0 f (t,u(t −1)), t ∈ N

T
tk .

(54)
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We show that T is a contraction mapping on R
T+1 . For u , v ∈ R

T+1 , t ∈ N
t j+1−1
t j ,

j ∈ N
k−1
0 , consider

|(Tu
)
(t)− (

Tv
)
(t)|

=
∣∣∇−α

0 f (t,u(t−1))−∇−α
0 f (t,v(t −1))

∣∣
+

∣∣∣ b
a+b

∣∣∣ ∣∣∇−α
0 f (T,u(T −1))−∇−α

0 f (T,v(T −1))
∣∣

=

∣∣∣∣∣
t

∑
s=1

Hα−1(t,ρ(s)) f (s,u(s−1))−
t

∑
s=1

Hα−1(t,ρ(s)) f (s,v(s−1))

∣∣∣∣∣
+

∣∣∣ b
a+b

∣∣∣
∣∣∣∣∣

T

∑
s=1

Hα−1(T,ρ(s)) f (s,u(s−1))

−
T

∑
s=1

Hα−1(T,ρ(s)) f (s,v(s−1))

∣∣∣∣∣
�

t

∑
s=1

Hα−1(t,ρ(s)) | f (s,u(s−1))− f (s,v(s−1))|

+
∣∣∣ b
a+b

∣∣∣ T

∑
s=1

Hα−1(T,ρ(s)) | f (s,u(s−1))− f (s,v(s−1))|

� K
t

∑
s=1

Hα−1(t,ρ(s)) |u(s−1)− v(s−1)|

+K
∣∣∣ b
a+b

∣∣∣ T

∑
s=1

Hα−1(T,ρ(s)) |u(s−1)− v(s−1)|

� K‖u− v‖
t

∑
s=1

Hα−1(t,ρ(s))+K
∣∣∣ b
a+b

∣∣∣‖u− v‖
T

∑
s=1

Hα−1(T,ρ(s))

= K‖u− v‖Hα(t,0)+K
∣∣∣ b
a+b

∣∣∣‖u− v‖Hα(T,0)

= K

[
Hα(t,0)+

∣∣∣ b
a+b

∣∣∣Hα(T,0)
]
‖u− v‖.

Similarly, for u , v ∈ R
T+1 , t ∈ N

T
tk , we obtain

|(Tu
)
(t)− (

Tv
)
(t)| � K

[
Hα(t,0)+

∣∣∣ b
a+b

∣∣∣Hα(T,0)
]
‖u− v‖.

Since Hα(t,0) � Hα(T,0) , we have

‖Tu−Tv‖ � KHα(T,0)
(

1+
∣∣∣ b
a+b

∣∣∣)‖u− v‖.

Thus, by (53), T is a contraction mapping on R
T+1 and hence, T has a unique fixed

point by Theorem 7. �
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THEOREM 9. Assume

(C2) f satisfies Lipschitz condition with respect to the second variable on N
T
0 ×Br

with Lipschitz constant L.

Set

m = max{| f (t,0)| : t ∈ N
T
0 }. (55)

If

LHα (T,0)
(

1+
∣∣∣ b
a+b

∣∣∣) < 1, (56)

and we choose

r �

∣∣∣ c
a+b

∣∣∣+ [
mHα(T,0)+ ∑k

i=1 |ci|
](

1+
∣∣∣ b
a+b

∣∣∣)
1−LHα(T,0)

(
1+

∣∣∣ b
a+b

∣∣∣) , (57)

then the boundary value problem (46)–(49) has a unique solution in Br .

Proof. First, we show that T : Br → Br . To see this, let u ∈ Br , t ∈ N
t j+1−1
t j ,

j ∈ N
k−1
0 , consider

|(Tu
)
(t)| =

∣∣∣∣∣ 1
a+b

[
c−b

k

∑
i=1

ci−b∇−α
0 f (T,u(T −1))

]
+

j

∑
i=1

ci + ∇−α
0 f (t,u(t−1))

∣∣∣∣∣
=

∣∣∣ c
a+b

− b
a+b

k

∑
i=1

ci − b
a+b

T

∑
s=1

Hα−1(T,ρ(s)) f (s,u(s−1))

+
j

∑
i=1

ci +
t

∑
s=1

Hα−1(t,ρ(s)) f (s,u(s−1))
∣∣∣

�
∣∣∣ c
a+b

∣∣∣+ ∣∣∣ b
a+b

k

∑
i=1

ci

∣∣∣
+

∣∣∣ b
a+b

∣∣∣ T

∑
s=1

Hα−1(T,ρ(s)) | f (s,u(s−1))− f (s,0)|

+
∣∣∣ b
a+b

∣∣∣ T

∑
s=1

Hα−1(T,ρ(s)) | f (s,0)|+
∣∣∣ j

∑
i=1

ci

∣∣∣
+

t

∑
s=1

Hα−1(t,ρ(s)) | f (s,u(s−1))− f (s,0)|+
t

∑
s=1

Hα−1(t,ρ(s)) | f (s,0)|
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�
∣∣∣ c
a+b

∣∣∣+ ∣∣∣ b
a+b

∣∣∣ k

∑
i=1

∣∣ci
∣∣+L

∣∣∣ b
a+b

∣∣∣ T

∑
s=1

Hα−1(T,ρ(s)) |u(s−1)|

+m
∣∣∣ b
a+b

∣∣∣ T

∑
s=1

Hα−1(T,ρ(s))+L
t

∑
s=1

Hα−1(t,ρ(s)) |u(s−1)|

+m
t

∑
s=1

Hα−1(t,ρ(s))+
j

∑
i=1

∣∣ci
∣∣

�
∣∣∣ c
a+b

∣∣∣+ ∣∣∣ b
a+b

∣∣∣ k

∑
i=1

∣∣ci
∣∣+ ∣∣∣ b

a+b

∣∣∣ [Lr+m]
T

∑
s=1

Hα−1(T,ρ(s))

+ [Lr+m]
t

∑
s=1

Hα−1(t,ρ(s))+
j

∑
i=1

∣∣ci
∣∣

=
∣∣∣ c
a+b

∣∣∣+ ∣∣∣ b
a+b

∣∣∣ k

∑
i=1

∣∣ci
∣∣+ ∣∣∣ b

a+b

∣∣∣ [Lr+m]Hα(T,0)

+ [Lr+m]Hα(t,0)+
j

∑
i=1

∣∣ci
∣∣.

Similarly, for u ∈ Br , t ∈ N
T
tk

, we obtain

|(Tu
)
(t)| �

∣∣∣ c
a+b

∣∣∣+ ∣∣∣ b
a+b

∣∣∣ k

∑
i=1

∣∣ci
∣∣+ ∣∣∣ b

a+b

∣∣∣ [Lr+m]Hα(T,0)

+[Lr+m]Hα(t,0)+
k

∑
i=1

∣∣ci
∣∣.

Since Hα(t,0) � Hα(T,0) and

j

∑
i=1

|ci| �
k

∑
i=1

|ci|, j ∈ N
k
1,

we write

‖Tu‖ �
∣∣∣ c
a+b

∣∣∣+
[
(Lr+m)Hα(T,0)+

k

∑
i=1

|ci|
](

1+
∣∣∣ b
a+b

∣∣∣) .

Thus, by (56) and (57), we have

‖Tu‖ � r,

implying that T : Br → Br . It follows from the proof of Theorem 8 and (56) that T

is a contraction mapping with contraction constant LHα(T,0)
(
1+

∣∣∣ b
a+b

∣∣∣) . Hence, T

has a unique fixed point by Theorem 7. �
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5.2. Existence of solutions

In this subsection, we establish sufficient conditions on existence of solutions of
(46)–(49) using Brouwer fixed point theorem. First, we recall the statement of Brouwer
fixed point theorem.

THEOREM 10. [2, 18] (Brouwer fixed point theorem) Let C be a non-empty
compact convex subset of R

n , and T : C → C is a continuous mapping. Then, T has
a fixed point in C .

THEOREM 11. Set

M = max{| f (t,x)| : t ∈ N
T
0 , x ∈ Br}. (58)

If we choose

r �
∣∣∣ c
a+b

∣∣∣+
[
MHα (T,0)+

k

∑
i=1

|ci|
](

1+
∣∣∣ b
a+b

∣∣∣) , (59)

then the boundary value problem (46)–(49) has a solution in Br .

Proof. First, we show that T : Br → Br . To see this, let u ∈ Br , t ∈ N
t j+1−1
t j ,

j ∈ N
k−1
0 , consider

|(Tu
)
(t)| =

∣∣∣∣∣ 1
a+b

[
c−b

k

∑
i=1

ci−b∇−α
0 f (T,u(T −1))

]
+

j

∑
i=1

ci + ∇−α
0 f (t,u(t−1))

∣∣∣∣∣
=

∣∣∣ c
a+b

− b
a+b

k

∑
i=1

ci − b
a+b

T

∑
s=1

Hα−1(T,ρ(s)) f (s,u(s−1))

+
j

∑
i=1

ci +
t

∑
s=1

Hα−1(t,ρ(s)) f (s,u(s−1))
∣∣∣

�
∣∣∣ c
a+b

∣∣∣+ ∣∣∣ b
a+b

k

∑
i=1

ci

∣∣∣+ ∣∣∣ b
a+b

∣∣∣ T

∑
s=1

Hα−1(T,ρ(s)) | f (s,u(s−1))|

+
t

∑
s=1

Hα−1(t,ρ(s)) | f (s,u(s−1))|+
∣∣∣ j

∑
i=1

ci

∣∣∣
�

∣∣∣ c
a+b

∣∣∣+ ∣∣∣ b
a+b

∣∣∣ k

∑
i=1

∣∣ci
∣∣+M

∣∣∣ b
a+b

∣∣∣ T

∑
s=1

Hα−1(T,ρ(s))

+M
t

∑
s=1

Hα−1(t,ρ(s))+
j

∑
i=1

∣∣ci
∣∣

=
∣∣∣ c
a+b

∣∣∣+ ∣∣∣ b
a+b

∣∣∣ k

∑
i=1

∣∣ci
∣∣+ ∣∣∣ b

a+b

∣∣∣MHα(T,0)+MHα(t,0)+
j

∑
i=1

∣∣ci
∣∣.
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Similarly, for u ∈ Br , t ∈ N
T
tk

, we obtain

|(Tu
)
(t)| �

∣∣∣ c
a+b

∣∣∣+ ∣∣∣ b
a+b

∣∣∣ k

∑
i=1

∣∣ci
∣∣+ ∣∣∣ b

a+b

∣∣∣MHα(T,0) (60)

+MHα(t,0)+
k

∑
i=1

∣∣ci
∣∣. (61)

Since Hα(t,0) � Hα(T,0) and

j

∑
i=1

|ci| �
k

∑
i=1

|ci|, j ∈ N
k
1,

we write

‖Tu‖ �
∣∣∣ c
a+b

∣∣∣+
[
MHα(T,0)+

k

∑
i=1

|ci|
](

1+
∣∣∣ b
a+b

∣∣∣) .

Thus, by (59), we have
‖Tu‖ � r,

implying that T : Br → Br . Clearly, T is continuous. Hence, T has a fixed point by
Theorem 10. �

THEOREM 12. If f is continuous and bounded on N
T
0 ×R , then the boundary

value problem (46)–(49) has a solution in R
T+1 .

6. Examples

In this section, we provide two examples to illustrate the applicability of estab-
lished results.

EXAMPLE 3. Consider the boundary value problem⎧⎪⎨
⎪⎩

(
∇0.5

0∗ u
)
(t) = (0.1)cosu(t)+ t3, t ∈ N

6
1 \ {4},

u(4) = u(4)+1,

u(0)+u(6) = 0.

(62)

Here α = 0.5, T = 6, f (t,u) = (0.1)cosu+ t3 is continuous on N
6
1×R , and

u(4) = u(0)+
[
∇−α

0 f (t,u(t))
]
t=4 . (63)

Clearly,

‖ f (t,u)− f (t,v)‖ � K‖u− v‖, (t,u),(t,v) ∈ N
6
1 \ {4}×R,

KHα(T,0)
(
1+

∣∣∣ b
a+b

∣∣∣) = 0.4061 < 1,

with K = 0.1, implying that assumption (C1) and (53) hold. Thus, by Theorem 8, the
boundary value problem (62)–(63) has a unique solution.
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EXAMPLE 4. Consider the boundary value problem⎧⎪⎨
⎪⎩

(
∇0.5

0∗ u
)
(t) = (0.01)

(
u2(t)+1

)
, t ∈ N

6
1 \ {4},

u(4) = u(4)+1,

u(0)+u(6) = 0.

(64)

Here α = 0.5, T = 6, f (t,u) = (0.01)
(
u2 +1

)
is continuous on N

6
1×R , and

u(4) = u(0)+
[
∇−α

0 f (t,u(t))
]
t=4 . (65)

We have

m = max{| f (t,0)| : t ∈ N
6
0} = max{(0.01) : t ∈ N

6
0} = (0.01).

Clearly,
‖ f (t,u)− f (t,v)‖ � L‖u− v‖, (t,u),(t,v) ∈ N

6
1 \ {4}×R,

with L = (0.02)r . To apply Theorem 9, we must have

LHα (T,0)
(

1+
∣∣∣ b
a+b

∣∣∣) = (0.08121)r < 1,

and

r �

∣∣∣ c
a+b

∣∣∣+ [
mHα(T,0)+ ∑k

i=1 |ci|
](

1+
∣∣∣ b
a+b

∣∣∣)
1−LHα(T,0)

(
1+

∣∣∣ b
a+b

∣∣∣) =
(1.5406)

1− (0.08121)r
.

Clearly, r = 10 satisfies the above two inequalities. Thus, by Theorem 9, the boundary
value problem (46)–(49) has a unique solution in B10 .
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