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Abstract. In this article, we consider the space-time fractional (nonlocal) diffusion equation
Pu(r,x) = Ly ®u(t,x), >0, x€D,

where 8,’3 is the Caputo fractional derivative of order 8 € (0,1) and the differential operator

Lg"az is the generator of a Lévy process, sum of two symmetric independent ¢ -stable and

o -stable processes and D is the open unit interval in R. We consider a nonlocal inverse prob-
lem and show that the fractional exponents 8 and ¢, i = 1,2 are determined uniquely by the
data u(r,0) = g(¢), 0 <1 < T. The uniqueness result is a theoretical background for determin-
ing experimentally the order of many anomalous diffusion phenomena, which are important in
many fields, including physics and environmental engineering. We also discuss the numerical
approximation of the inverse problem as a nonlinear least-squares problem and explore parame-
ter sensitivity through numerical experiments.

1. Introduction

While the traditional diffusion equation dyu = Au describes a cloud of spread-
ing particles at the macroscopic level, the space-time fractional diffusion equation
G,Bu = —(=A)*?u with 0 < B < 1 and 0 < & < 2 models anomalous diffusions.
The fractional derivative in time can be used to describe particle sticking and trapping
phenomena. The fractional space derivative models long particle jumps. The combined
effect produces a concentration profile with a sharper peak, and heavier tails [5, 18].
Here the fractional Laplacian (—A)O‘/ 2 is the infinitesimal generator of a symmetric

oc-stable process X = {X,f7 t>0,P, xcR? }, a typical example of a non-local oper-
ator [22]. This process is a Lévy process satisfying

E [eié(x’_XO)} =e 1" forevery x,& € R%.
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Here and in what follows, E[X] is the mathematical expectation of the random variable
X . In this paper, we consider the equation

Pu=—(—A)"u— (—A)2% with 0<B<1 and O< oy < <2. (1)

Suppose X is a symmetric o -stable process and Y is a symmetric o -stable process,
both defined on R?, and that X and Y are independent. We define the process Z =X +
Y . Then the infinitesimal generator of Z is (—A)®*/2 +(—A)%/2 [3]. The Lévy process
Z runs on two different scales: on the small spatial scale, the o component dominates,
while on the large spatial scale the o component takes over. Both components play
essential roles, and so in general this process can not be regarded as a perturbation of
the o -stable process or of the o -stable process.

The non-local operator —(—A)%/2 — (—A)%/2 is also the infinitesimal generator
of the solution to the following general Stochastic Differential Equation (SDE)

dz, = dv, + c(Z,_)dX;, )

where c is a real-valued bounded function (¢ = 1 here), and the processes X and Y are
defined as above. SDEs of the form (2) arise in applications with more than one sources
of random noises [6].

The fractional-time derivative considered here is the Caputo fractional derivative
of order 0 < B < 1 and is defined as

Pq(r) 1 t g (s)ds
P a(t) = = / , 3
Fa(t) orb r(1—p)Jo (t—s)P )
where I'(+) is the Euler’s gamma function. For example, of (t7) = % for any

p > 0. This definition of the Caputo fractional derivative is intended to properly han-
dle initial values [1, 5, 9], since its Laplace transform s8g(s) — s#~1¢(0) incorporates
the initial value in the same way the first derivative does. Here, g(s) = [ e "q(r)dt
represents the usual Laplace transform of the function ¢.

It is also well known that, if ¢ € C'(R") satisfies |¢'(¢)] < Ct¥~! for some v >
0, then by (3), the Caputo derivative of ¢ exists for all # > 0 and the derivative is
continuous in >0 [14, 19].

The following class of functions will play an important role in this article.

DEFINITION 1. The Generalized (two-parameter) Mittag-Leffler function is de-
fined by:

k

o Z
E&a(z) :kzzom, zeC, %(OC) >0, cﬁ(ﬁ) >0, 4)

where R(+) is the real part of a complex number. When o = 1, this function reduces
to Eﬁ() = Eﬁl()
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It is well-known that the Caputo derivative has a continuous spectrum [5, 19], with
eigenfunctions given in terms of the Mittag-Leffler function. In fact, it is not hard to
check that the function ¢(¢) = Eg (—21P) is a solution of the eigenvalue equation

oP q(t) = —Aq(t) forany A > 0.
For 0 < oy < o < 2, [— (—A)4/2 - (—A)O‘Z/z}h is defined for
he Dom( SN (—A)O‘Z/2>
210 2
- {heLz(Rd;dx) :/ (|§\°‘1 +|§\°‘2) )h(&)‘ dé <oo}
RrRd
as the function with Fourier transform
F[ (= ()2 = (~a) =) | = — (161 +[E1% ) h(E).

Here, .7 (h) = h represents the usual Fourier transform of the function /.

The main purpose of this article is to establish the determination of the unique
exponents 3 and ¢, i = 1,2 in the time and space fractional derivatives by means of
the observed data (also called additional condition) u(z,0) = g(¢), 0 <t < T, where
g(t) #0.

Inverse problems involving the determination of parameters of diffusion equations
have been studied in [2, 13, 16, 17, 20, 23, 24, 25, 26, 27], to name a few. Of the
time-fractional diffusion equations considered, the determination of a function of the
space-dependent source by means of final overdetermination data was discussed in [20],
the space-dependent diffusion coefficient and the time-fractional order were determined
simultaneously in [2, 15] while the recovery of the space-dependent potential from the
flux measurements taken at a single fixed corresponding to a given set of input sources
was considered in [ 13] . The space and time fractional orders were uniquely determined
by means of additional data in the space-time fractional diffusion equations in [23, 24].

The novelty with this article is the unique determination of three parameters of a
diffusion equation. Additionally, we provide numerical determination of these param-
eters. Furthermore, the numerical method proposed in this paper is new and could be
useful in the study of many inverse problems, including those considered in [23, 24].
In fact, our method greatly improves the numerical method used in [23] and can also
provide a numerical solution to the inverse problem studied in [24]. One key purpose
of this work is to show that our methods can be used to uniquely determine several
parameters associated with space-time fractional diffusion equations.

The rest of this article is organized as follows: in the next section we provide
a review of main properties of the direct problem and introduce the inverse problem.
Section 3 is devoted to both the statement and the proof of the main result of this paper.
Section 4 concerns numerical approximations to our problem. A conclusion in section
5 ends this paper. Throughout this article, the letter ¢, in upper or lower case, with or
without a subscript, denotes a constant whose value is not of interest in this article and
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may stay the same or change from line to line. For simplicity, we will fix d =1 in the
remainder of this paper. The following notation will be used in the sequel: D= (—1,1);
for a,b € R, aAb:=min(a,b); for any two positive functions p and ¢, p < g means
that there is a positive constant ¢ > 1 so that ¢~'¢ < p < cq on their common domain
of definition. For a given set A C R, A® =R —A.

2. Analysis of the direct problem and formulation of the inverse problem

We start by considering the direct problem. The equation we are interested in reads
as
Btﬁu(t,x) = —(=A)42u(t,x) — (—A)*2?u(t,x), t > 0, x €D,
u(t,x)=0,xc D¢ 0<t<T, 3)
u(0,x) = f(x), x€D.
Here T > 0 is a final time and f is a given function.
We define the operator L := —(—A)*/2 — (—A)®%/% for 0 < oy < o <2 on
D. Note that this operator is totally different from the corresponding one defined in
[11, Eqn. (1.5)], where the spectrally defined fractional Laplacian — which has explicit
eigenvalues and eigenfunctions — was used.

DEFINITION 2. ([5]) A function u(,x) is said to be a weak solution of (5) if the
following conditions are satisfied:

u(t,-) € # foreacht >0,
ltlg)lu(t,x) = f(x) a.e, (6)

oPur,x) = Ly ®u(t,x) in the distributional sense, i.e

/ ( / ”u(,,x>a,ﬁw<z>>¢(x>dx: / TP (ult,.), 0)w(t)dr

for every y € C}(R*) and ¢ € C3(D).
Here, .% is the /€| -completion of the space Cj’ (D) of smooth functions with
compact support in D, where

e (u,u) = €(u,u) —|—/Ru2(x)dx,

e(u,v) =€P(u,v) foru,ve .7,

and

eP(u,v) = 1 <u(x) - u(y)) (v(x) - V(y)) ( A (—o) + |x_;7|1+0¢1> dxdy,

2 Jp2 |x_y|l+062

where o/ (—a) = 02 'n7120((1+ @) /2)T(1 — /2)~! and b € R, for u,v € .F
[7].
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€P(u,v) comes from variational formulation and symmetry, and

7 = { e (i) [ (utw —u<y>)2<|f_ j?‘fiz o f,]) dxdy <°°}~

Following [5], a weak solution of Problem (5) is given by the following formula

u(t, ) :/:Ex (12035 < ] i(s)ds
= /O ) ( ge‘“” (f,0n) (x)>fr(S)ds (7)

Eg(—tat®) (f, o) ou (),

Mg

n=1

where f;(.) is defined in [5, (2.1)], tp is defined later in (18), (u,),>1 is a sequence of
positive numbers satisfying 0 < u; < up < --- and (¢,),>1 is an orthonormal basis of
L?(D), satisfying the following system of equations

Ly @y = — @, on D ®
¢, =0 on DC.
Hence, any function f € L?(D;dx) has the representation
F) =X (f,0n)on(x). ©)

n=1

Using the spectral representation, one has
WL -
Dom (L) = { £ € (D) L5 oy = T w2 00> <=} (10)
n=1

and

Lghazf(x) = - 2 Pn(f s Pn) Pn ().

n=1

For any real-valued function ¢ : R — R, one can also define the operator ¢(Lp;"*?) as
follows:

=

Z )2 (f. on)? }

= (11)

pom(o(15)) = { € 20 : o () |

and

=

O(Lp" ) f =2 0(a){f,0n) Pn: (12)

n=1
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For the remainder of this article, we will use ¢(¢) = t* for some k > 0. For techni-
cal reasons (cf. proof of main Theorem), we also restrict f to the class of functions
satisfying

(o) >0, n>1 (or (£,0,) <0,n>1). (13)

The following lemma indicates an important property of the Mittag-Leffler function. It
will be used frequently in the sequel.

LEMMA 1. [19] Foreach 0 < o0 <2 and mo/2 < u < min(z, 7o), there exists
a constant Cy > 0 such that
Co

}Ea(Z)} < m

, u<arg(z)| <7 (14)

THEOREM 1. The eigenvalues of the spectral problem for the one-dimensional
double fractional Laplace operator; i.e (—A)* u(x) + (—A)*2u(x) = pu(x) in the in-
terval D C R satisfy the following bounds

c1(n™ +n%) < Uy < ca(n* +n*), foralln>1 and cy,cp > 0. (15)

Proof. This follows easily from [4, Theorem 4.4] by taking ¢ (s) = s* +5%2. O

For the existence of a solution to (5), we now show that the series given in (7) is
uniformly convergent for (¢,x) € (0,7] x D. To this aim, we use the following Lemma
giving bounds for the eigenvalues and eigenfunctions:

LEMMA 2. Suppose that the initial value f in (5) is such that f € Dom ( (Lg' ’az)k>
for k> —1+ 2372. Let (Un,®,) be the eigenpair from (8), then

[(f,0n)| < VM, *

16
|(Pn(x)| < <‘u}i/2al A“;/zoq)’ (16)

where
M = Z,u f,q),, )" <eo and c3 > 0.

Proof. The first bound in (16) follows directly from the definition of M. So we
only show the second bound.

Recall that the fundamental solution p(z,x,y), also referred to as the heat kernel
of L*® is the unique solution to

Oru = LM%y, (17)

It represents the transition density function of Z. Denote the first exit time of the
process Z by
=inf{r >0:7 ¢ D}. (18)
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Let ZP denote the process Z “killed” upon exiting D, i.e

ZD — Zt7 t<TD (19)
! 8, t>1p.

Here, d is a cemetery point added to D. Throughout this paper, we use the convention
that any real-valued function f can be extended by taking f(d) = 0. Then Z” has
a jointly continuous transition density function pp(z,x,y). Moreover, by the strong
Markov property of Z, one has for t >0 and x,y € D,

po(t,x,y) = p(t,x,y) —E[p(t — 1, Xz, y)it < ] < p(t,x,). (20)
By [3, (1.4)],

o (1] —1/0c2> ! !
t = (t Nt A + . 21
plt.x,) ( (x—yl+oc1 x — y| I+ 2D

In particular, one has sup [, p(#,x,y)?dy < e for all # > 0. Denote by {pﬂt > O} the
xeD

transition semigroup of 7P e
= /D po(t.x,y)f(y)dy.

It is well know ( cf. [10]) that u(t,x) = pP f(x) is the unique weak solution to
u= Lghazu

with initial condition u(0,x) = f(x) on the Hilbert space L?(D;dx). Therefore, for each
t >0, pP is a Hilbert-Schmidt operator in L?(D;dx) so itis compact [5]. Consequently,
for the eigenpair defined in (8), we have pP@, = e '@, in L?(D;dx) for n > 1 and
t > 0. Combining this with (9), it follows that

=

PRI = Y (f.0n) PP Pn = Ze Wl (F, @n) Pn.

n=1

In particular, the transition density pp(,x,y) is given by

oo

po(t,x,y) =Y ¢ M @u(x)0u(y). (22)

n=1

Next,

e (.

O < S e g0 = poliex) < pltx) <€ (17 A1),
m=1

Hence, taking the square root of both sides, we get

|@n(x)| < Coelnt 21—V oa pg=1/ e, (23)
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Finally, taking ¢ = u,' concludes the proof. [J

With everything set, we can now proceed to show the uniform convergence of the
series given in (7). In fact, using (14), (15) and (16), we have

>, max | Eg (— P ) (£, @) o ()] <V CZH\ i (a2 A e
n=1
(24

<C i p(k-Doat1/2 _
n=1

by our choice of k in Lemma 2. This shows that the series in (7) is uniformly conver-
gent.
We are now ready to state and prove our main result.

3. Statement and proof of the main result
We open this section straight with our main result. We then provide its proof.

THEOREM 2. Suppose 0 <y <1 and 0 <ny < My <2. Let u be the weak solu-
tion of (5) and let v be the weak solution of the following problem

v(t,x) = —(—A)M/2v(t,x) — (—A)™/?v(t,x), t >0, xE D,
v(t,x)=0,xe D, 0<t<T, (25)
v(0,x) = f(x), x€D.

If u(t,0) =v(1,0), 0 <t < T and (13) holds, then

B=y and o=n; i=1,2.

Proof. Using the explicit formula (7), the weak solutions u and v can be written

as
u(t,x) = ¥ Eg(—tnt?) (. 0n)0n(x) (26)
n=1
and ~
x) = Ey(—=Aat?){(f W) W (%), (27)
n=1

where the eigenpairs (un,(pn> and ()Ln,u/n> satisfy

Ly @, = —tp@, on D.
¢, =0 on D¢

and

L™y, = =4y, on D.
W, =0 on D€,
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Without loss of generality, we can normalize the eigenfunctions such that ¢,(0) =
v, (0) =1 for all n > 1. This implies that

S Eg(— ) (fo o) = X Ey(—Aat?) (f, ) (28)
n=1 n=1

if we assume that u(z,0) = v(z,0).
Next, we use the following asymptotic property of the Mittag-Leffler function [ 14,
19]

1 -2
Ej(—1) =1 o(t| ™), 0<I<1. (29)
Combining (15) and (29), we get
Eg(—ptP)y— —— — | <cr 2P, (30)
p(=tht") (1 —B) putP

By adding and subtracting the term ﬁ ﬁ in the left side term in (28), we get the
following asymptotic equation

M

iEB(_“ntB)<f7(Pn> =
n=1

n=1

(f, on) lmm + Ep(—pt”) - r(1-p) ‘untﬁ‘|

- 1 1
= ) g O 1|7%F).
S50 gy g O
(€29)
Similarly,
S BtV = 3 (0| = 2+ B~ R
n=1 ! 7 n=1 7 ( ))‘t}’ ! F(I_Y>A‘nﬂ/
_5 LI 2y
(32)
Now combining (28), (31) and (32), we get, as t — oo
S 0.0 7y O = S g + O 59
| On) B) wP = Vi) (L—v) Ant? '
Now assume, for example, that § > y. Then multiply (33) by " to get
o 1 1 o 1
— VP ) —————+O0(|1]" Py + s W —+0(t]7") =0.
3000y + O+ S ) gy O

(34)
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Letting t — oo in (34) yields

2:: A (11_ ” % =0: acontradiction to (13)! (35)
Similarly, since condition (13) holds for both eigenpairs of the two operators, assuming
y > [ also leads to a contradiction. Thus 3 = y.
We now prove the second part of the Theorem, i.e ¢ = n;, i = 1,2. To this aim,
we will show that u, = A, forall n > 1.
Since =y, Equation (28) becomes

N Eg(—uat®)(f,00) = EEﬁ Y u). (36)
n=1

Taking the Laplace transform of Eg(— uatP) yields

o B—1
e YEg(—utP)dt = Z—, Rz >0. 37
| e B = (37)
Furthermore, taking the Laplace transform of the Mittag-Leffler function term by term,
we get
- B—1
B (— Pt = = R > /P 38
/0 B ( Un ) B 1 Un (33)

It follows that sup |EB(—,untﬁ)} < oo by (14). This implies that f; e‘Z‘EB(—untﬁ)dt is

>0

analytic in the domain Rz > ,u,y P Then by analytic continuity, [;" e “Eg(— watP)dr
is analytic in the domain Rz > 0.
Using (14), (15), (16) and Lebesgue’s convergence Theorem, we get that

¢ 4P s integrable for ¢ € (0,c0) with fixed z such that Rz > 0

and

7 3 Eg(—t®)(f. 1)
n=1

< Cpe e ( M (f. mﬁ,u,,%)

n=1

Oe tfth an o (k+1) _

by the choice of k in (16).
Next, for Rz > 0, we have

/ [ERZZEB —untP)(f u )t = Z<f,<pn>17 (39)
1

Similarly,

o % oo B B _ o
[ e S Ep A v = 300 0)

n=1
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This means, by (36), (39) and (40),

; Rp>0. (41)

Since we can continue analytically (in p) both series in (41), this equality actually
holds for p € C— ({un}@l u {)Ln}n>1> . We are now ready to show that u, = A, for
all n > 1. We proceed by induction:

Without loss of generally, assume y; < Aj. Thus we can find a suitable disk

containing —u; but not {—uy,},~, U{—As},>;. Then integrating (41) over this disk,
by the Cauchy’s integral formula, we get

2mi{f,@;) =0: thisis a clear contradiction to (13).

This means that u; = A; since the reverse inequality would also lead to a contradiction.
A similar argument yields u; = A, . Inductively, we deduce that

U, =A, foralln>1. (42)
This also means that
c1(n +n%) < iy < e2(n 1) (43)
and
c3(nM +n") < w, < eg(n™ +n"™), where ¢; >0,i=1,2,3,4. (44)

Assume for example that o < 1>, then combining (43) and (44) yields
c;n"2 <y < clzno‘z, foralln > 1: acontradiction!

Therefore c, = 1, since the reverse inequality would also lead to a contradiction.
Similarly, assuming ¢ > 1, and combining (43) and (44) gives

c1(n®™ +n"?) < cy(n™ +n*), forall n>1: acontradiction!

Thus oq = 7 and this concludes the proof. [

4. Numerical approximation

In this section we discuss the numerical identification of parameters o, , and
B from observations g(z), of u(z,0) for 0 <t < T, where u(t,x) solves Equation (5).
We focus here on a least squares formulation of the parameter identification problem.
Let 8 = (0, 00,) denote the parameter vector and let

O:={(a1,m,B):0< 0,00 <2,0<f <1}

be the set of admissible parameters. Since the double fractional Laplacian L*® is
symmetric in @; and o, we do not enforce the constraint a; < ¢ in ©. Further, to
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indicate the dependence of the solution u of Equation (5) on 0, we write u(z,x;0).
The parameter identification problem can now be expressed as the least-squares opti-
mization problem

T
min(0) = [ u(e.0:0)  g(o) de + % 613 @s)
00 0 2
where || -||> denotes the Euclidean norm and A > 0 is a suitably chosen Tikonov reg-
ularization parameter. The regularization term improves the stability of the minimizer
0, in the presence of measurement noise at the cost of biasing the estimate. Heuristic
methods are typically used to choose the parameter A that balances these two errors,
the most well-known of which is the Morozov discrepancy principle [21]. In our com-
putations we approximate J(6) by a quadrature rule with nodes 0 <7 < ... <t,, < T
and weights wy,...,wy,, resulting in the approximation

M=

1 A
J(0) =5 D wi [u(1:,0,0) — g (1)) + 5\\9||§~

1

i

Since the solution of Equation (5) cannot be expressed in closed form, it must be ap-
proximated numerically. Moreover, the parameter vector 6 is unknown a priori, and
hence care must be taken to ensure approximations whose accuracy is uniform over the
parameter set ®. We base our computations on the weak form of u given by Equation
(7). Its evaluation requires that of the Mittag-Leffler function, as well as the eigenfunc-
tions of the operator L***2. We use the numerical method developed in [12] to evalu-
ate the Mittag-Leffler function and approximate the eigenfunctions and eigenvalues of
L%:% by diagonalizing the discretized operator £.%:%2 | based on the finite difference
method developed in [8], which is second order accurate irrespective of o and .
The numerical approximation i of u then takes the form

a(t,:0) = 3 Eg(—fuut? ) (f, 0) (),

M=

where Eﬁ denotes the approximation of Eg, and {, and @,, n=1,...,N, denote the
approximate eigenvalues and eigenfunctions obtained via finite differencing.

Problem (45) and its approximation are box-constrained nonlinear least squares
problems that can be solved using well-known least squares algorithms, such as the
Levenberg-Marquardt method or the Gauss-Newton method (see [11]). In this section,
we investigate the difficulties in solving Problem (45) that arise from the lack of param-
eter identifiability. To be sure, Theorem 2 establishes that the parameters oy, and
B uniquely determine the trajectory u(z,0;0). In the following numerical experiment
we show however that it is possible for the cost functional J(0) to be quite insensi-
tive to the parameters ¢ and o near the unique minimizer. This leads to difficulties
for gradient-based optimization algorithms, resulting in slow convergence or premature
termination.

In our numerical experiment to investigate parameter identifiability, we specify
a reference parameter 6% = (a;, 0, *) = (0.5,1.5,0.7) and compute the associated
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model output u(z,x;0%) for xe D=(—1,1) and 0 <7 < 1, which we use as a reference
trajectory, i.e. g(r) =u(r,0;0*), 0 <t < 1. To eliminate any additional source of error,
we consider only noise-free observations and set the regularization parameter A = 0.
The initial condition f(x) = (1 —xz)%, x € (0,1) is sufficiently smooth to ensure a
uniform second order spatial approximation. Our numerical discretization # of u hasa
spatial resolution of Ax = 1072, a temporal resolution of Ar = 10~2, and full spectral
resolution, i.e. all terms in the spectral expansion are retained. We use the composite
Simpson rule to evaluate the time-integral of the squared residual.
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Figure 1: Contour plot of J(0t,0,,0.7).

0.5

0.0 1

We first fix § = 0.7 and examine the bivariate cost function J(c, 0,,0.7), shown
in Figure 1. The contour plot shows clearly that there is a strip containing (o, 05) in
which the cost J (i) attains comparatively small values and (ii) show very little varia-
tion. This behavior is also evident in the cross-sections plotted in Figure 2. In particular,
the cross-section of ¢ when o = o) shows a flat cost functional in a region of o .
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(a) Cross section J (j,a2,0.7) (b) Cross section J (Oq, 5,0.7)

Figure 2: Cross sections from the contour plot in Figure 1

To compare the trajectories within the flat (o, 0 )-strip containing the mini-
mizer (o, 05), we plotted regions of (o, 0n)-points in which the cost functional
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J has values below various thresholds, as well as the associated trajectory deviations
u(1,0;0) — g(r). While there is only one trajectory with a deviation of 0 (the optimal
one), the trajectories associated with the parameters that lie within strips of various
widths surrounding (o, ;) yield uniformly low cost function values.
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175 4 0.04 A
LN NN )
50
Lqeesesite.. 0021
1.25 1 cce L. =
° |
£ 1.00 A < 0.004
=
0.75 <
3 S —0.02
0.50 J(0) <10
o JO) <107*
0251 o o) <106 ~0.04 1
0.00 T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 1.0
oy t
(@) (b)

Figure 3: Sets of (ay,00)-pairs and associated trajectories for which the cost functional lies
below thresholds 1073,10~*, and 107

Next, we investigate the sensitivity of J with respect to . Since the dependence
of J on f is mediated by o and o, we consider the mappings 3 — J(oy,,f)
for a set of (0, 0p)-pairs that satisfy J(oy,0n,8%) < 1074, i.e. the orange points in
Figure 3 (a). Our results in Figure 4 show that, while there is some variation in the cost
functional for different values of (o4, 05), the cost functional (i) does not exhibit flat
regions, and (ii) attains its minimum consistently at f = * =0.7.

0.020 -
_0.0154

0.010

J(ag, 9,8

0.005

0.000

00 0.1 02 03 04 05 06 0.7 08 09 1.0
B

Figure 4: The cost functional B — J(oy,ap,B) for a selected set of (0, 0)-pairs.

It would therefore seem that the determination of f from trajectory data g(r) is
less ill-posed than that of o and og - our numerical experience supports this conjec-
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ture.

Finally, we contrast the identification of the fractional exponents in Equation (5)
with that of a diffusion with a single fractional Laplacian. To this end, we consider the
simplification of Equation (5) of the form

Pu(t,x) = —(—A)*?u(t,x), >0, xeD.

We use the same reference parameters as before, i.e. f*=0.7 and o* = 1.5 (we
observe similar results for the reference a* = 0.5), to generate the reference trajectory
g(#) and apply our least squares optimization algorithm to determine the parameters 3
and o iteratively from an initial guess of By = 0.05 and og = 0.1. Figure 5 shows the
convergence of the algorithm after 4 iterations, with a final cost J(6;) = 1.37 x 1077
and a gradient norm ||VJ(64)|| = 1.11 x 107%8,

- -
10-2 4 ..\ hd ~~o
AN 1073 4 \'\
AN = N
= 107 S A
£ ~ S ~
s > 10764 AN
1076 4 i o *
\ AN
= = — —g °
T T T T T T T T T T
0 1 2 3 4 0 1 2 3 4
Iteration (k) Iteration (k)
(a) Cost functional (b) Gradient norm

Figure 5: The values of the cost functional and gradient norms at each iteration of the optimiza-
tion algorithm.

1071 4

10-3 4 (\/‘/

= 107
|
S 1077 Y"
= k=0
g 10771 k=1
= 101+ k=2
— k=3
10713 — k=4
0.0 0.2 0.4 0.6 0.8 1.0

Time (t)

Figure 6: The absolute difference between the estimated trajectory u(t,0;0y) and the target
trajectory g(t) at each iteration of the optimization algorithm.
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Figure 6 shows the absolute difference between the reference trajectory g(7) and
the model output u(z,0, ;) at each iteration k. The model clearly tracks the reference
trajectory very well as the iteration progresses. The very small error at the initial time
is due to the fact the initial conditions are given.

We have shown in this section how the insensitivity of the least-squares cost func-
tional J to o and oy can lead to problems in the practical identification of these
parameters from an observed trajectory g(7). In contrast, the estimation of the frac-
tional powers in case of a diffusion with a single fractional Laplacian seems to be more
well-posed. Possible strategies for improving the identifiability of the double fractional
Laplacian include: estimating 8 before ¢ and o, and/or weighting the initial, tran-
sient time interval more heavily.

5. Conclusion

We have studied a nonlocal inverse problem for the space-time fractional diffusion
equation

a,ﬁu(t,x) = —(=AN)*/2y(t,x) — (—A)®/2u(t,x). We showed that the equation has
a weak solution and that given an additional data g(¢) = u(¢,0), we can uniquely de-
termine the time and space fractional exponents 3, ¢ and oy . Finally, we provided a
numerical approximation to the solution. The ill-posedness of the problem made this
numerical approximation very challenging as expected. We would like to point out that
we have also investigated the problem above for a spectrally defined mixed fractional
Laplacian in [11]. We also think that our methods can be used to solve a broader range
of inverse problems, including the fractional diffusion equation with a source term:

P u(t,x) = —(—A)4/2u(t,x) — (—A)%/2u(t,x)+ F (t,x) and distributed-order frac-
tional diffusions. These will constitute our future projects.
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