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Abstract. In this study, we develop three new quantum Hermite-Hadamard inequalities for the
class of p , (p− s) and modified type ( p− s) -convex functions by utilizing left and right quan-
tum integral. As special cases of these inequalities, we get known and new Hermite-Hadamard
type inequality for modified type (p− s) -convex functions. The ideas and techniques of this
article may be the starting point for further research in this field.

1. Introduction

The primitive notion of ’convexity’ is very well fitted in modern Mathematics.
The theory of convexity is not only important within itself, but it also has applications
in almost every area of mathematics. Intensive research was carried out during the
20th century and significant results were achieved in the field of convex analysis. The
book of G. H. Hardy, J. E. Littlewood and G. Polya [23], on inequalities played a
considerably important role in the popularity of the subject of convex analysis. Over
years idea of convex sets and hence convex functions is largely generalized. Today the
study of convex functions evolved into a broader theory of functions including quasi-
convex functions [3, 17, 25], log-convex functions [22], co-ordinated convex functions
[18, 26], harmonically convex functions [27], GA-convex function [30, 35], m-convex
function. A significant generalization of classical convex functions is called p -convex
functions, which were introduced by Zhang and Wan [37]. A wide class of inequalities
have been derived via convex functions, see [33, 31, 32]. A function � : I → R , where
I is an interval in R is called convex, if it satisfies the inequality,

�(τκ +(1− τ)y) � τ�(κ)+ (1− τ)�(y),

where κ,y ∈ I and τ ∈ [0,1] . It is also well known that � is convex if and only if it
satisfies the Hermite-Hadamard’s inequality, stated below:

�

(
σ + κ

2

)
� 1

κ −σ

∫ κ

σ
�(κ)dκ � �(σ)+�(κ)

2
,
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where σ ,κ ∈ I with σ < κ .
Convexity naturally gives rise to inequalities, Hermite-Hadamard inequality is the

first consequence of convex function. Convexity is mixed with other mathematical
concepts like; optimization [10], time scale [13, 9], quantum and post quantum calculus
[6].

Quantum calculus or q -calculus is a approach pertinent to the classic study of cal-
culus but it is mainly based on the idea of derivation of q -analogous results without the
use of limits. We get the initial mathematical formulas in q -calculus as q approaches
1. The idea of q calculus was first introduced by Euler who started his study in the
eighteen Century. In (1910) F. Jackson further developed this field by defining a quan-
tum integral known as the q -Jackson integral, see [16, 19, 29, 14]. In q -calculus, the
classical derivative is replaced by the q -difference operator in order to deal with non-
differentiable functions, for more details see [4, 15]. Therefore q -calculus bridges a
connection between mathematics and physics. q -calculus applications can be found
in a variety of fields of mathematics and physics, and the interested reader is directed
to [7, 28, 36]. Many integral inequalities have been investigated by utilizing quantum
integrals for different types of convex functions. For example, [1, 2, 6, 5, 11, 12], the
authors used, κDq -derivatives and qσ ,qκ -integrals to prove H-H integral inequalities
and their left-right estimates for convex and coordinated convex functions. Inspired by
the ongoing studies, we prove some new Hermite-Hadamard type inequalities, for p ,
(p− s) and modified type (p− s)-convex function. Special cases of these inequalities
can yield well-known results in literature.

Before we begin our main results, the following definitions and concepts need to
be clarified.

2. Preliminaries and definitions of q -calculus

The quantum number [n]q is expressed as

[n]q = 1−qn

1−q = 1+q+q2 + . . .+qn−1 with q ∈ (0,1) , see, [14].

DEFINITION 1. [37] Let I be a p -convex set. A function � : I → R is said to be
a p -convex function, if

�

(
(τσ p +(1− τ)κ p)

1
p

)
� τ�(σ)+ (1− τ)�(κ) (1)

for all σ ,κ ∈ I , p ∈ R\ {0} and for τ ∈ [0,1] . If the inequality in (1) is reversed, then
� is said to be p -concave.

DEFINITION 2. [24] Let I be a s-convex set. A function � : I → R is said to be
a s-convex function, if

�(τσ +(1− τ)κ) � τs
�(σ)+ (1− τ)s

�(κ) (2)

for all σ ,κ ∈ I , and for τ ∈ [0,1],s ∈ (0,1] . If the inequality in (2) is reversed, then �

is said to be s-concave.
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DEFINITION 3. [20] Let h : J ⊂R→R be a non-negative and non-zero function.
A function � : I → R , where I is p -convex set in R is called (p−h)-convex function,
if � is non-negative and

�

(
(τσ p +(1− τ)κ p)

1
p

)
� h(τ)�(σ)+h(1− τ)�(κ) (3)

for all σ ,κ ∈ I and τ ∈ (0,1) , where p > 0. Similarly, if the inequality sign in (3) is
reversed, then � is said to be (p,h)-concave function.

If h(τ) = τs in Definition (3), then we have definition of (p−s)-convex functions.

DEFINITION 4. Let I be a (p− s)-convex set. A function � : I → R is said to be
a (p− s)-convex function, if

�

(
(τσ p +(1− τ)κ p)

1
p

)
� τs

�(σ)+ (1− τ)s
�(κ), (4)

For all σ ,κ ∈ I , p > 0 and for s ∈ (0,1] , τ ∈ [0,1] . If the inequality in (4) is
reversed, then � is said to be (p− s)-concave.

Of course, if we put s = 1, (p− s)-convexity reduces to ordinary p -convexity of
function.

If we put p = 1, then (p− s)-convexity reduces to s-convexity in the second
sense.

DEFINITION 5. [21] Let h : J ⊂R→R be a non-negative and non-zero function.
A function � : I → R , where I is p -convex set in R, is called modified (p−h)-convex
function, if � is non-negative and

�

(
(τσ p +(1− τ)κ p)

1
p

)
� h(τ)�(σ)+ (1−h(τ))�(κ) (5)

for all σ ,κ ∈ I and τ ∈ (0,1) . Similarly, if the inequality sign in (5) is reversed, then
� is said to be a (p,h)-concave function.

If h(τ) = τs in Definition (5), then, we have definition of modified (p−s)-convex
functions.

DEFINITION 6. Let I be a (p− s)-convex set. A function � : I → R is said to be
a modified (p− s)-convex function, if

�

(
(τσ p +(1− τ)κ p)

1
p

)
� τs

�(σ)+ (1− τs)�(κ) (6)

for all σ ,κ ∈ I , s,τ ∈ [0,1] , where p > 0. If the inequality in (6) is reversed, then �

is said to be (p− s)-concave.

Of course, if we put s = 1, modified (p− s)-convexity reduces to ordinary p -
convexity of function.

If we put p = 1, s = 1, then modified (p− s)-convexity reduces to ordinary-
convexity.
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DEFINITION 7. [34] Let � : I → R be a continuous function and let κ ∈ I . Then
the qσ derivative on I of � at κ is defined as

σ Dq�(κ) =
�(κ)−�(qκ +(1−q)σ)

(1−q)(κ−σ)
κ �= σ , (7)

σDq�(σ) = lim
κ→σ σ Dq�(κ).

DEFINITION 8. If σ = 0 in (7), then we get classical q -derivative of �(κ) at
κ ∈ I , given by

0Dq�(κ) = Dq�(κ) =
�(κ)−�(qκ)

(1−q)κ
.

DEFINITION 9. [8] Let � : I → R be a continuous function and let κ ∈ I . Then
the qκ derivative on I of � at κ is defined as

κDq�(κ) =
�(κ)−�(qκ +(1−q)κ)

(1−q)(κ−κ)
κ �= κ ,

κDq�(κ) = lim
κ→κ

κDq�(κ).

DEFINITION 10. [34] Let � : I → R be a continuous function. Then the qσ -
integral on I is defined as

∫ κ

σ
�(τ)σ dqτ = (1−q)(κ−σ)

∞

∑
n=0

qn
�(qn

κ +(1−qn)σ) (8)

for κ ∈ I . If σ = 0 in (8), then∫
κ

0
�(τ)0dqτ =

∫
κ

0
�(τ)dqτ,

where
∫

κ

0 �(τ)dqτ is familiar q -definite integral on [0,κ] defined by the expression

∫
κ

0
�(τ)0dqτ =

∫
κ

0
�(τ)dqτ = (1−q)κ

∞

∑
n=0

qn
�(qn

κ).

Moreover, if c ∈ (σ ,κ) , then the q -integral on I is defined as∫
κ

c
�(τ)σ dqτ =

∫
κ

σ
�(τ)σ dqτ −

∫ c

σ
�(τ)σ dqτ.

DEFINITION 11. [8] Let � : I → R be a continuous function. Then the qκ -
integral on I is defined as

∫ κ

κ

�(τ)κdqτ = (1−q)(κ −κ)
∞

∑
n=0

qn
�(qn

κ +(1−qn)κ) (9)
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for κ ∈ I . If κ = 1 in (9), then

∫ 1

κ

�(τ)1dqτ =
∫ 1

κ

�(τ)dqτ.

In [20], if we take h(τ) = τ , then we have the following Theorem.

THEOREM 1. Let � : I ⊆ (0,∞) → R be a differentiable function on Io , σ ,κ ∈ I
with σ < κ and p > 0 . If �′ ∈ L[σ ,κ ] , then

�

((
σ p + κ p

2

) 1
p
)

� p
κ p−σ p

∫ κ

σ

�(κ)
κ1−p dκ � �(σ)+�(κ)

2
. (10)

In [20], if we take h(τ) = τs , then we have the following Theorem.

THEOREM 2. Let h : J ⊂ R → R be a non-negative and non-zero function. For a
p-convex function � : I → R , where I is p-convex set in R and s ∈ [0,1) , p > 0 , then
we have

2s−1
�

((
σ p + κ p

2

) 1
p
)

� p
(κ p−σ p)

∫ κ

σ
�(κ)κp−1dκ � �(σ)+�(κ)

s+1
. (11)

3. Principal outcomes

In this section, we prove q -Hermite-Hadamard (H-H) type inequalities for the
class of p , (p− s) and modified type (p− s)-convex functions.

THEOREM 3. (q -H-H type inequality for p -convex functions) Let � : I ⊆ (0,∞)→
R be a p-convex function on Io , σ p,κ p ∈ I with σ p < κ p and p > 0,q ∈ (0,1) , then
we have the following inequality

�

((
σ p + κ p

2

) 1
p
)

� 1
2(κ p−σ p)

[∫ κ p

σ p
�(κ

1
p ) σ pdqκ +

∫ κ p

σ p
�(κ

1
p ) κ p

dqκ

]

� �(σ)+�(κ)
2

. (12)

Proof. By Definition of p -convexity

�

(
(τκ

p +(1− τ)yp)
1
p

)
� τ�(κ)+ (1− τ)�(y).

If τ = 1
2 , then

�

((
κp + yp

2

) 1
p
)

� �(κ)+�(y)
2

. (13)
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Considering
κ

p = τκ p +(1− τ)σ p yp = τσ p +(1− τ)κ p.

in (13), we get

2�

((
σ p + κ p

2

) 1
p
)

� �

(
(τκ p +(1− τ)σ p)

1
p

)
+�

(
(τσ p +(1− τ)κ p)

1
p

)
.

q -integrating w.r.t τ over [0,1] , we have

2�

((
σ p + κ p

2

) 1
p
)∫ 1

0
dqτ �

∫ 1

0
�

(
(τκ p +(1− τ)σ p)

1
p

)
dqτ

+
∫ 1

0
�

(
(τσ p +(1− τ)κ p)

1
p

)
dqτ.

From Definitions (10) and (11), we have
∫ 1

0
�

(
(τκ p +(1− τ)σ p)

1
p

)
dqτ = (1−q)

∞

∑
n=0

qn
�

(
(qnκ p +(1−qn)σ p)

1
p

)

=
1

κ p−σ p

∫ κ p

σ p
�(κ

1
p ) σ pdqκ

∫ 1

0
�

(
(τσ p +(1− τ)κ p)

1
p

)
dqτ = (1−q)

∞

∑
n=0

qn
�

(
(qnσ p +(1−qn)κ p)

1
p

)

=
1

κ p−σ p

∫ κ p

σ p
�(κ

1
p ) κ p

dqκ.

Thus, we get

2�

((
σ p + κ p

2

) 1
p
)

� 1
κ p−σ p

[∫ κ p

σ p
�(κ

1
p ) σ pdqκ +

∫ κ p

σ p
�(κ

1
p ) κ p

dqκ

]

and the first inequality (12) is proved.
To prove the second inequality, we use the p -convexity we have

�

(
(τκ p +(1− τ)σ p)

1
p

)
� τ�(κ)+ (1− τ)�(σ) (14)

�

(
(τσ p +(1− τ)κ p)

1
p

)
� τ�(σ)+ (1− τ)�(κ). (15)

By adding (14) and (15), from Definition (10) and (11), we have

1
κ p−σ p

[∫ κ p

σ p
�(κ

1
p ) σ pdqκ +

∫ κ p

σ p
�(κ

1
p ) κ p

dqκ

]
� �(σ)+�(κ).

Thus, the proof is accomplished. �
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REMARK 1. If we set p = 1 in Theorem 3, then Theorem 3 reduces to [8, Theo-
rem 20].

REMARK 2. In Theorem 3, if we take the limit as q → 1, then we have

�

((
σ p + κ p

2

) 1
p
)

� 1
(κ p−σ p)

[∫ κ p

σ p
�(κ

1
p )dκ

]
� �(σ)+�(κ)

2
,

Putting κ
1
p = x , dκ = pxp−1dx , we get

�

((
σ p + κ p

2

) 1
p
)

� p
(κ p−σ p)

∫ κ

σ

�(x)
x1−p dx � �(σ)+�(κ)

2
,

which is readily appears in (10).

THEOREM 4. (q -H-H type inequality for (p− s)-convex functions) Let � : I ⊆
(0,∞) → R be a (p− s)-convex function on Io , σ p,κ p ∈ I with σ p < κ p and p > 0,
s ∈ (0,1], q ∈ (0,1) , then we have the following inequalities

2s
�

((
σ p + κ p

2

) 1
p
)

� 1
(κ p−σ p)

[∫ κ p

σ p
�(κ

1
p ) σ pdqκ +

∫ κ p

σ p
�(κ

1
p ) κ p

dqκ

]
(16)

� [�(σ)+�(κ)]
[

1
[s+1]q

+ θ1

]

where

θ1 =
∫ 1

0
(1− τ)sdqτ.

Proof. From the Definition of ( p− s)-convexity, we get

�

(
(τκ

p +(1− τ)yp)
1
p

)
� τs

�(κ)+ (1− τ)s
�(y),

By τ = 1
2 , we have

�

((
κp + yp

2

) 1
p
)

� �(κ)+�(y)
2s . (17)

By taking
κ

p = τκ p +(1− τ)σ p and yp = τσ p +(1− τ)κ p.

in (17), we get

2s
�

(
σ p + κ p

2

) 1
p

� �

(
(τκ p +(1− τ)σ p)

1
p

)
+�

(
(τσ p +(1− τ)κ p)

1
p

)
. (18)
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On q -integrating w.r.t τ over [0,1] , we have

2s
�

((
σ p + κ p

2

) 1
p
)∫ 1

0
dqτ �

∫ 1

0
�

(
(τκ p +(1− τ)σ p)

1
p

)
dqτ

+
∫ 1

0
�

(
(τσ p +(1− τ)κ p)

1
p

)
dqτ.

From Definitions (10) and (11), we have∫ 1

0
�

(
(τσ p +(1− τ)κ p)

1
p

)
dqτ = (1−q)

∞

∑
n=0

qn
�

(
(qnσ p +(1−qn)κ p)

1
p

)

=
1

κ p−σ p

∫ κ p

σ p
�(κ)

1
p κ p

dqκ

and ∫ 1

0
�

(
(τκ p +(1− τ)σ p)

1
p

)
dqτ = (1−q)

∞

∑
n=0

qn
�

(
(qnκ p +(1−qn)σ p)

1
p

)

=
1

κ p−σ p

∫ κ p

σ p
�(κ)

1
p σ pdqκ.

Therefore, we get

2s
�

((
σ p + κ p

2

) 1
p
)

� 1
(κ p−σ p)

[∫ κ p

σ p
�(κ)

1
p σ pdqκ +

∫ κ p

σ p
�(κ)

1
p κ p

dqκ

]

and the first inequality (16) is proved.
To prove the second inequality, we use the (p− s)-convexity we have

�

(
(τκ p +(1− τ)σ p)

1
p

)
� τs

�(κ)+ (1− τ)s
�(σ) (19)

�

(
(τσ p +(1− τ)κ p)

1
p

)
� τs

�(σ)+ (1− τ)s
�(κ). (20)

By adding (19) and (20), from Definitions (10) and (11), we have

1
(κ p−σ p)

[∫ κ p

σ p
�(κ

1
p ) σ pdqκ +

∫ κ p

σ p
�(κ

1
p ) κ p

dqκ

]

� (�(σ)+�(κ))
[

1
[s+1]q

+ θ1

]
.

Thus, the proof is accomplished. �

REMARK 3. In Theorem 4, if we take the limit as q → 1, then we have

2s
�

((
σ p + κ p

2

) 1
p
)

� 2
(κ p−σ p)

∫ κ p

σ p
�(κ

1
p )dκ � [�(σ)+�(κ)]

[
2

s+1

]
,
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Putting κ
1
p = x , dκ = pxp−1dx , we get

2s−1
�

((
σ p + κ p

2

) 1
p
)

� p
(κ p−σ p)

∫ κ

σ
�(x)xp−1dx � �(σ)+�(κ)

s+1
,

which is readily appears in (11).

THEOREM 5. (q -H-H type inequality for modified (p−s)-convex functions) Let
� : I ⊆ (0,∞) → R be a modified type (p− s)-convex function on Io , σ p,κκ ∈ I with
σ p < κ p and p > 0, s ∈ (0,1], q ∈ (0,1) , then we have the following inequality

2s
�

((
σ p + κ p

2

) 1
p
)

� 1
(κ p−σ p)

[∫ κ p

σ p
�(κ

1
p ) σ pdqκ +(2s−1)

∫ κ p

σ p
�(κ

1
p ) κ p

dqκ

]
(21)

�
(

2
[s+1]q

−1

)
(�(κ)−�(σ))+2s

[
�(σ)−�(κ)

[s+1]q
+�(κ)

]
.

Proof. From the Definition of modified ( p− s)-convexity

�

(
(τκ

p +(1− τ)yp)
1
p

)
� τs

�(κ)+ (1− τs)�(y),

If we take τ = 1
2 , then

�

((
κp + yp

2

) 1
p
)

� �(κ)+ (2s−1)�(y)
2s . (22)

Putting κp = τκ p +(1− τ)σ p and yp = τσ p +(1− τ)κ p in (22), we get

2s
�

((
σ p + κ p

2

) 1
p
)

� �

(
(τκ p +(1− τ)σ p)

1
p

)
+(2s−1)�

(
(τσ p +(1− τ)κ p)

1
p

)
.

(23)
q -integrating w.r.t τ over [0,1] , we have

2s
�

((
σ p + κ p

2

) 1
p
)∫ 1

0
dqτ �

∫ 1

0
�

(
(τκ p +(1− τ)σ p)

1
p

)
dqτ

+(2s−1)
∫ 1

0
�

(
(τσ p +(1− τ)κ p)

1
p

)
dqτ.

From Definitions (10) and (11), we have∫ 1

0
�

(
(τκ p +(1− τ)σ p)

1
p

)
dqτ = (1−q)

∞

∑
n=0

qn
�

(
(qnκ p +(1−qn)σ p)

1
p

)

=
1

κ p−σ p

∫ κ p

σ p
�(κ

1
p ) σ pdqκ
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and ∫ 1

0
�

(
(τσ p +(1− τ)κ p)

1
p

)
dqτ = (1−q)

∞

∑
n=0

qn
�

(
(qnσ p +(1−qn)κ p)

1
p

)

=
1

κ p−σ p

∫ κ p

σ p
�(κ

1
p ) κ p

dqκ.

Then it follows that

2s
�

((
σ p+κ p

2

) 1
p
)

� 1
(κ p−σ p)

[∫ κ p

σ p
�(κ

1
p ) κ p

dqκ+(2s−1)
∫ κ p

σ p
�(κ

1
p ) σ pdqκ

]

and the first inequality (21) is proved.
To prove the second inequality, we use the modified (p− s)-convexity we have

�

(
(τκ p +(1− τ)σ p)

1
p

)
� τs

�(κ)+ (1− τs)�(σ) (24)

�

(
(τσ p +(1− τ)κ p)

1
p

)
� τs

�(σ)+ (1− τs)�(κ). (25)

By adding (24) and (25), from Definitions (10) and (11), we have

1
(κ p−σ p)

[∫ κ p

σ p
�(κ

1
p ) σ pdqκ +(2s−1)

∫ κ p

σ p
�(κ

1
p ) κ p

dqκ

]

�
(

2
[s+1]q

−1

)
(�(κ)−�(σ))+2s

[
�(σ)−�(κ)

[s+1]q
+�(κ)

]
.

Thus, the proof is accomplished. �

COROLLARY 1. In Theorem 5, if q → 1 , then we get the following inequalities
for the modified (p− s)-convex functions

2s
�

((
σ p + κ p

2

) 1
p
)

� 2s p
κ p−σ p

∫ κ

σ
�(τ)τ p−1dτ � (1− s)(�(κ)−�(σ))

+2s
[

�(σ)−�(κ)
s+1

+�(κ)
]
.

REMARK 4. If we set s = 1 in corollary 1, then we recapture the inequality (10).

REMARK 5. In Theorem 5, if we set s = 1 and p = 1, then Theorem 5 reduces to
[8, Theorem 18].

4. Conclusions

In the current investigation, we considered the class of p , (p− s) and modified
(p− s)-convex functions. Then we derived three new q Hermite-Hadamard type in-
equalities for the class of p ,(p− s) and modified type(p− s)-convex functions. It is
expected that the ideas and techniques presented in this paper will also be applicable to
several other types of convexities.
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