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THE ASYMPTOTICS OF THE MITTAG–LEFFLER POLYNOMIALS

R. B. PARIS

Abstract. We investigate the asymptotic behaviour of the Mittag-Leffler polynomials Gn(z) for
large n and z , where z is a complex variable satisfying 0 � arg z � 1

2 π . A summary of the
asymptotic properties of Gn(ix) for real values of x and an approximation for its extreme zeros
as n→∞ are given. When the variables are such that z/n is finite, an expansion is obtained using
the method of steepest descents applied to a suitable integral representation. This expansion
holds everywhere in the first quadrant of the z -plane except in the neighbourhood of the point
z = in , where there is a coalescence of saddle points. Numerical results are presented to illustrate
the accuracy of the various expansions.

1. Introduction

The Mittag-Leffler polynomials Gn(z) occur as the coefficients in the expansion(
1+ t
1− t

)z

=
∞

∑
n=0

Gn(z)tn (|t| < 1), (1.1)

and have the representation [1]

Gn(z) = 2z2F1

(
1−n,1− z

2

∣∣∣∣2
)

(n � 1), (1.2)

where 2F1 denotes the Gauss hypergeometric function; see also [11, §4.1.6], [5]. These
polynomials satisfy the recurrence relation

(n+1)Gn+1(z) = (n−1)Gn−1(z)+2zGn(z) (n � 1)

with the starting values G−1(z) = 0, G0(z) = 1 and are polynomials in z consisting
of even (resp. odd) powers of z according as n is even (resp. odd). The first few
polynomials are

G1(z) = 2z, G2(z) = 2z2

G3(z) = 1
3z(2+4z2)

G4(z) = 1
3z2(4+2z2)

G5(z) = 1
15z(6+20z2 +4z4)

G6(z) = 1
45z2(46+40z2 +4z4)
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which are seen to possess the leading term (2z)n/n! . A recent study of these poly-
nomials together with a generalisation can be found in [13]. An application of the
Mittag-Leffler polynomials applied to an expansion for the Riemann zeta function is
discussed in [12].

When the variable z is purely imaginary (we put z �→ ix , x real), Gn(ix) possesses
an orthogonal polynomial structure. The Gn(ix) are related to the symmetric Meixner–

Pollaczek polynomials P(λ )
n (x) , which are defined by the generating function

(1+ it)−λ−ix(1− it)−λ+ix =
∞

∑
n=0

P(λ )
n (x)tn (|t| < 1).

The P(λ )
n (x) have the explicit representation

P(λ )
n (x) =

(2λ )nin

n! 2F1

( −n,λ + ix
2

∣∣∣∣2
)

,

where (a)n = Γ(a+n)/Γ(a) is Pochhammer’s symbol, from which it easily follows by
(1.2) that

Gn(ix) =
2inx
n

P(1)
n−1(x). (1.3)

An asymptotic expansion for the Meixner–Pollaczek polynomials as n → ∞ , which
holds uniformly for finite real values of x , has been obtained in [6] in terms of the
parabolic cylinder function and its derivative.

In this paper we present a summary of the main asymptotic properties of Gn(ix) for
real x as n→ ∞ , including an approximation for its extreme zeros. We give expansions
for Gn(z) when |z| → ∞ , n finite and n → ∞ , z finite by writing the hypergeometric
function in (1.2) in different forms suitable for computation in these two limiting cases.
Our main purpose, however, is to consider the asymptotic expansion of Gn(z) in (1.2)
for large n and large complex values of z such that ξ ≡ z/n is finite. This is obtained
by a routine application of the method of steepest descents applied to a suitable integral
representation. Since

Gn(−z) = (−)nGn(z), Gn(z) = Gn(z), (1.4)

where the bar denotes the complex conjugate, it is clearly sufficient to restrict our at-
tention to the first quadrant 0 � arg z � 1

2 π .

2. Summary of the non-uniform approximations for Gn(inξ ) , ξ > 0

In this section we collect together various useful asymptotic properties of Gn(z)
when z = ix , with x > 0. These polynomials satisfy the orthogonality property given
by [2] ∫ ∞

−∞
Gn(ix)Gm(−ix)

dx
xsinhπx

=
2
n

δnm

for non-negative integers n and m , where δnm is the Kronecker delta symbol.
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In [6], Li and Wong gave a uniform asymptotic expansion for the more general
Meixner-Pollaczek polynomial Mn(2x;δ ,η) for real values of the variable x in terms of
the parabolic cylinder function and its derivative. The symmetrical Meixner-Pollaczek

polynomial P(λ )
n (x) that interests us here is given by

P(λ )
n (x) =

1
n!

Mn(2x;0,2).

In Section 6, Li and Wong gave various non-uniform approximations for Mn(2x;δ ,η)
obtained from their uniform expansion. If we set ξ = x/n , then with δ = 0, η = 2 and
the parameters defined in their paper r0 = 1, α+ = 2, θ0 = 1

2 π , α = 2ξ and

w± = ξ ±
√

ξ 2−1 (ξ > 1),

we obtain from (6.9), (6.23) and (6.37) of [6], and (1.3), the leading behaviour as n→∞
given by1

Gn(inξ )∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2in√
2πn

ξ 1
2 e

1
2 πnξ

(1−ξ 2)
1
4

sin

[
nθ−nξ log(ξ−1+

√
ξ−2−1)+

1
4

π
]

(0 < ξ < 1)

21/33−2/3in

n1/3Γ( 2
3 )

e
1
2 πn (ξ = 1)

in√
2πn

ξ
1
2 e

1
2 πnξ

(ξ 2−1)
1
4

exp

[
n(θ − ξ arctan

√
ξ 2−1)

]
(ξ > 1),

(2.1)
where

θ = arccos ξ (0 < ξ < 1), θ = arccoshξ (ξ > 1). (2.2)

We remark that the first and third expressions in (2.1) may also be obtained from the
leading terms of the expansions in (4.11).

From Section 1 it is clear that Gn(z) is a polynomial in z of degree n , with a
double (resp. simple) zero at the origin when n is even (resp. odd). From the uniform
approximation for the Meixner-Pollaczek polynomial in terms of the Airy function Ai
given in [6, (6.23)], it is clear that Gn(inξ ) has zeros in −1 < ξ < 1; by symmetry,
it is sufficient to consider only 0 < ξ < 1. There are thus N positive zeros, where
N = 1

2 n−1 or 1
2 n− 1

2 according as n is even or odd, respectively.
Let us denote the k th positive zero of Gn(inξ ) by ξn,k , where the zeros are enu-

merated in decreasing order by ξn,1 > ξn,2 > .. . > ξn,N . A three-term asymptotic ap-
proximation for the zeros as n → ∞ can be obtained from [6, (7.17)] as

ξn,k = 1+2−1/3akn
−2/3 +(1−2−4/3)n−1 +O(n−4/3), (2.3)

1In the third formula in (2.1), we have written the factor exp [2nξ arctan (ξ −
√

ξ 2 −1)] appearing in [6,
(6.9)] in the equivalent form exp [nξ ( 1

2 π − arctan
√

ξ 2 −1)] .
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where ak denotes the k th negative zero of Ai(x). From [9, p. 201], we have the ap-
proximate values ak � −( 3

2 π(k− 1
4 ))2/3 (k = 1,2, . . . ). It is worth pointing out that

the leading approximation for the extreme zeros (k finite)

ξn,k � 1−
(

3π
2
√

2n
(k− 1

4 )
)2/3

(n → ∞)

follows from a routine calculation using the first non-uniform approximation in (2.1).
The gap between the extreme zeros and the endpoint ξ = 1 is thus seen to be O(n−2/3) .

In Table 1 we show the values of ξn,k computed from (2.3), employing the values
of the negative zeros ak given in [9, p. 201], compared with the numerically computed
zeros obtained from (1.2) by the Newton-Raphson method.

n = 50 n = 80
k ξn,k Asymptotic ξn,k Asymptotic

1 0.866390 0.87533 0.901715 0.90759
2 0.770636 0.77300 0.830400 0.83278
3 0.695015 0.68922 0.773469 0.77154
4 0.630317 0.61517 0.724263 0.71741
5 0.572974 0.54749 0.680211 0.66793

Table 1: Values of the first five positive zeros ξk for different values of n and their asymptotic
approximation.

3. The expansion of Gn(z) for large z or large n

To obtain the expansions of Gn(z) for large z , with n finite, and large n , with z
finite, we make use of the transformation for nonnegative integer n

2F1

(−n,b
c

∣∣∣∣z
)

= (−z)n (b)n

(c)n
2F1

(−n,1−n− c
1−n−b

∣∣∣∣ 1z
)

(3.1)

provided b �= 0,−1, . . . ,−n+1 (unless b = c). This result follows by writing the series
expansion of the hypergeometric function on the left-hand side of (3.1) in ascending
powers of z and reversing the order of summation by replacing the summation index r
by n− r . Application of (3.1) to (1.2) then yields

Gn(z) =
(−2)nΓ(n− z)

n!Γ(−z) 2F1

(
1−n,−n
1+ z−n

∣∣∣∣ 1
2

)
(3.2)

=
(−2)nΓ(n− z)

n!Γ(−z)

n−1

∑
r=0

(
n
r

)(
n−1

r

)
2−rr!

(1+ z−n)r
(3.3)
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for2 z �= 1,2, . . . ,n−1, which is in the form of a convergent inverse factorial expansion
suitable for computation when |z| → ∞ . We observe that since

(−2)nΓ(n− z)
n!Γ(−z)

=
(2z)n

n!

n−1

∏
r=1

(
1− r

z

)
,

the leading behaviour of Gn(z) is verified to be (2z)n/n! as |z| → ∞ .
An alternative representation of Gn(z) can be obtained by applying the well-

known linear transformation [9, Eq. (15.8.1)]

2F1

(
a,b
c

∣∣∣∣z
)

= (1− z)c−a−b
2F1

(
c−a,c−b

c

∣∣∣∣z
)

(3.4)

to (3.2) to yield

Gn(z) = (−)n 2−zΓ(n− z)
n!Γ(−z) 2F1

(
z,1+ z

1+ z−n

∣∣∣∣ 1
2

)
. (3.5)

If we now apply the second linear transformation [7, Ch. 3]

2F1

(
a,b
c

∣∣∣∣z
)

= A 2F1

(
a,b

a+b− c+1

∣∣∣∣1− z

)
− Bz1−c

(1− z)a+b−c 2F1

(
1−a,1−b

2− c

∣∣∣∣z
)

,

(3.6)
where

A =
Γ(a− c+1)Γ(b− c+1)
Γ(a+b− c+1)Γ(1− c)

, B =
Γ(c−1)Γ(a− c+1)Γ(b− c+1)

Γ(a)Γ(b)Γ(1− c)
,

this enables us to express the hypergeometric function in (3.5), with −n in the denom-
inatorial parameter, in terms of two similar hypergeometric functions, with +n in the
denominatorial parameter. Thus, we obtain

2F1

(
z,1+ z

1+ z−n

∣∣∣∣ 1
2

)
=

Γ(n)Γ(n+1)
Γ(n− z)Γ(1+ z)

{
1

(1+ z)n
2F1

(
z,1+ z

1+ z+n

∣∣∣∣ 1
2

)
+

(−)n−122z

(1− z)n
2F1

(−z,1− z
1− z+n

∣∣∣∣ 1
2

)}
.

This last result yields the representation

Gn(z) = Γ(n)
{

ϒn(−z)+ (−)nϒn(z)
}

, (3.7)

where we have defined

ϒn(z) ≡ 2−z

Γ(1+ z+n)Γ(−z) 2F1

(
z,1+ z

1+ z+n

∣∣∣∣ 1
2

)
.

2For z = 1,2, . . . ,n−1 the limiting form of (3.3) would have to be taken.
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The expansion of Gn(z) for n → ∞ now follows from (3.7), since the hypergeometric
function appearing in ϒn(z) can be written as a convergent inverse factorial expansion
to produce

ϒn(z) =
2−z

Γ(−z)

∞

∑
r=0

(z)r(1+ z)r2−r

Γ(1+ z+n+ r)r!

suitable for computation in the limit n → ∞ .
The leading behaviour of Gn(z) as n → ∞ can be obtained from (3.7) by applica-

tion of the standard result

Γ(n+a)
Γ(n+b)

= na−b(1+O(n−1)) (n → ∞)

to yield

Gn(z) =
2znz−1

Γ(z)
(1+O(n−1)+O(n−2z)) (n → ∞) (3.8)

when Re (z) > 0. In the particular case arg z = 1
2 π , we replace z by ix (with x > 0)

to find

Gn(ix) =
(

2ixnix−1

Γ(ix)
+ (−)n 2−ixn−ix−1

Γ(−ix)

)
(1+O(n−1))

=
2eπ in/2

n

(
xsinhπx

π

)1/2

cos

[
x log(2n)−Ψ(x)−1

2
πn

]
(1+O(n−1)) (3.9)

as n → ∞ , where Ψ(x) = arg Γ(ix) and we have made use of the standard result
|Γ(ix)| = (π/xsinhπx)1/2 .

4. The expansion of Gn(z) for large z and n

From the generating relation in (1.1) it follows by Cauchy’s theorem that

Gn(z) =
1

2π i

∮ (
1+ t
1− t

)z dt
tn+1 ,

where the integration path is a small closed curve surrounding the origin in the positive
sense. We introduce the variable ξ ≡ z/n , where it is sufficient by (1.4) to restrict
attention to the first quadrant 0 � arg ξ � 1

2 π . Then

Gn(nξ ) =
1

2π i

∮
e−nψ(t) f (t)dt, (4.1)

where

ψ(t) = log t− ξ log

(
1+ t
1− t

)
, f (t) =

1
t
. (4.2)

The expansion of Gn(nξ ) for n→ ∞ and finite complex ξ will be obtained by applica-
tion of the method of steepest descents applied to the integral (4.1). Note that although
t = 0 is a branch point of the phase function ψ(t) , it is only a pole of the integrand.
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In order to deform the contour in (4.1) it is necessary to introduce cuts in the t -
plane to make the integrand single-valued. We do this by placing two cuts extending
from t =±1 to infinity along the positive and negative real axes, although other choices
may be more convenient when deforming the integration path. The saddle points ts of
the integrand are given by ψ ′(t) = 0; that is, by t2s +2ξ ts−1 = 0, whereupon

ts1 =
1

ξ +
√

1+ ξ 2
, ts2 =

1

ξ −
√

1+ ξ 2
. (4.3)

At a saddle ts j we have

ψ(ts j) = − log(ξ ±
√

1+ ξ 2)− ξ log(ξ−1±
√

1+ ξ−2), (4.4)

where the upper or lower signs correspond to j = 1 or 2, respectively. Some routine
algebra shows that, for ξ in the first quadrant, we have arg ts1 ∈ [− 1

2 π ,0] and arg ts2 ∈
[−π ,− 1

2 π ] . Then, from the elementary properties of the above quadratic in ts , we find
ts1ts2 = e−π i and ts1 + ts2 = 2ξ e−π i , whence

ψ(ts1)+ ψ(ts2) = log(ts1ts2)− ξ log

(
1+ ts1ts2 + ts1 + ts2
1+ ts1ts2− ts1− ts2

)
= π i(ξ −1). (4.5)

4.1. Topology of the steepest descent paths

Paths of steepest descent from a saddle ts can terminate only at t = −1 or pass to
infinity in the directions

arg t = Imψ(ts)±πRe(ξ ).

The topology of the paths of steepest descent when ξ > 0 is illustrated in Fig. 1.
In this case the saddles lie on the real axis, with 0 < ts1 < 1 and ts2 < −1. Since
Im ψ(ts) = 0, the steepest descent path through the saddle ts1 passes to infinity in the
directions arg t = ±πξ when ξ < 1. The integration path in (4.1) can then be ex-
panded to coincide with the steepest descent path through ts1 , together with the loop
described in the negative sense surrounding the branch cut (−∞,−1] and part of the

(a)

tt
s1s2

0 1-1

(b)

tt s1s2
0 1-1

(c)

tt s1s2
0 1-1

Figure 1: The steepest descent paths through the saddle ts1 for positive values of ξ : (a) ξ < 1 ,
(b) ξ = 1 and (c) ξ > 1 . The heavy dots denote the saddle points and the heavy lines are the
branch cuts.
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circular arc3 at infinity. When ξ = 1, the steepest descent path through ts1 connects
with the saddle ts2 on the negative real axis. The loop from ts2 round the branch point
t = −1 in this case yields no contribution to Gn(nξ ) , since x = n and both sides of
the loop, taken in opposite directions, cancel. When ξ > 1, the steepest descent path
through ts1 encircles the origin and terminates at t = −1.

(a)

t
t

s1
s2

0

1-1

(b)

t
t

s1
s2

0

1-1

(c)

t
t

s1
s2

0

1-1

Figure 2: The steepest descent paths through the saddles ts1 and ts2 for complex values of ξ :
(a) ξ ∈ D1 , (b) ξ = ξI and (c) ξ ∈ D2 . The heavy dots denote the saddle points and the heavy
lines are the branch cuts. The cut from t = −1 coincides with the steepest descent path through
ts2 .

When 0 < arg ξ < 1
2 π , the saddles move into the lower half of the complex plane

as shown in Fig. 2. There are three different configurations of the steepest descent
paths according as ξ lies in the domains D1 , D2 of the first quadrant, or on the curve
ξ = ξI separating these two domains; see Fig. 3. This curve corresponds to points
where Im ψ(ts1) = Imψ(ts2) , so that the steepest descent path through ts1 connects
with the saddle ts2 , as shown in Fig. 2(b). Also shown in Fig. 3 is the (dashed) curve
ξ = ξR on which Re ψ(ts1) = Reψ(ts2) — this includes the part of the imaginary axis
satisfying 0 < Imξ � 1. As one crosses this latter curve from the lower to the upper
side, there is an exchange of dominance between the saddles; for values of ξ below this
curve — and a fortiori for ξ ∈ D1 — the saddle ts1 is the dominant saddle. Numerical
values of ξI and ξR are displayed in Table 2.

Re (ξI) Im(ξI) Re(ξI) Im(ξI) Re (ξR) Im(ξR) Re(ξR) Im(ξR)

0 1.00000 0.60 0.54092 0 1.00000 1.40 1.54510
0.05 0.97056 0.70 0.43159 0.20 1.10736 1.60 1.59776
0.10 0.93993 0.75 0.37155 0.40 1.20111 1.80 1.64678
0.20 0.87469 0.80 0.30741 0.60 1.28422 2.00 1.69260
0.30 0.80339 0.90 0.16503 0.80 1.35881 2.20 1.73561
0.40 0.72495 0.95 0.08568 1.00 1.42642 2.50 1.79551
0.50 0.63801 1.00 0.00000 1.20 1.48822 3.00 1.88510

Table 2: Values of ξI and ξR .

3The circular arc at infinity makes no contribution since the integrand in (4.1) behaves like t−n−1 for
large |t| .
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0.5� 1� 1.5� 2�
0�

0.5�

1�

1.5�

2�

Re

Im

(ξ)

(ξ)

ξ = ξ

ξ = ξ

D

D

D
I

R

1

2

2

Figure 3: The domains D1 and D2 in the ξ -plane and the boundary curve ξ = ξI correspond-
ing to a Stokes phenomenon. The dashed curve (including part of the imaginary ξ -axis satisfying
0 < Im(ξ ) � 1 ) indicates the values of ξ = ξR corresponding to an exchange of dominance be-
tween the saddles; for values of ξ below this curve the dominant saddle is ts1 .

Then, for ξ ∈ D1 , the steepest descent path through ts1 passes to infinity in both
directions, whereas that through ts2 has one half that terminates at t =−1 with the other
half passing to infinity;4 see Fig. 2(a). In this case, it is more convenient to place the
branch cut emanating from t = −1 to coincide with the steepest descent path through
ts2 . The closed path around the origin can then be formed by taking the steepest descent
path through ts1 , together with a loop described in the negative sense surrounding this
latter branch cut and parts of the circular arc at infinity. When ξ ∈ D2 , one half of the
steepest descent path through ts1 terminates at t = −1 with the other half passing to
infinity. The closed circuit is then formed by taking this latter path together with part
of a large circular arc at infinity and the upper side of the branch cut emanating from
t = −1.

Finally, when arg ξ = 1
2 π , the saddles are distributed symmetrically about the

negative imaginary t -axis for |ξ |< 1, coalesce to form a double saddle at t =−i when
ξ = i and are both situated on the negative imaginary t -axis when |ξ | > 1; see Fig. 4,
where the branch cuts have been placed on the real axis. We note that the steepest
descent path through ts2 cannot terminate at t = −1 in this case, since as t →−1

Imψ(t) ∼−|ξ | log(1+ t)→ +∞,

and so must loop round the point t = −1 and pass to infinity on the adjacent Riemann
sheet.

To determine the steepest descent paths through ts1 and ts2 , we set ξ = i|ξ | and
write t = reiφ to find

Imψ(t) = φ −|ξ | log

(
1+ r2 +2rcosφ
1+ r2−2rcosφ

)
.

4When Im (ξ ) �= 0 , the steepest descent path through ts2 approaches the point t = −1 in a spiral. In
certain cases it is possible for the path through ts1 to bend round the branch point t = 1 and pass to infinity
on an adjacent Riemann sheet of ψ(t) .
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Then, with Im ψ(ts1) = φ1 , the steepest descent path through ts1 is described by

r = ε cosφ ±
√

ε2 cos2 φ −1, ε ≡ ε(φ) =
χ +1
χ −1

, χ = exp

(
2(φ −φ1)

|ξ |
)

.

These paths are illustrated in Fig. 4 in particular cases; the mirror image of the curves
give the steepest descent paths through ts2 . The circuit is then closed by adding portions
of the circular arc at infinity.

(a)

tt

R

s1s2

0

1-1

(b)

t

R

s

0

1-1

(c)

t

t

R
s1

s2

0
1-1

Figure 4: The steepest descent paths through the saddles for purely imaginary values of ξ : (a)
|ξ |< 1 , (b) |ξ |= 1 and (c) |ξ |> 1 . The heavy dots denote the saddle points and the heavy lines
are the branch cuts. The dashed portions of the descent paths lie on adjacent Riemann sheets.

It should be noted that the dashed parts of these paths lie on adjacent Riemann
sheets of ψ(t) . Thus, for example, in Fig. 4(a) when the path has crossed over the
branch cut emanating from t = 1, we have log(1− t) replaced by log(1− t)− 2π i .
This results in the value of e−nψ(t) at ts1 on the adjacent sheet being a factor e−2πnIm(ξ )

smaller than that at ts1 on the principal sheet. A similar consideration applies to the
steepest descent path through ts2 . In Fig. 4(b), both halves of the steepest descent path
through ts1 approach ts2 on different adjacent sheets of ψ(t) , with the result that the
value of e−nψ(t) at ts2 is a factor e−2πnIm(ξ ) smaller than that at ts2 on the principal
sheet. We remark that the steepest descent paths in Fig. 4 are essentially the same (but
rotated through −π/2 and with branch cuts placed differently) as those depicted in
Figs. 15, 16 in [6] in the discussion of the Meixner–Pollaczek polynomials.

From these considerations, it is seen that both saddles contribute when ξ ∈ D1 ,
whereas only the saddle ts1 contributes when ξ ∈D2 . On the boundary separating these
two domains, ξ = ξI , we encounter a Stokes phenomenon, where the subdominant
contribution I2 switches off as ξ crosses from D1 to D2 . On arg ξ = 1

2 π with |ξ |< 1,
the expansions I1 and I2 (defined below) are of equal magnitude.

4.2. The expansion for n → ∞

From (4.2) and (4.3), we have

ψ ′′(ts j) = − (ξ + ts j)
ξ t2s j

= ∓
√

1+ ξ 2

ξ t2s j

,

where the upper or lower sign corresponds to j = 1 or 2, respectively. The direction of
the steepest descent path at the saddle ts j is − 1

2 arg ψ ′′(ts j) , where |arg ψ ′′(ts j)| < π .
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The contributions I1(ξ ) and I2(ξ ) from the steepest descent paths through the saddle
points ts1 and ts2 , respectively, are then given by

I j(ξ ) ∼ e−nψ(ts j)

its j
√

2π ψ ′′(ts j)

∞

∑
m=0

c( j)
m Γ(m+ 1

2 )

nm+ 1
2 Γ( 1

2 )

=
e−nψ(ts j)
√

2π
i1− jξ

1
2

(1+ ξ 2)
1
4

∞

∑
m=0

c( j)
m Γ(m+ 1

2 )

nm+ 1
2 Γ( 1

2 )
( j = 1,2) (4.6)

as n → ∞ , where the coefficients c( j)
0 = 1 and [8, p. 127], [4, p. 119]

c( j)
1 =

1
ψ ′′

{
f ′′

f
− ψ ′′′ f ′

ψ ′′ f
+

1
4

(
5ψ ′′′2

3ψ ′′2 − ψ iv

ψ ′′

)}
,

c( j)
2 =

1
ψ ′′2

{
f iv

6 f
−5ψ ′′′ f ′′′

9ψ ′′ f
+

5
12

(
7ψ ′′′2

3ψ ′′2 −
ψ iv

ψ ′′

)
f ′′

f
−35

36

(
ψ ′′′3

ψ ′′3 −
ψ ′′′ψ iv

ψ ′′2 +
6ψv

35ψ ′′

)
f ′

f

+
35
36

(
11ψ ′′′4

24ψ ′′4 − 3
4

(
ψ ′′′2

ψ ′′2 − ψ iv

6ψ ′′

)
ψ iv

ψ ′′ +
ψ ′′′ψv

5ψ ′′2 − ψvi

35ψ ′′

)}
,

with ψ , f and their derivatives being evaluated at t = ts j ; see also [10, p. 13]. This
yields the values

c(1)
1 = −c(2)

1 = − (2− ξ 2 +2ξ 4)
12ξ (1+ ξ 2)3/2

, c(1)
2 = c(2)

2 =
4+365ξ 4(1+ ξ 2)+4ξ 10

864ξ 2(1+ ξ 2)4 .

Then, upon use of (4.5), we obtain the expansions valid for ξ bounded away from
zero

I1(ξ ) ∼ λ n
√

2π
ξ

1
2

(1+ ξ 2)
1
4

∞

∑
m=0

c(1)
m Γ(m+ 1

2 )

nm+ 1
2 Γ( 1

2 )
(4.7)

and

I2(ξ ) ∼ (−)n λ−ne−π inξ

i
√

2π
ξ

1
2

(1+ ξ 2)
1
4

∞

∑
m=0

c(2)
m Γ(m+ 1

2 )

nm+ 1
2 Γ( 1

2 )
, (4.8)

where, by (4.4),

λ ≡ e−ψ(ts1) = (ξ +
√

1+ ξ 2)(ξ−1 +
√

1+ ξ−2)ξ .

The expansions I1(ξ ) and I2(ξ ) in (4.7) and (4.8) cease to be valid in the neighbour-
hood of the point ξ = i , where the saddles coalesce.

When 0 < ξ < 1, we may collapse the loop onto the negative real axis to find the
expansion

Gn(nξ ) ∼ I1(ξ )+
sin(πnξ )

π
(−)n−1I2(ξ ) (ξ ∈ (0,1)) (4.9)

as n → ∞ . When ξ ∈ D1 (with arg ξ �= 0), the contribution from the upper side
of the branch cut emanating from t = −1 and coincident with the steepest descent
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path through ts2 is a factor e−2πnIm(ξ ) smaller than I2(ξ ) resulting from the lower
side on the principal sheet, and so may be neglected. When ξ ∈ D2 , the contribution
e−2πnIm(ξ ) I2(ξ ) is also exponentially smaller than I1(ξ ) . This conclusion follows from
the fact that

2πIm(ξ )+Reψ(ts2) = πIm(ξ )−Reψ(ts1) > Reψ(ts1)

by (4.5), since as shown in the Appendix, Reψ(ts1) < 0 for 0 � arg ξ � 1
2 π . Then we

have the expansion of Gn(nξ ) given by

Gn(nξ ) ∼
⎧⎨
⎩

I1(ξ )+ I2(ξ ) (ξ ∈ D′
1)

I1(ξ ) (ξ ∈ D′
2)

(4.10)

as n → ∞ , where the prime on D1 and D2 denotes the deletion of the neighbourhood
of the point ξ = i and, in the case of D1 , also the interval 0 < ξ < 1.

4.3. Particular cases

When arg ξ = 1
2 π , we replace ξ by iξ (ξ > 0) to find after some routine algebra

ψ(ts1)+ 1
2 πξ + 1

2 π i =

⎧⎨
⎩

iθ − iξ log(ξ−1 +
√

ξ−2−1) (0 < ξ < 1)

−θ + ξ arctan
√

ξ 2−1 (ξ > 1),

where θ is defined in (2.2). Then from (4.7), (4.8) and (4.10) we obtain the non-
uniform expansions valid for n → ∞

Gn(inξ ) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2in√
2πn

ξ
1
2 e

1
2 πnξ

(1− ξ 2)
1
4

{
sin Ψn

∞

∑
m=0

c(1)
2m

n2m

Γ(2m+ 1
2)

Γ( 1
2 )

+i cos Ψn ∑∞
m=0

c(1)
2m+1

n2m+1

Γ(2m+3
2 )

Γ( 1
2 )

}
(0 < ξ < 1)

in√
2πn

ξ
1
2 e

1
2 πnξ

(ξ 2−1)
1
4

exp [n(θ − ξ arctan
√

ξ 2−1)]
∞

∑
m=0

c(1)
m

nm

Γ(m+ 1
2 )

Γ( 1
2 )

(ξ > 1),
(4.11)

where

Ψn ≡ nθ −nξ log(ξ−1 +
√

ξ−2−1)+ 1
4 π

and we have made the conjecture that the coefficients satisfy c(1)
m = (−)mc(2)

m (m � 1).
The leading terms of these expansions agree with the corresponding expressions in
(2.1).
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In the particular case ξ = 1, the dominant behaviour of Gn(n) is given by I1(1) .
Upon evaluation of the coefficients c(1)

1 and c(1)
2 , we find the expansion

Gn(n) ∼ 2−
1
4√

2πn
(1+

√
2)2n

(
1− 2

1
2

32n
+

123
3072n2 + · · ·

)
(n → ∞). (4.12)

This case can be verified by observing that from (3.5)

Gn(n) = 2−n
2F1

(
n+1,n

1

∣∣∣∣ 1
2

)
= 2F1

(−n,n
1

∣∣∣∣−1

)

by means of the well-known transformation in [9, Eq. (15.8.1)]. The first three terms in
the expansion of 2F1(−n,n;1;−1) as n → ∞ can be obtained from [14, p. 289] and are
found to agree5 with (4.12).

The results of numerical calculations of Gn(nξ ) for different n and ξ are pre-
sented in Table 3, which shows the absolute value of the relative error using the trun-
cation index m = 2 in the expansions I1(ξ ) and I2(ξ ) . The expansion I2(ξ ) is sub-
dominant in D1 , becoming comparable with I1(ξ ) only in the neighbourhood of the
imaginary ξ -axis.

ξ n = 50 n = 80 ξ n = 50 n = 80

0.50 2.254×10−7 5.531×10−8 0.5+0.5i 1.327×10−6 3.180×10−7

0.75 2.466×10−7 6.000×10−8 0.5+1.0i 9.377×10−6 2.247×10−6

1.00 1.975×10−7 4.800×10−8 1.0+0.5i 2.926×10−7 7.091×10−8

1.25 1.241×10−7 3.021×10−8 1.0+1.0i 4.544×10−7 1.102×10−8

1.50 7.195×10−8 1.754×10−8 0.5i 1.342×10−6 2.385×10−6

2.00 2.836×10−8 6.941×10−9 1.5i 1.019×10−5 2.567×10−6

Table 3: The absolute value of the relative error in the computation of Gn(nξ ) by means of (4.9)
and (4.10) with truncation index m = 2 .
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Appendix: The proof that Reψ(ts1) < 0 for 0 � arg ξ � 1
2 π

We establish that Reψ(ts1) < 0 when 0 � arg ξ � 1
2 π (ξ �= 0). From (4.4), we

have

−ψ(ts1) = log(ξ +
√

1+ ξ 2)+ ξ log(ξ−1 +
√

1+ ξ−2)
=arcsinh(ξ )+ ξ arcsinh(ξ−1).

5The quantity N appearing in the expression for the coefficient c1 in [14, p. 285] is incorrect: this should
read N = (α +β −1)2 +α −β − 1

2 .
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Let Z = arcsinh(z) , Z = α + iβ with |arg z| � 1
2 π . The mapping z �→ Z is shown in

Fig. 5. We have α = 0 when z is situated on the imaginary axis between [−i, i] , with
α > 0 elsewhere. The imaginary part of Z satisfies β > 0 (resp. < 0) according as z
is in the upper (resp. lower) half-plane, with β = 0 when arg z = 0.

(a)

i

-i

AO

B

D

E

C π  /2

−π  /2
(b)

i

i

AO

B

D E

C

Figure 5: The mapping Z = arcsinh (z) for |arg z| � 1
2 π : (a) the z-plane and (b) the Z -plane.

We now put arcsinh(ξ ) = u+ iv and arcsinh(ξ−1) = u′ − iv′ ,where u , u′ , v and
v′ are real. Then, when 0 � arg ξ < 1

2 π (ξ �= 0), u > 0, u′ > 0, v > 0 and v′ > 0.
When argξ = 1

2 π , we have u = 0 for 0 < Im(ξ ) � 1 and u′ = 0 for Im(ξ ) > 1, the
other quantities being positive in both cases. Hence

−Reψ(ts1) = u+Re [ξ (u′ − iv′)]
=u+u′Re (ξ )+ v′ Im(ξ ).

Thus, Reψ(ts1) is seen to be negative for 0 � arg ξ � 1
2 π (ξ �= 0). It therefore follows

that the contribution I1(ξ ) from the saddle ts1 is exponentially large as n → ∞ for
0 � arg ξ � 1

2 π (ξ �= 0).
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