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THE ASYMPTOTICS OF THE MITTAG-LEFFLER POLYNOMIALS

R. B. PARIS

Abstract. We investigate the asymptotic behaviour of the Mittag-Leffler polynomials G,(z) for
large n and z, where z is a complex variable satisfying 0 < argz < %77: A summary of the
asymptotic properties of G, (ix) for real values of x and an approximation for its extreme zeros
as n — oo are given. When the variables are such that z/n is finite, an expansion is obtained using
the method of steepest descents applied to a suitable integral representation. This expansion
holds everywhere in the first quadrant of the z-plane except in the neighbourhood of the point
z=1in, where there is a coalescence of saddle points. Numerical results are presented to illustrate

the accuracy of the various expansions. .
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